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Abstract 

Solar power prediction is an important problem that has gained significant attention recently due to the increasing demand for 

renewable energy sources. In this paper, we present the results of using four different regression models for solar power prediction: 

linear regression, logistic regression, Lasso regression, and elastic regression. Our results show that all four models are able to 

predict solar power accurately. However, the Elastic regression outperforms Linear, Ridge, and Lasso regressions in terms of 

predicting the maximum solar power output. In addition, PCA was applied to the dataset within the scope of the study, and better 

results were obtained in the elastic regression model. Within the scope of the study, the contribution of the feature extraction method 

to the study was examined. We also discuss the advantages and disadvantages of each model in the context of solar power prediction. 
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1. Introduction 

 

Solar power is a form of renewable energy generated by converting sunlight into electricity (Bagher et al., 2015). Solar power is a clean 

and renewable source of electricity. Unlike fossil fuels, which release greenhouse gases and other pollutants when burned, solar power 

is generated without causing environmental pollution or emissions (Shahsavari & Akbari, 2018). As a result, solar power is a sustainable 

and eco-friendly source of energy that can help reduce our environmental impact and combat climate change. Moreover, solar power 

is increasingly becoming more affordable and accessible. As the technology for generating solar power has improved, the cost of solar 

panels and other equipment has decreased, making it more affordable for individuals and businesses to install solar systems. In addition, 

solar power can be generated in various locations, from rooftops to open fields, making it accessible to a wide range of users. Also, 

solar power can help reduce our reliance on fossil fuels and improve energy security. By generating electricity from the sun, we can 

reduce our need for fossil fuels and finite resources subject to price fluctuations and other market forces. Thus, it can help increase 

energy security and reduce our vulnerability to energy market disruptions (Nwaigwe, 2019). 

  

In recent years, there has been a significant expansion in the use of solar power worldwide. As the cost of Photovoltaic (PV) technology 

has decreased and its efficiency has increased, many individuals, businesses, and governments are turning to solar power to meet their 

energy needs. This trend is expected to continue, with considerable experts predicting that solar power will play a significant role in 

the transition to a clean energy future (Gielen, 2019). 

 

Expanding solar power and developing PV generation technology is essential to achieving a sustainable and renewable energy future. 

By reducing our reliance on fossil fuels and minimizing our environmental impact, we can help create a cleaner, healthier, and more 

sustainable world for future generations. 

  

For several reasons, estimating the amount of electricity produced by a PV system is essential. First, accurate PV power estimates 

ensure that a solar installation is correctly sized to meet users' energy needs. Therefore, it helps prevent over- or under-sizing of a PV 

system, which can be costly and inefficient. In addition, planning and scheduling electricity generation and use are done through PV 

power forecasts. By knowing how much power a PV system is expected to produce, power grid operators can better manage electricity 

supply and demand and ensure that enough power is available to meet users' needs. In this way, power outages and other malfunctions 

that may occur in the power grid are prevented. PV power estimates are also used to determine the financial viability of a solar project. 

Accurate estimates of the electricity production of a PV system help investors, lenders, and other financial stakeholders make informed 

decisions about investing in a particular solar project. As a result, this causes solar projects to be economically viable and provide a 

good return on investment (Sharadga, 2020). 

 

In addition, accurate and reliable estimates of PV electricity generation support the growth and development of solar energy as a clean 

and renewable energy source. 

 

There are various studies on the power generation prediction of PV. Considering machine learning, especially with processors that have 

achieved high computing power due to developments in silicon technology, is one issue that attracts attention when estimating the 

generated power. Several machine-learning algorithms can be used for solar photovoltaic (PV) power prediction. These algorithms use 

data and mathematical models to predict the amount of electricity a PV system is expected to generate (Jebli, 2021, Munawar, 2020). 

