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Abstract: Signal denoising approaches on data of any dimension largely relies on the assumption that data and the noise components and 

the noise itself are somewhat uncorrelated. However, any denoising process heavily depending on this assumption retreats when the 

signal component is adversely affected by the operation. Therefore, several proposed algorithms try to separate the data into two or more 

parts with varying noise levels so that denoising process can be applied on them with different parameters and constraints. In this paper, 

the proposed method separates the speech data into magnitude and phase where the magnitude part is further separated into common and 

difference parts using common vector analysis. It is assumed that the noise largely resides on difference part and therefore denoised by a 

known algorithm. The speech data is reconstructed by combining common, difference and phase parts. Using Linear Minimum Mean 

Square Error Estimation algorithm on the difference part, excellent denoising results are obtained. Results are compared with that of the 

state of the art in well-known speech quality measures. 
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1. Introduction 

For decades, as cognitive science penetrated into automation 

systems, voice automated applications like voice directed 

banking, voice signatures, intelligent homes; voice recognizing 

mobile-phone apps and such became both possible and popular. 

All voice applications somewhat necessitate high quality voice 

signals, mostly in digital form, impetrating voice denoising 

algorithms. All naturally collected signals carry some noise 

energy weather from electronics/transmission or unrelated 

background signals. Voice denoising aims to improve signal 

quality, voice intelligibility or do both, achieving that with 

minimal loss in signal energy. 

Although the voice denoising methods can be separated into two 

as single and multiple channel algorithms, researchers mostly 

focused on single channel because of incomparably higher 

number of encounters of such. Spectral subtraction, noise 

estimation, Wiener deconvolution/filtering, statistical and 

subspace based methods are considered as mainly single channel, 

notwithstanding the fact that they can be and are also employed 

in multichannel systems. In this paper, a method based on 

common vector analysis (CVA) is proposed. Therefore, brief 

methodology of other well-known subspace is given for 

comparisons. 

Subspace methods rely on the expectation that the noisy data can 

be separated into two or more component where noise can be 

handled more efficiently within. A Singular Value 

Decomposition (SVD) based approach, proposed by Dendrinos et 

al. [1], uses the expectation that, after factorization of the data 

into sub-data, noise energy concentrates in vectors corresponding 

to smaller singular values. In the simplest denoising approach 

these are zeroed and voice data is recomposed. This technique is 

improved by Jensen et al. [2] for colored noise on which the 

former method has somewhat failed to reduce. On the other hand, 

their method with high computational complexity had several 

constraints for controlling residual noise. Ephraim et al. [3] aimed 

to optimize the estimator that minimizes distortion caused by 

residual noise. Noisy signal is separated into noise and signal 

subspaces using Karhunen Loeve Transform (KLT) whereby 

zeroing the components in noise subspace and restructuring the 

signal subspace using a gain function. Components in subspaces 

are recombined again to obtain denoised signal through inverse 

KLT. Mittal et al. [4] and Rezayee et al. [5] expanded this work 

for colored noise. They obtained better results by employing 

different KLT matrices and converging covariance matrix of the 

noise vectors to a diagonal matrix respectively. 

Common Vector Approach (CVA) is a subspace method used in 

recognition applications. In CVA, training data representing each 

subject to be discriminated are used to form its own class. In a 

speech recognition application, ambient noise, ages and genders 

of speakers result in differences within a class [6]. CVA is based 

on the common component of those, basically by removing these 

differences within the class. This component is called the 

common vector. It has been employed in speaker recognition [7], 

speech recognition [8]-[10], face recognition [11], fault detection 

in electrical motors [12], spam e-mail detection [13]. CVA has 

also been used in image denoising [14]. 

2. Common Vector Approach 

When differences between feature vectors in a class are removed, 

the remaining vector which consists of features invariant within 

the class is called the common vector. A feature vector is then, 

presumed to be a sum of common and difference components. If 

the number of feature vectors ( m ) is greater than the dimension 

( n ) of the vectors, then this is called a sufficient case ( m n ). 

