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Abstract 

There are many different ways to subdivide the spectrum of a bounded linear 

operator; some of them are motivated by applications to physics (in particular, quantum 

mechanics). In this study, we determine the approximate point spectrum, compression 

spectrum and defect spectrum of the generalized upper triangular double-band matrices 

 over the sequence spaces  and . 

Keywords: Upper triangular double-band matrices, Approximate point spectrum, 

Compression spectrum, Defect spectrum. 

 
 

Genelleştirilmiş üst üçgensel double-bant matrisi  nin  ve   dizi uzayları 

üzerindeki spektral ayrışımı 

Özet 

Bir sınırlı lineer operatörün spektrumunun çok farklı yollarla ayrışımı vardır; 

bunlardan bazıları fiziğin uygulamalarına uyarlanmıştır (özellikle, kuantum mekaniği). 

Bu çalışmada genelleştirilmiş üst üçgensel double-bant matrisi uv  nin  ve  dizi 
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uzayları üzerindeki yaklaşık nokta spektrumunu, sıkıştırma spektrumunu ve eksik 

spektrumunu belirledik. 

Anahtar Kelimeler: Üst üçgensel double-bant matrisi, Yaklaşık nokta spektrum, 

Sıkıştırma spektrum, Eksik spektrum. 

Introduction 

Spectral theory is an important branch of mathematics due to its application in 

other branches of science. As it is well known, the matrices play an important role in 

operator theory. The spectrum of an operator generalizes the notion of eigenvalues for 

matrices. It has been proved to be a standard tool of mathematical sciences because of 

its usefulness and application oriented scope in different fields. In numerical analysis, 

the spectral values may determine whether a discretization of a differential equation will 

get the right answer or how fast a conjugate gradient iteration will converge. In ecology, 

the spectral values may determine whether a food web will settle into a steady 

equilibrium. In aeronautics, the spectral values may determine whether the flow over a 

wing is laminar or turbulent. In electrical engineering, it may determine the frequency 

response of an amplifier or the reliability of a power system etc. 

In the past decades, the spectrum of linear operators defined by some particular 

limitation matrices over some sequence spaces has been considered by many authors, 

say for example, Akhmedov and El-Shabrawy [1], [2], Yildirim [3], [4], [5], and B. 

Altay and F. Başar [6] etc. 

In this work, our purpose is to determine the approximate point spectrum, 

compression spectrum and defect spectrum of the generalized upper triangular double-

band matrices uv  as an operator over the sequence spaces 0c  and c . 

1.1 Preliminaries, Background and Notation 

Let  and  be the Banach spaces, and  also be a bounded linear 

operator. By , we denote the range of , i.e.,  
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by , we denote the set of all bounded linear operators on  into itself. If  is 

any Banach space and  then the adjoint  of  is a bounded linear operator on 

the dual  of  defined by  for all  and . 

Given an operator , the set 

  (1.1) 

is called the resolvent set of  and its complement with respect to the complex plain 

  (1.2) 

is called the spectrum of . By the closed graph theorem, the inverse operator 

  (1.3) 

is always bounded; this operator is usually called resolvent operator of  at . 

Let  be a Banach space over  and . Recall that a number  is 

called eigenvalue of  if the equation 

  (1.4) 

has a nontrivial solution . Any such  is then called eigenvector, and the set of all 

eigenvectors is a subspace of  called eigenspace. 

Throughout the following, we will call the set of eigenvalues 

 . (1.5) 

We say that  belongs to the continuous spectrum  of  if the resolvent 

operator (1.3) is defined on a dense subspace of  and is unbounded. Furthermore, we 

say that  belongs to the residual spectrum  of  if the resolvent operator (1.3) 

exists, but its domain of definition (i.e. the range  of  is not dense in 

; in this case  may be bounded or unbounded.  
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Given a bounded linear operator  in a Banach space , we call a sequence  

in  a Weyl sequence for  if  and  as . 

In what follows, we call the set 

  (1.6) 

the approximate point spectrum of . Moreover, the subspectrum 

  (1.7) 

is called defect spectrum of . 

The two subspectra (1.6) and (1.7) form a (not necessarily disjoint) subdivision 

  (1.8) 

of the spectrum. There is another subspectrum, 

  (1.9) 

which is often called compression spectrum in the literature and which gives rise to 

another (not necessarily disjoint) decomposition 

  (1.10) 

of the spectrum. Clearly,  and . Moreover, comparing 

these subspectra with those in (1.5) we note that 

  (1.11) 

and 

  (1.12) 

Sometimes it is useful to relate the spectrum of a bounded linear operator to that of 

its adjoint. Building on classical existence and uniqueness results for linear operator 

equations in Banach spaces and their adjoints. 
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Proposition 1.1 ([7], Proposition 1.3). The spectra and subspectra of an operator 

 and its adjoint  are related by the following relations: 

(a) , 

(b) , 

(c) , 

(d) , 

(e) , 

(f) , 

(g) . 

1.2. Goldberg’s Classification of Spectrum 

If  is a Banach space,  denotes the collection of all bounded linear operators 

on  and , then there are three possibilities for , the range of : 

(I)  

(II) , but , 

(III) . 

and three possibilities for : 

(1)  exists and continuous, 

(2)  exists but discontinuous, 

(3)  does not exist. 
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If these possibilities are combined in all possible ways, nine different states are created. 

These are labelled by: If an operator is in state  

for example, then   and  exist but is discontinuous (see [8]). 