Some common types of machine learning algorithms that are used for PV power prediction include: 

 

Regression algorithms use training data to build a mathematical model that can predict the output of a PV system based on input 

variables such as solar radiation and temperature. Regression algorithms can make short-term and long-term predictions of PV 

electricity generation (He, 2019). Neural network algorithms are composed of multiple interconnected nodes, or "neurons," that can 

process and analyze data to make predictions. Neural networks are often used for PV power prediction because they can learn and adapt 

over time, allowing them to make increasingly accurate predictions as more data is collected (Pazikadin, 2020). Support vector machine 

algorithms use training data to build a model that can classify PV electricity generation data into different categories. In addition, 

support vector machines are often used for short-term PV power prediction, as they can quickly and accurately predict the output of a 

PV system based on the current weather conditions (Buwei, 2018). Finally, decision tree algorithms use a set of rules to predict PV 

electricity generation. Decision trees can be used to make both short-term and long-term predictions of PV power and are often used in 

conjunction with other machine-learning algorithms to improve the accuracy of PV power predictions (Wang, 2018). 

Different machine-learning algorithms can be used for PV power prediction. The specific algorithm will depend on the type of data 

available, the time frame of the predictions, and the desired level of accuracy. Literature review of solar power prediction with machine 

learning algorithms are given in Table 1. 
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Table 1. Literature Review of Solar Power Prediction with Machine Learning Algorithms 

 
Paper Prediction 

Method 

Compared 

Method 

Database Inputs Forecasting 

Horizon 

Metric 

Didavi, 2021 XGBoost DT, RF, 

XGBoost 

PVGIS database 

for the city of 

Natitingou (Benin) for 

12 years 

Wind speed, sun position, 

temperature, direct 

irradiation, diffuse 

irradiation and reflected 

irradiation  

3-days MSE, R 

Khandakar, 

2019 

ANN LR, M5P 

DT, GPR 

Own acquired data 

(Rooftop) in Qatar 

Irradiance, relative humidity, 

ambient temperature, wind 

speed, PV surface 

temperature and accumulated 

dust 

Day-ahead RMSE, MSE, 

MAE, R 

Massaoudi, 

2020 

Hybrid 

(BRR, CWT, 

Catboost) 

- The Australian weather 

data 

temperature, relative 

humidity, horizontal 

irradiation, previous PV 

power, wind direction, and 

diffuse horizontal radiation. 

24h RMSE, MSE, 

MdAE, MAE, R 

Li, 2022 XGBoost ELM, RF, 

SVR 

The NRELhourly 

weather and solar 

irradiance data for ten 

years 

Dew point temp, Total Cloud 

Cover, Wind Speed, Sea-

level pressure, solar 

irradiance 

Day-ahead MAE, RMSE 

Carneiro, 

2022 

Ensemble 

with Ridge 

Regression 

CFBP, SOM, 

RBF and 

MLP 

Algeciras, Spain, 

obtained by European 

Commission for 

Energy and Transport 

(IET) PV Geographical 

Information System 

    RMSE, MAE, 

MAPE, R 

Kumar, 2020 Hybrid 

(ANN with 

GWO) 

PSO, LM, 

ANF 

Own acquired data - 5 

kWp grid-connected 

rooftop PV 

solar irradiance (W/m2) 

incident on the PV panel, cell 

temperature (°C), Linke 

turbidity, and wind speed 

(m/s). 

  NE, NSE, NRMSE, 

NMBE, NMAE, 

MSE 

Munawar, 

2020 

XGBoost + 

PCA 

Random 

forest, ANN 

and XGBoost 

Kaggle database, 

Hawaii, collected by 

NASA 

UNIX time, date, time, 

radiation, temperature, 

pressure, humidity, wind 

speed, wind direction, sun 

rise time and sun set time 

Day-ahead RMSE, R 

Cervone, 

2017 

ANN + 

AnEn 

ANN and 

AnEn 

combination 

Threesolar power plant 

in Italy 

Global horizontal irradiance, 

percent cloud cover and air 

temperature, solar azimuth 

and elevation 

72h RMSE, MRE, 

CORR, BIAS 

Yang, 2020 

 

complete-

history 

persistence 

ensemble, 

OLS, AnEn, 

quantile 

regression 

 Markov-

chain 

mixture 

PLC Dataset clear sky index, image Intra-hour, 

Day-ahead  

PICP, CRPS,PIAW, 

Pinball, Skill 

Mohana, 

2021 

 

 

LASSO, 

Rain 

Forest,Linear 

Regression, 

XGBoost, 

SVM, DL 

Polynomial 

Regression, 

Own Data, Saudi 

Arabia, Abha City, 

King Khalid Univ. 