In the sufficient case, the common vector is the mean vector. The 

insufficient case occurs when the vector dimension is larger than 

or equal to the number of vectors ( n m ), which is the case in 

most practical applications where, for example, too few image 

blocks with many pixels each exist. In general, it covers the 

setups where number of samples is less than the sample 
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dimension. Since we are interested in such setups, only 

insufficient case of CVA is described in the following.  

Let the feature vectors in a pattern class be linearly independent 

1 2, ,..., ma a a . Each vector can be written as 

 
,i i diff comma a a  , 1,2,...,i m  (1) 

where comma  and 
,i diffa  are common vector of the class and 

difference vector per ia  respectively. The covariance matrix for 

the class is 
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( )( )
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where 1

1

m

avg im

i

a a


   denotes the mean of the vectors in the 

class. In insufficient case ( n m ), 1n m   of the 

eigenvalues will be zero and corresponding eigenvectors (
ju ) 

span the indifference subspace B
, while the remaining 

eigenvectors span the difference subspace B  where B  and 

B
 are orthogonal. The common vector of the class can be 

found by projecting any feature vector onto the indifference 

subspace  B
 using 

 
com ia P a , 1,2,...,i m . (3) 

The projection matrix P
 is calculated using eigenvectors 

ju  

that correspond zero valued eigenvalues (spans B
) via 
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The subspace methods other than CVA requires the inverse of the 

covariance matrix   [15]. However, n m  inhibits the 

calculation of inverse of   whereas CVA does not have this 

problem. 

It is expected that noise mainly reside within the difference 

components when it is uncorrelated between class vectors. 

Therefore, it is imperative to construct classes as correctly as 

possible. When class information of the vectors is not available, 

classes should be constructed by collecting similar vectors into a 

data set matrix for each evaluated vector whose common vector is 

to be found. When the input data is a stream or can be handled as 

a stream with bounds, for example, classes can be constructed by 

searching similar vectors within a reasonable time range. 

Since the raw vectors in speech data are selected to be sample 

frames of length n , the words vector and frame are used 

interchangeably used within this paper. 

3. Proposed Algorithm 

The denoising algorithm proposed in this paper relies on the 

intuition that the spectral content of the speech does not abrubtly 

change and changes are mostly noise related. Approach is similar 

to time averaging of Fast Fourier Transform (FFT) data in digital 

spectrum analyzers. On the other hand, the overlapping ratio is 

the highest in the proposed algorithm. As illustrated in the Fig. 1, 

frames are picked from original speech data stream by a sliding 

Hamming window of width n  

0.54 0.46cos(2 /( 1))iw i n   , 1,2,...,i n  (5) 

which slides 1 sample for each subsequent frame. Although not 

required, it is logical to select n  to correspond approximately 4 

ms speech data since spectral characteristics of speech may 

greatly change for longer intervals. We conducted some tests for 

determining optimal frame length, as explained in the following 

section and concluded that 4 ms is adequate. 

For each frame to be denoised, a class is constructed by picking 

m most spectrally similar Hamming windowed frames within its 

neighbourhood. Obviously entire data stream can be used for 

selecting the frames and constructing the class. In our 

experiments, it is determined that a neighbourhood size that 

contains 2 1n   frames, ix , including the current frame to be 

denoised, is sufficient for both required number of vectors for the 

class and reasonable computational complexity. Fast Fourier 

Transform (FFT) is applied on these 2 1n   frames and their 

magnitude and phase components are separated as 
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k k
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b FFT x

p FFT x
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. (5) 

1m   magnitude frames that are most similar to the magnitude 

frame of the current frame (the one to be denoised) are picked 

and the class is constructed with a total of m frames. When 

distances to the current magnitude frame calculated using the 

Euclidean distance 
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k k i cur i

i

d b b
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where 
,cur ib  and 

,k ib  are i th dimension components of the 

current and k th magnitude frames. m  frames with the smallest 

kd  are selected into the class member set A . Since curb  would 

have zero distance to itself, it will be assigned index 1 and called 

1a  as indicated in Fig. 1. 

m  frames with dimensions n  leads to an insufficient case CVA 

with the most number of vectors. We noticed that, removal of few 

class outliers did not have considerable effect on the results, 

therefore, keeping that option in possibilities, an outlier removal 

operation is not performed as this would increase complexity. 

