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Abstract
In this study, we examine some important subspaces by showing that the set of n-dimensional interval
vectors is a quasilinear space. By defining the concept of dimensions in these spaces, we show that the set
of n-dimensional interval vectors is actually a (nr, ns)-dimensional quasilinear space and any quasilinear
space is (nr, 0s)-dimensional if and only if it is n-dimensional linear space. We also give examples of
(2r, 0s) and (0r, 2s)-dimensional subspaces. We define the concept of dimension in a quasilinear space
with natural number pairs. Further, we define an inner product on some spaces and talk about them as
inner product quasilinear spaces. Further, we show that some of them have Hilbert quasilinear space
structure.
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1. Introduction
Interval analysis is one of the main areas developed to determine the solutions of many problems in a certain

compact interval. Modeling such situations sometimes emerges as a linear interval equation system and the
solutions of such systems are often difficult. One of the main studies on the solutions of this type of equations is
given by [1]. Another important fundamental work is [2]. Further, linear programming problems with incomplete
information also appear as a system of linear interval equations, and some of the important studies on the solution
of such problems were given by J.Rohn [3, 4]. The existence of the solution of linear interval equation systems or
the determination of the properties of the solution set is also a difficult process, and the results obtained in [5, 6] are
also important studies for this purpose. Moreover, [7] is another important work that examines the solubility of
equations of this type based on some specific conditions. Since the solutions of such equations appear as interval
vectors, it is important to know the properties of n-dimensional interval vectors and the algebraic structure of the set
formed by these types of vectors. But, we know that the set of n-dimensional interval vectors is not a vector space.
We can see this immediately for 1-dimensional interval vectors. The reverse of the shuffle between intervals may
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not be available. First of all, let’s specify that the interval [0, 0] = {0} is the unit element of the addition operation
between intervals. But, we know that it is not possible to find an interval [x, x] such that [1, 0] + [x, x] = [0, 0].
Although, the set of interval vectors does not have a vector space structure, it has an algebraic structure that we call
quasilinear space, which is a generalization of vector spaces.

The concept of a quasilinear space on the field of real numbers was first introduced by Aseev in [8]. In this study,
the normed quasilinear space and the finite quasilinear operator definitions defined between these types of spaces
are also given and some properties are examined. However, in this study, the definition of subspace has not been
characterized and there is no such definition as a quasilinear space or a quasi-stretch. Moreover, whether it is a
generalization of a definition such as the linear dependence or independence of a subset in quasilinear space is not
given in Aseev’s pioneering work. In fact, the definition of these concepts is extremely vital for the establishment of
a healthy quasilinear algebra. In our [9–12] referenced articles, we tried to eliminate some of these shortcomings in
quasilinear algebra. Then we also introduced the concept of inner product in quasilinear spaces, and thus we were
able to define the concept of Hilbert quasilinear space definition [13–16]. The introduction of these concepts also
provides us with the opportunity to make many applications. For example, in [17, 18] we gave examples of how
quasilinear spaces can be used in signal processing. In addition, normed and Hilbert quasilinear space examples of
some fuzzy number sets are given in [19] and their properties are examined. A recent study on qasilinear spaces is
the concept of quasi-algebra its details can be found in [20, 21].

In this study, we examine some important subspaces by showing that the set of n-dimensional interval vectors is
a quasilinear space. By defining the concept of dimensions in these spaces, we show that the set of n-dimensional
interval vectors is actually a (nr, ns)-dimensional quasilinear space and any quasilinear space is (nr, 0s)-dimensional
if and only if it is n-dimensional linear space. We also give examples of (2r, 0s) and (0r, 2s)-dimensional subspaces.
We define the concept of dimension in a quasilinear space with natural number pairs. Further, we define an inner
product on some spaces and talk about them as inner product quasilinear spaces.

2. Preliminaries
Let us give basic facts on interval vectors from [22]. The term interval will mean closed interval x = [x, x] in

this work and the left and right endpoints of x will be denoted by x and x, respectively. We say that x is degenerate
if x = x. The width of x is defined and denoted by w(x) = x −x and the absolute value of x, denoted |x| , is the
maximum of the absolute value of its endpoints: |x| = |[x, x]| = max {|x| , |x|} . The midpoint of x is given by
m (x) = 1

2 (x+ x) . By an n-dimensional interval vectors, we mean an ordered n-tuble of intervals

x = (x1, x2, ...xn). =
([
x1, x1

]
, ...,

[
xn, xn

])
.

For example, a two-dimensional interval vector

x = (x1, x2) =
([
x1, x1

]
,
[
x2, x2

])
can be represented as a rectangle in the plane. Addition of interval vectors is defined by coordinate-wise addition
of intervals and the scalar real multiplication by an interval vectors is also similar. For example; if two-dimensional
interval vectors x = ([−1, 2] , [3, 6]) and y = ([−1, 2] , [3, 6]) are given, then

2x− 3y = (2 [−1, 2] , 2 [3, 6]) + ((−3) [−1, 2] , (−3) [3, 6])

= ([−2, 4] , [6, 12]) + ([−6, 3] , [−18,−9])

= ([−8, 7] , [−12, 3]) .