Ambient Temp Sensor, 

Relative Humidity Sensor, 

Wind Speed Sensor, 

Wind Direction Sensor, 

Sollar Irradiation Sensor, 

Precipitation Sensor, 

Pyronometer, 

PV Sensor, 

5 min MSE 

Perveen, 

2018 

 

 

Fuzzy logic Empirical 

models 

Own Data, 

photovoltaic module of 

210 W power output, 

Delhi India 

Global solar radiation, 

Sunshine hours, Ambient 

temperature, Relative 

humidity, Wind speed, 

Dewpoint 

Day-ahead MPE, MBE  
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Table 1 (cont). Literature Review of Solar Power Prediction with Machine Learning Algorithms 

 
Paper Prediction 

Method 

Compared 

Method 

Database Inputs Forecasting 

Horizon 

Metric 

Yang, 2015 

 

Lasso OLS, 

ARIMA, 

ETS 

Own Data, Hawaii 

Oahu Island,  

Horizontal irradiance, direct 

normal irradiance, diffuse 

horizontal irradiance, global 

tilt, air temperature, relative 

humidity, barometric 

pressure, wind speed, wind 

direction  

5 min MAE, RMSE 

Zazoum, 

2021 

SVM and 

GPR 

SVM and 

GPR 

PV modules in Port 

Harcourt 

PV panel temperature, 

ambient temperature, solar 

flux, time of the day and 

relative humidity 

Day-ahead RMSE, MAE, R2 

Chiteka, 

2020 

ANN and 

MLR 

ANN and 

MLR 

Harare Institute of 

Technology, Harare, 

Zimbabwe, Three 

100Wp PV 

PM10, relative humidity, 

precipitation, wind speed, 

wind direction, ambient 

temperature, air pressure, 

maximum and minimum 

temperature, dew point, and 

clearness index 

Day-ahead RMSE, R2 

Alfadda, 

2017 

SVR Ploynomial 

Regression 

and Lasso 

Rooftop of Virginia 

Tech Research Center,  

Temperature, Dew Point, 

Relative Humidity, 

Visibility, Wind Speed, 

Wind Direction, Cloud 

Cover 

Hourly RMSE 

Jebli, 2021 ANN and RF LR and SVR Errachiddia, Morroco, 

semi desert climate 

Solar radiation, temperature, 

wind direction, wind speed, 

humidity, and pressure 

Day-ahead MAE, RMSE, 

MSE, R2, NRMSE, 

ME 

VanDeventer, 

2019 

GASVM SVM Own acquired data- 

Local weather station 

on 3kW PV in Deaken 

University 

Air temperature and solar 

irradiance 

Hourly RMSE, MAPE 

2. Material and Methods 

 

In a prediction model, the properties of the feature vectors used as input directly affect the forecasting performance. While some 

features reduce the estimation achievement, overused features increase computational costs. Before the data is used in the prediction 

model, the PCA approach reduces the dimensionality of the data, thus providing a more accurate and faster result of the prediction 

model. 

 

The main purpose of PCA is to describe features with fewer data without excessive loss of information. For this purpose, PCA extracts 

reduced features using the tendencies of the original data, the covariance matrix, the eigenvalue of the covariance matrix, and the 

eigenvectors. The eigenvalues describe the total amount of variance, and the eigenvectors represent the direction of the new feature 

space. As a result of this operation, its components are converted into a small set of new uncorrelated variables as the length of a large 

set of arguments. The newly formed uncorrelated new variables are called principal components. 

 

Linear regression is a statistical method used to model the linear relationship between a dependent variable and one or more 

independent variables. It is called simple regression if the dependent variable is modeled with only one independent variable. The 

relationship between the dependent variable Y and the independent variable X is calculated by Equation 1. 

 

𝑌 = 𝛽0 + 𝛽1𝑋+∈ (1) 

 

Here, 𝛽0 is the constant (the point where it intersects the y-axis), 𝛽1 is the regression coefficient (the slope of the regression line), and 

∈ is the error term. 