A CVA operation is performed on the set A  via 

 
1, 1( , , ) ( , )com dif avga a a CVA A a  (7) 

as described in the previous section. avga  should be added back 

after the denoising. 

Noise largely resides in difference components (
1,difa ). 

Therefore, common component ( coma ) is kept and difference 

component of the current frame is denoised using a denoising 

algorithm that involves Principal Component Analysis (PCA) 

[15]. In fact, any denoising algorithm can be effectively used on 

1,difa  since large portion of the signal energy is still in the 

common component, which is considered almost noise-free. After 

denoising 1,difa  and obtaining 1,difa , the denoised difference 

frame, current denoised magnitude frame is reconstructed via 

1 1,com difa a a  . Time domain speech frame is reconstructed 

by adding phase information and applying inverse FFT. 

After applying the described algorithm on each frame, denoised 

time frames are combined to build the denoised speech data. 

Since the frames are overlapping, there are several options at the 

recombining stage. Just adding them onto the appropriate time 

location is one of them. Here a weighting window can be used to 

increase the weight of the center of the frame. In our experiments, 

we noted that just adding the frames (flat window) is sufficient 

and have least complexity. 
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Figure 1. Flow of the proposed algorithm. 

 

It should be noted here that there are several parameters that can 

be optimized for the best performance on the speech data to be 

denoised; m  (number of frames in classes), n  (frame size), 

PCA parameters, recombining options. However, since we 

intended an algorithm that requires no data dependent 

optimisation parameters, these optimizations are performed for a 

large training speech data set and best logical parameter set is 

kept for all. 

 

 

 

4. Experiments 

For the experimental work on the proposed algorithm, NOISEUS 

(Hu, and Loizou, 2007) speech database is used. NOISEUS is 

composed of 30 English sentences spoken by 3 male and 3 

female speakers. Recordings are sampled by 8 kHz 16 bits with 

approximately 2 seconds in length. 8 different noise type (airport, 

crowd, car, exhibition hall, restaurant, train station, street and 

train) are added onto each speech data to obtain 4 SNR levels (0 

dB, 5 dB, 10 dB, 15 dB). Noise data is itself taken from 

AURORA database. In addition, the database is extended by 

adding 4 levels of white noise onto the data. 

 
Figure 2. Initial test results; Input/Output SNRs for different frame sizes. 

 

Initial experiments are conducted to determine best or reasonable 

parameter values for CVA. These are; frame size, overlap ratio 

and neighbourhood size from which the class member candidates 

are picked. Fig. 2 shows the performance graphics for various 

frame sizes and input noise levels. From these tests, it is 

determined that frame size of 40 samples (corresponding to 4 ms) 

and highest overlap ratio are adequate for both performance and 
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complexity. Neighbourhood size tests, on the other hand, were 

inconclusive for widths greater than three frame sizes. It is seen 

that algorithm becomes data dependent for larger search areas. In 

the following tests, we used 3WN N  as the neighbourhood 

size, where N  is the frame size in samples. 

Speech data with 9 different background noise added at 4 levels 

are denoised using the proposed CVA algorithm with previously 

determined parameters. The results are compared against 5 state-

of-the-art methods found in the literature;  

1. Perceptually motivated subspace algorithm [16], will shortly 

be called as sub from now on. 

2. Psychoacoustically motivated statistical method [17], will 

be called as stat. 

3. Wiener filtering algorithm based on wavelet thresholding 

multi-taper spectra [18], will be called as wien. 

4.  A variant of minimum controlled recursive average 

algorithm [19], will be named as rec. 

5. Continuous spectral tracking [20], will be named as spec in 

the following sections. 