If  is a complex number such that  or   then 

. All scalar values of  not in  comprise the spectrum of . The 

further classification of  gives rise to the fine spectrum of .That is,  can 

be divided into the subsets                                                                        . 

 For example, if  is in a given state,  (say), then we write   

By the definitions given above, in [9], Durna and Yildirim have written 

following table: 

Table 1. 

 1 2 3 

 exists 

and is bounded 

 exists 

and is unbounded 

      

dos not exists 

 

I 

 

 

   

 

 

II 

 

 

 

 

 

 

 

 

 

 

 

III 
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Let  denote the set of all sequences; the space of all null sequences; 

convergent sequences; sequences such that , respectively.  

Lemma 1.1 ([8], Theorem II 3.11) The adjoint operator  is onto if and only if  has a 

bounded inverse. 

Lemma 1.2 ([8], Theorem II 3.7) A linear operator  has a dense range if and only if 

the adjoint operator  is one to one. 

2. The fine spectrum of the operator  on  and  

In this paper, we introduce a class of a generalized upper triangular double-band 

matrices  over the sequence spaces  and . Let  be a sequence of positive real 

numbers such that  for each  with  and  is either 

constant or strictly decreasing sequence of positive real numbers with 

, and . In [11], Fathi has defined the operator  

on squences space  as follows: 

 

 . 

 

It is easy to verify that the operator  can be represented by the matrix, 

   

Note that, if  and is a constant sequence, say  and  

for all , then the operator  is reduced to the operator  and the results for 

fine spectra of upper triangular double-band matrices have been studied in [10]. 
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2.1. Subdivision of the spectrum of  on  

If  is a bounded linear operator with matrix , then it is known that the 

adjoint operator  is defined by the transpoze of the matrix . It is well 

known that the dual space  of  is isomorphic to . 

The fine spectrum of the operator  over the sequence space  has been studied 

by Fathi [11]. In this subsection we summarize the main results. 

Theorem 2.1 ([11], Theorem 2.2)  where 

 .  

Theorem 2.2 ([11], Corollary 2.5)  

Corollary 2.1 . 

Proof. It is clear from Theorem 2.2, since from Table 1., 

. 

Theorem 2.3 ([11], Theorem 2.6) . 

Theorem 2.4 ([11], Theorem 2.7) . 

Theorem 2.5 ([11], Theorem 2.8) If , then . 

Theorem 2.6 If , then . 

Proof. Let we find . If , then we get 
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Hence we obtain that 

  (2.1) 

If , then , since  is either constant or strictly decreasing 

sequence of positive real numbers with , and . 

Therefore  must be zero and so . This means that for , 

 is one to one. Thus for ,  has a dense range from Lemma 

1.2. Therefore we have 

. 

Corollary 2.2 . 

Proof. It  is  clear  from  Theorem 2.1,  Theorem 2.5  and  Theorem 2.6,  since 

 from Table 1. and 

. 

Theorem 2.7  (a) , 

(b) , 

(c) . 

Proof. (a) It is clear from Theorem 2.3 and Corollary 2.1, since 

 from Table 1. 

(b) It is clear from Theorem 2.3 and Theorem 2.1, since 

 

from Table 1. 

(c) It is clear from Theorem 2.2 and Corollary 2.2, since 
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from Table 1. 

Corollary 2.3  (a) , 

(b) . 

Proof. It is clear from Theorem 2.7 and Proposition 1.1 (c) and (d). 

2.2. Subdivision of the spectrum of  on  

If  is a bounded linear operator with matrix , then the adjoint operator 

 acting on  has a matrix representation of the form 

 

where  is the limit of the sequence of row sums of  minus the sum of the limit of the 

columns of , and  is the column vector whose k-th entry is the limit of the k-th 

column of  for each . For , the matrix  is of the form 

. 

It should be noted that the dual space  of  is isomorphic to the Banach space  

of absolutely summable sequences normed by . 

The fine spectrum of the operator  over the sequence space  has been studied 

by Fathi [11]. In this subsection we summarize the main results. 

Theorem 2.8 ([11], Theorem 3.2)  where 

. 

Theorem 2.9 ([11], Corollary 3.5) . 

Corollary 2.4 . 

Proof. It is clear from Theorem 2.9, since from Table 1., 
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. 

Theorem 2.10 ([11], Theorem 3.6) (a) , 

(b) . 

Theorem 2.11 ([11], Theorem 3.7) If v u   , then  3 ,uvI c   . 

Theorem 2.12 If , then . 

Proof. Let we find . If , then we get 

 

 

 

 

 

Hence we get 

   

If , then , and , since  is either constant or strictly 

decreasing sequence of positive real numbers with , and 

. From here  and must  be zero and so . This 

means that for ,  is one to one. Thus for ,  has a 

dense range from Lemma 1.2. Therefore we have 

. 

Corollary 2.5 . 

Proof. It is clear from Theorem 2.8, Theorem 2.11 and Theorem 2.12, since 
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 from Table 1. and 

. 

Theorem 2.13 (a) , 

(b) , 

(c)  

Proof. (a) It is clear from Theorem 2.10 (a) and Corollary 2.5, since 

 from Table 1. 

(b) It is clear from Theorem 2.10 and Theorem 2.11, since 

 

from Table 1. 

(c) It is clear from Theorem 2.9 and Corollary 2.5, since 

 

from Table 1. 

Corollary 2.6  (a) , 

(b) . 

Proof. It is clear from Theorem 2.13 and Proposition 1.1 (c) and (d). 
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