 

If the dependent variable is modeled with more than one independent variable, it is called multivariate linear regression. The linear 

relationship between the dependent variable Y and more than one independent variable is calculated by Equation 2. 
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𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑛

𝑖=1

+∈ 
 

(2) 

 

Here, 𝑋𝑛 denotes independent variables  𝛽0 is the constant, 𝛽𝑛 are the regression coefficients, and ∈ is the error term. 

 

In the context of solar power prediction, the dependent variable is the solar power output, and the independent variables are factors 

such as weather conditions, time of day, and solar panel characteristics. In linear regression, the relationship between the predictor 

variables and the response variable is modeled as a linear equation. The goal is to find the values of the coefficients in the equation that 

best fit the data. 

 

Linear regression has some advantages that is listed as: linear regression is relatively simple to understand and implement, it can be 

used to model the relationship between a continuous outcome variable and one or more predictor variables. Moreover, it is widely used 

and well-understood, so there is a wealth of resources available for learning about it and using it effectively. Although linear regression 

has some advantages, it also has disadvantages. Linear regression assumes that the relationship between the predictor variables and the 

response variable is linear, which may not always be the case. It can be sensitive to outliers, which can affect the estimated coefficients 

and the predictions made by the model. 

 

Logistic regression is a statistical method used to model the relationship between a dependent variable and one or more independent 

variables when the dependent variable is binary (i.e., it can take on only two values, such as "yes" or "no", "1" or "0", etc.). It is used 

to predict the probability that an event will occur, based on the values of the predictor variables. The predicted probability is transformed 

into a binary outcome using a threshold value. Logistic regression is commonly used in classification problems, where the goal is to 

predict the class label of an observation based on the values of the predictor variables. In the context of solar power prediction, logistic 

regression can be used to predict the probability that the solar power output will exceed a certain threshold value. The predicted 

probability is transformed into a binary outcome using a threshold value. The logistic function is given in Equation 3. 

 

𝑝(𝑥) =
1

1 + 𝑒−
(𝑥−µ)

𝑠

    
 

(3) 

 

where μ is a location parameter and s is a scale parameter. This expression is rewritten as in Equation 4: 

 

𝑝(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 

 

(4) 

 

Logistic regression has some advantages that is listed as:  Logistic can be used to predict the probability of an event occurring, which 

can be useful in many real-world applications. It is relatively simple to understand and implement. Furthermore, it is widely used and 

well-understood, so there is a wealth of resources available for learning about it and using it effectively. While linear regression has 

some advantages, Logistic regression also has disadvantages. It assumes that the relationship between the predictor variables and the 

response variable is linear, which may not always be the case. It can be sensitive to outliers, which can affect the predicted probabilities 

and the class labels predicted by the model. 

 

Lasso regression is a type of linear regression that uses a regularization term in the optimization process. The regularization term is a 

penalty applied to the coefficients of the predictor variables in the model, which helps to prevent overfitting by reducing the complexity 

of the model. Lasso regression is particularly useful for selecting important features in a dataset since it tends to drive the coefficients 

of unimportant features to zero. In the context of solar power prediction, Lasso regression can be used to select the most important 

features in the dataset, which can improve the accuracy of the predictions. Lasso regression has some powerful side. Lasso regression 

can be used to select important features in a dataset, since it drives the coefficients of unimportant features to zero. Also, it can help to 

prevent overfitting by reducing the complexity of the model. Lasso regression formula is given in Equation 5. 