Performance measures used in comparisons are Perceptual 

Evaluation of Speech Quality (PESQ), Log Likelihood Ratio 

(LLR) and Euclidean Distance in Cepstral Domain (CEP), most 

used measures in the literature. 

 

1) Perceptual Evaluation of Speech Quality (PESQ) 

Standardized by ITU-T P.862 (02/01), PESQ is a commonly used 

in telecommunication. It is defined as a linear combination 

 

 
0 1 2avg avgPESQ a a D a A    (8) 

of the average disturbance value 
avgD  and the average 

asymmetrical disturbance values 
avgA  where 0a =4.5, 1a =-01 

and 2a =-0.0309 are the optimized for speech processed through 

networks [21]. Table 1 gives the results for CVA along with sub 

[16], stat [17], wien [18], rec [19], spec [20] in PESQ measure. 

Best PESQ values are marked with boldfaced characters. Each 

number in the table is the average of PESQ values for 180 

recordings (30 sentences spoken by 6 individuals). 

 

2) Log-Likelihood Ratio (LLR) 

In LLR, distorted and denoised data are compared statistically 

[22] and is defined as  

 

  , log
T

x x x
LLR x x T

x x x

c R c
d c c

c R c

 
  

 
. (9) 

Here xc  and xc  are Linear Prediction Coefficient (LPC) 

vectors of the distorted and denoised speech data respectively. 

xR  is the autocorrelation matrix of the distorted speech signal 

[23]. Lower LLR values mean higher quality speech signal. In 

Table II, LLR values for CVA and other 5 methods are compared 

with boldfaces indicating the best/lowest LLR value for a test 

input. It is notable that CVA is superior to the compared methods 

since it generated the lowest LLR for all background noise tests. 

However, for white noise cases CVA failed to be the best even 

though the scores are close. CVA performed best among all 

methods in all PESQ tests except 5. That indicates about 83% 

success. In white noise cases, although not the best, CVA 

performed close to the best. 

3) Cepstral Distance Measure (CEP) 

CEP too is based on LPCs and is defined as the distance between 

LPCs of original and enhanced speech frames as 

   2

, ,1
, 6.142l ( )

N

CEP x x x k x kk
d c c c c


  . (10) 

where N is the dimension of LPCs. Lower CEP values indicate 

higher speech quality [24]. As shown in Table III, proposed CVA 

method is superior against all other denoising methods for all 

background noise types and levels applied in tests, except for 

white noise cases. 

 

TABLE I 
COMPARISON OF 6 METHODS ON PESQ MEASURE 

  sub stat wien rec spec cva 

a
ir

p
o

rt
 0 dB 1.43 1.31 1.40 1.24 1.32 1.69 

5 dB 1.87 1.68 1.84 1.77 1.82 2.05 

10 dB 2.23 2.09 2.24 2.20 2.26 2.40 

15 dB 2.63 2.59 2.68 2.72 2.73 2.74 

c
ro

w
d
 0 dB 1.37 1.20 1.34 1.13 1.34 1.64 

5 dB 1.84 1.73 1.82 1.62 1.78 2.02 

10 dB 2.23 2.16 2.25 2.24 2.24 2.39 

15 dB 2.63 2.60 2.65 2.69 2.70 2.74 

c
a

r 

0 dB 1.46 1.27 1.41 1.23 1.40 1.68 

5 dB 1.91 1.92 1.89 1.67 1.86 1.97 

10 dB 2.24 2.25 2.25 2.17 2.28 2.34 

15 dB 2.57 2.70 2.60 2.66 2.71 2.70 

e
x

. 

h
a

ll
 

0 dB 1.42 1.29 1.39 1.15 1.31 1.62 

5 dB 1.91 1.89 1.89 1.68 1.85 1.98 

10 dB 2.25 2.17 2.25 2.21 2.28 2.32 

15 dB 2.62 2.61 2.60 2.64 2.64 2.67 

re
st

rn
t 0 dB 1.37 1.24 1.42 1.21 1.26 1.70 

5 dB 1.84 1.74 1.83 1.71 1.80 2.02 

10 dB 2.23 2.08 2.22 2.22 2.22 2.41 

15 dB 2.60 2.57 2.64 2.67 2.63 2.72 

st
a
ti

o
n

 0 dB 1.44 1.35 1.41 1.20 1.36 1.66 

5 dB 1.88 1.87 1.89 1.75 1.83 2.07 

10 dB 2.24 2.25 2.27 2.24 2.31 2.38 

15 dB 2.53 2.61 2.59 2.65 2.66 2.72 

st
re

et
 0 dB 1.32 1.18 1.24 1.04 1.24 1.62 

5 dB 1.79 1.68 1.78 1.62 1.76 2.00 

10 dB 2.23 2.13 2.21 2.19 2.21 2.38 

15 dB 2.57 2.59 2.57 2.60 2.56 2.68 

tr
a
in

 0 dB 1.22 1.10 1.16 0.81 1.09 1.57 

5 dB 1.86 1.67 1.75 1.42 1.65 1.92 

10 dB 2.28 2.14 2.21 2.07 2.19 2.29 

15 dB 2.64 2.63 2.62 2.64 2.63 2.65 

w
h

it
e 

0 dB 1.77 1.76 1.75 1.23 1.73 1.70 

5 dB 2.17 2.17 2.16 1.77 2.16 2.06 

10 dB 2.44 2.55 2.47 2.31 2.57 2.42 

15 dB 2.75 2.95 2.80 2.76 2.87 2.75 

 

5. Conclusions 

Tests conducted on 30 sentences spoken by 6 individuals with 

added 4 levels of 8 structured background noise recordings (total 

of 5760 recordings per method per quality measure) let us safely 

conclude that the proposed CVA method is superior against other 

5 methods. In additional tests using white noise, on the other 

hand, CVA has failed to be the best (total of 720 recordings per 

method per quality measure). However, in most of the tests that 

CVA was not the best, its scores were close to the best. 
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TABLE III 

COMPARISON OF 6 METHODS ON LLR MEASURE 

  sub stat wien rec spec cva 

a
ir

p
o

rt
 0 dB 1.29 1.09 1.37 1.03 0.96 0.85 

5 dB 1.10 0.92 1.16 0.86 0.83 0.66 

10 dB 0.86 0.70 0.94 0.67 0.69 0.49 

15 dB 0.66 0.56 0.72 0.54 0.56 0.35 

c
ro

w
d
 0 dB 1.30 1.14 1.35 1.08 1.03 0.89 

5 dB 1.10 0.92 1.17 0.90 0.88 0.70 

10 dB 0.88 0.71 0.93 0.69 0.72 0.50 

15 dB 0.67 0.56 0.72 0.55 0.59 0.36 

c
a

r 

0 dB 1.35 1.10 1.47 1.08 1.03 0.94 

5 dB 1.11 0.89 1.22 0.86 0.86 0.73 

10 dB 0.98 0.75 1.10 0.67 0.71 0.54 

15 dB 0.71 0.57 0.82 0.51 0.57 0.37 

e
x

.h
a

ll
 0 dB 1.34 1.19 1.52 1.17 1.14 1.06 

5 dB 1.13 0.98 1.31 0.98 0.97 0.85 

10 dB 1.02 0.86 1.19 0.78 0.81 0.64 

15 dB 0.81 0.74 1.01 0.61 0.66 0.47 

re
st

rn
t 0 dB 1.35 1.12 1.39 1.02 0.98 0.85 

5 dB 1.04 0.88 1.08 0.84 0.82 0.66 

10 dB 0.88 0.73 0.94 0.68 0.68 0.49 

15 dB 0.70 0.60 0.77 0.56 0.60 0.36 

st
a
ti

o
n

 0 dB 1.28 1.10 1.39 1.06 1.00 0.89 

5 dB 1.08 0.87 1.21 0.84 0.83 0.68 

10 dB 0.89 0.72 1.02 0.66 0.69 0.50 

15 dB 0.72 0.59 0.83 0.52 0.56 0.35 

st
re

et
 0 dB 1.39 1.19 1.48 1.09 1.07 0.94 

5 dB 1.16 0.99 1.28 0.89 0.90 0.75 

10 dB 0.93 0.78 1.05 0.72 0.75 0.57 

15 dB 0.78 0.68 0.94 0.59 0.63 0.42 

tr
a
in

 