 

𝛽̂ = argmin
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑃

𝑗=1

)

2
𝑛

𝑖=1

} ,                                                   𝑠. 𝑡. ∑|𝛽𝑗|

𝑃

𝑗=1

≤ 𝑡 

 

(5) 

 

where 𝑡 ≥ 0 is a tuning parameter which controls the amount of shrinkage. Equation 6 is equivalent to the ℓ1-penalized regression 

problem of finding: 
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𝛽̂ = argmin
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑃

𝑗=1

)

2

+  𝜆 ∑|𝛽𝑗|

𝑃

𝑗=1

≤ 𝑡

𝑛

𝑖=1

}  

 

(6) 

 

Elastic regression is a type of linear regression that combines the strengths of both Lasso and Ridge regression. Like Lasso regression, 

it uses a regularization term in the optimization process to prevent overfitting. However, unlike Lasso regression, which uses the L1 

norm as the regularization term, elastic regression uses a combination of the L1 and L2 norms. This allows elastic regression to balance 

the trade-off between model complexity and goodness of fit, which can be beneficial in some situations. Elastic regression formula is 

given in Equation 7. 

 

𝛽̂ = argmin 
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑃

𝑗=1

)

2

+  𝜆 ∑|𝛽𝑗|
2

𝑃

𝑗=1

   𝜆 ∑|𝛽𝑗|

𝑃

𝑗=1

𝑛

𝑖=1

}  

 

(7) 

3. Experiments 

3.1. Dataset 

The solar energy power generation dataset from Kaggle was used to compare the performance of the regression models in power 

generation from solar panels. The data set consists of 4213 data in 21 different dimensions. The dimensions included in the dataset are 

given in Table 2 with mean and standard deviation values. 

 

Table 2. Dimensions of Dataset 

 

Name of the Value Mean Standard Deviation 

Temperature 2m above ground 15.1 8.85 

Relative humidity 2m above ground 51.4 23.5 

Mean sea level pressure  1.02k 7.02 

Total precipitation  0.03 0.17 

Snowfall amount  0 0.04 

Total cloud cover  34.1 42.8 

High cloud cover  14.5 30.7 

Medium cloud cover  20 36.4 

Low cloud cover  21.4 38 

Shortwave radiation backwards  388 278 

Wind speed 10m above ground 16.2 9.88 

Wind direction 10m above ground 195 107 

Wind speed 80m above ground 19 12 

Wind direction 80m above ground 191 109 

Wind speed 900 m 16.4 9.88 

Wind direction 900 m 192 107 

Wind gust 10m above ground 20.6 12.6 

Angle of incidence 50.8 26.6 

Zenith 60 19.9 

Azimuth 169 64.6 

Generated power kW 1.13k 938 

 

3.2. Performance evaluation criteria 

To quantitatively evaluate the energy estimation results produced in solar panels, some metrics were used within the scope of the study. 

Metrics calculate performance by comparing forecast data with actual values to determine accuracy. It is also necessary to use these 

metrics to decide which model should be the most accurate.  

 

Root mean square error (RMSE) and R-squared metrics were used to constrain the estimation of these variable models. The RMSE 

value is calculated by Equation 8 and the R squared value by Equation 9. 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝜏 − 𝜆𝑦̂𝜏)2𝑚

𝜏=1

𝑛
 

 

(8) 

 

𝑅2 = 1 −
∑(𝑦𝜏 − 𝑦̂𝜏)2

∑(𝑦𝜏 − 𝑦̅𝜏)2
 

 

(9) 

 

 Here, 𝑦𝜏  denotes actual values, 𝑦̂𝜏 denotes predicted values, 𝑦̅𝜏 denotes mean values, and m is the number of data points. 

3.3. Experimental results 

Within the scope of this study, four different models were developed with Linear, Ridge, Lasso, and Elastic Regression algorithms and 

applied to the dataset. In the framework of the developed model Ridge Regression Model and Lasso Regression Model coefficients are 

given in Table 3 and Table 4, respectively, in matrix form. 

 

Table 3. Coeffient matrix of Ridge Regression Model 

 

 -9,25E+00 -4,27E+00 1,62E+01 -3,58E+00 
 

 5,55E+02 -1,47E+00 -1,24E+00 -1,15E+00  

 
-1,37E+00 1,24E+00 1,67E+01 3,02E-01 

 

 
9,13E+00 1,59E-01 -3,05E+01 -2,63E-01 

 

 -3,07E+00 -1,51E+01 -7,73E+00 -6,18E+00  

 

Table 4. Coeffient matrix of Lasso Regression Model 

 

 

 -9,32E+00 -4,28E+00 1,61E+01 0,00E+00  

 
3,54E+02 -1,45E+00 -1,24E+00 -1,17E+00 

 

 
-1,37E+00 1,24E+00 1,67E+01 3,03E-01 

 

 9,04E+00 1,60E-01 -3,04E+01 -2,62E-01  

 
-3,08E+00 -1,51E+01 -7,71E+00 -6,19E+00 

 

 

 

The Lasso regression model gives better results than the Ridge regression model because, in the Lasso regression model, one of the 

coefficients is penalized and given a value of 0. In addition, the most suitable alpha values were selected in the Ridge and Lasso 

regression models, and the most optimum results were obtained. In this study, the alpha value for Ridge regression was 616,423 and 

the alpha value for Lasso regression was found to be 143,434. 

 

Firstly, four different regression models were applied to the data set to evaluate the performance. The performance outputs of the 

regression models performed with the raw dataset are given in Table 5. 

 

Table 5. Performance Evaluation Results of Four Different Regression Models to Raw Data 

 

 RMSE R- Squared 

Linear Regression 507,532322 0,718008 

Ridge Regression 507,379842 0,718178 

Lasso Regression 506,864894 0,718750 

Elastic Regression 506,796370 0,718826 

When the results in Table 5 are examined, it is seen that the four regression models give similar results, and the Elastic model produces 

better results than the others. 
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Principal component analysis was applied to our 20-component dataset to examine the effect of reducing some dimensions on data 

analysis; it was found that 99,5% of the variance was explained with 16 components. The variance result matrix is given in Table 6, 

and the number of components / expected variance graph is given in Figure 1. 

 

Table 6. Explained Variance Ratio Matrix 

 

 22,1379 41,2584 55,7907 66,9964 73,6667  

 
79,8258 84,3156 88,4635 92,5043 94,3980 

 

 96,1544 97,0091 97,7361 98,3392 98,8200  

 99,2069 99,5242 99,8251 99,9758 100,0000  

 

 
Figure 1. Explained Variance Ratio per Number of Components 

 

On the reduced data set, the model developed with four different regression algorithms was applied again, and the results were obtained 

and given in Table 7. 

 

Table 7. Performance Evaluation Results of Four Different Regression Models with PCA 

 

 RMSE R- Squared 

Linear Regression 507,532321 0,718008 

Ridge Regression 507,523041 0,718019 

Lasso Regression 507,368822 0,71819 

Elastic Regression 506,718803 0,718912 

 

When the results in Table 7 are examined, it is seen that the four regression models give similar results, while the Elastic model 

produces better results than the others. While it is seen that the elastic regression model with PCA produces better results than the raw 

data, the Lasso regression model produces worst results than the raw data. The RMSE values per number of components in the Elastic 

regression model are given in Figure 2. 
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Figure 2. RMSE values per Number of Components 

4. Conclusion  

Fossil energy sources are rapidly depleting, renewable energy sources are an essential energy production alternative as an 

environmentally friendly and economical solution despite the increasing energy demand. However, electricity generation with 

renewable energy sources has its limitations. For example, production efficiency depends on environmental and meteorological data 

in generating electrical energy from solar energy with photovoltaic panels. For this reason, the electrical energy produced during the 

day constantly changes. Enabling healthy energy planning with the most realistically estimated production data; will ensure both 

uninterrupted meetings of energy demand and grid efficiency. With the PCA applied, 4 dimensions were reduced in the dataset 

consisting of 20 dimensions and a new data set with 0.5% sensitivity was created. After extracting the features with PCA, the RMSE 

values with the elastic model is increased. Due to the data set's low R2 values, the estimations' accuracy was limited. However, it is 

considered to show higher accuracy prediction performance when applied to better datasets. In addition, the differences between the 

regression models will be better examined. 

This study aims to investigate the performance effect of four different regression models on solar power prediction. In addition, the 

performance of these four different regression models was measured after reducing the dimensions that may affect the result in large 

data sets negligibly from the data set and reducing the size. When the results were evaluated with the general evaluation metrics RMSE 

and R square, it was seen that the Elastic model produced better results than the other models. In addition, principal component analysis 

and dimension reduction affect the results positively. 
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