0 dB 1.41 1.18 1.43 1.14 1.14 1.05 

5 dB 1.20 1.06 1.28 0.99 1.01 0.88 

10 dB 1.01 0.86 1.10 0.82 0.86 0.68 

15 dB 0.80 0.66 0.87 0.64 0.69 0.50 

w
h

it
e 

0 dB 1.44 1.50 1.64 1.36 1.49 1.43 

5 dB 1.30 1.27 1.52 1.22 1.37 1.26 

10 dB 1.11 1.12 1.36 1.03 1.23 1.07 

15 dB 0.91 0.96 1.17 0.84 1.06 0.88 

 

TABLE IIIII 

COMPARISON OF 6 METHODS ON CEP MEASURE 

  sub stat wien rec spec cva 

a
ir

p
o

rt
 0 dB 7,27 6,29 7,44 6,11 5,85 5,27 

5 dB 6,47 5,57 6,54 5,42 5,27 4,52 

10 dB 5,39 4,62 5,55 4,59 4,62 3,73 

15 dB 4,41 3,90 4,45 3,91 4,02 3,02 

c
ro

w
d
 0 dB 7,26 6,47 7,32 6,22 6,04 5,37 

5 dB 6,43 5,55 6,58 5,50 5,42 4,60 

10 dB 5,47 4,63 5,50 4,61 4,69 3,76 

15 dB 4,43 3,89 4,47 3,92 4,08 3,00 

c
a

r 

0 dB 7,46 6,23 7,77 6,15 5,96 5,43 

5 dB 6,49 5,40 6,74 5,30 5,31 4,66 

10 dB 5,92 4,76 6,19 4,50 4,62 3,87 

15 dB 4,63 3,90 4,88 3,74 3,94 3,06 

e
x

.h
a

ll
 0 dB 7,44 6,59 8,02 6,62 6,43 5,95 

5 dB 6,60 5,76 7,12 5,87 5,78 5,16 

10 dB 6,08 5,23 6,61 5,03 5,09 4,33 

15 dB 5,11 4,61 5,70 4,21 4,39 3,53 

re
st

rn
t 0 dB 7,50 6,45 7,58 6,07 5,89 5,27 

5 dB 6,19 5,42 6,21 5,29 5,18 4,52 

10 dB 5,46 4,74 5,55 4,58 4,57 3,73 

15 dB 4,57 4,06 4,66 4,05 4,16 3,08 

st
a
ti

o
n

 0 dB 7,20 6,27 7,46 6,14 5,91 5,35 

5 dB 6,37 5,28 6,68 5,25 5,18 4,51 

10 dB 5,49 4,63 5,83 4,48 4,55 3,75 

15 dB 4,65 3,99 4,93 3,81 3,95 3,00 

st
re

et
 0 dB 7,63 6,65 7,89 6,35 6,24 5,62 

5 dB 6,65 5,82 7,00 5,49 5,52 4,84 

10 dB 5,69 4,92 6,00 4,78 4,85 4,08 

15 dB 4,99 4,44 5,45 4,15 4,29 3,37 

tr
a
in

 

0 dB 7,65 6,60 7,73 6,53 6,51 6,09 

5 dB 6,78 6,19 7,11 5,98 6,02 5,45 

10 dB 5,99 5,31 6,26 5,25 5,37 4,63 

15 dB 5,05 4,47 5,26 4,43 4,60 3,81 

w
h

it
e 

0 dB 8,00 8,45 8,60 7,78 8,66 8,45 

5 dB 7,36 7,64 8,02 7,32 8,29 7,97 

10 dB 6,57 7,01 7,36 6,69 7,79 7,36 

15 dB 5,65 6,25 6,48 5,91 7,09 6,61 
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