Note that the set of all n-dimensional interval vectors is not a vector space. x � y iff xk ⊆ yk for each k = 1, 2, ..., n is
a partial order relation on the set of all n-dimensional interval vectors. The set of all n-dimensional interval vectors
is denoted by InR.

The product of two intervals x = [x, x] and y =
[
y, y
]

is given by xy = [x, x]
[
y, y
]

= [minS,maxS] where
S = {xy, xy, xy, xy}.

Although we use the term n-dimensional, the algebraic meaning of this term should be questioned, since the set
A is not a vector space. However, the set A has an algebraic structure, which we call quasilinear space, which is a
generalization of classical vector spaces, first given by Aseev [8]. First, let’s give the definition of quasilinear space.

A set X is called a quasilinear space, [8], on the field K of real or complex numbers, if a partial order relation
"�", an algebraic sum operation, and an operation of multiplication by real numbers are defined in it in such a way
that the following conditions hold for all elements x, y, z, v ∈ X and all α, β ∈ K:

x � x, (2.1)
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x � z if x � y and y � z, (2.2)

x = y if x � y and y � x, (2.3)

x+ y = y + x, (2.4)

x+ (y + z) = (x+ y) + z, (2.5)

there exists an element (zero) θ ∈ X such that x+ θ = x, (2.6)

α(βx) = (αβ)x, (2.7)

α(x+ y) = αx+ αy, (2.8)

1x = x, (2.9)

0x = θ, (2.10)

(α+ β)x � αx+ βx, (2.11)

x+ z � y + v if x � y and z � v, (2.12)

αx � αy if x � y. (2.13)

Any linear space is a QLS with the partial order relation ” = ”. Perhaps the most popular example of a nonlinear
QLS on the field real numbers is I1R with the inclusion relation “⊆”.

Let us record some basic results from [8].
In a QLS X , the element θ is minimal, i.e., x = θ if x � θ. An element x′ is called inverse of x ∈ X if x+ x′ = θ.

The inverse is unique whenever it exists. An element x possessing inverse is called regular, otherwise is called
singular.

Lemma 2.1. [8] Suppose that each element x in QLSX has inverse element x′ ∈ X . Then the partial order inX is determined
by equality, the distributivity conditions hold, and consequently X is a linear space.

In a real linear space, the equality is the only way to define a partial order such that the conditions (1)-(13) hold.
Let us give some assumption in quasilinear spaces. It will be assumed in what follows that −x = (−1)x. Note

that the additive inverse x′ may not be exists but if it exists then x′ = −x. For example, the interval [1, 2] is a singular
element in I1R since the inverse of the element [1, 2] does not exists. However, − [1, 2] = (−1) [1, 2] = [−2,−1] ∈ I1R.
Let us give an easy characterization of regular elements. An element x is regular in a QLS if and only if x′ = −x, or
equivalently, x− x = θ. We should note that in a linear QLS, briefly in a linear space, each element is regular. Hence,
the notions of regular and singular elements in linear spaces are redundant. Regular elements in I1R is known as
degenerate intervals and they are just the real numbers.

Definition 2.1. [10] Suppose that X is a QLS and Y ⊆ X . Then Y is called a subspace of X whenever Y is a QLS
with the same partial order and the restriction to Y of the operations on X .

In [8] the concept of a subspace for a QLS was not defined. After detailed investigations we saw that the
characterization of the definition is just the same as in linear subspaces.

Theorem 2.1. [10] Y is a subspace of a QLS X if and only if for every x, y ∈ Y and α, β ∈ R, αx+ βy ∈ Y .

Let Y be a subspace of a QLS X and suppose that each element x in Y has an inverse in Y. Then by Lemma 2.1
the partial order on Y is determined by the equality. In this case Y is a linear subspace of X .

An element x in X is said to be symmetric if −x = x and Xsym denotes the set of all symmetric elements. In a
linear QLS, equivalently, in a linear space zero is the only symmetric element. Xr and Xs stand for the set of all
regular and singular elements with zero in X , respectively. Further, it can be easily shown that Xr, Xsym and Xs are
subspaces of X. They are called regular, symmetric and singular subspaces of X, respectively. Regular subspace of X is
a linear space while the singular subspace is a nonlinear QLS. Furthermore, it isn’t hard to prove that summation of
a regular element with a singular element is a singular element.
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3. Main results
Theorem 3.1. InR is a quasilinear space by the partial order relation x � y iff

[
xk, xk

]
⊆
[
yk, yk

]
for each k = 1, 2, ..., n.

Proof. Most of the proof comes from the known result in interval analysis, see [22]. Let us only verify two axioms.
The zero is θ = (0, 0, ...0). = ([0, 0] , ..., [0, 0]) in InR and if x, y ∈ InR and α, β ∈ R then

(α+ β)x =
(
(α+ β)

[
x1, x1

]
, ..., (α+ β)

[
xn, xn

])
�

(
α
[
x1, x1

]
, ..., α

[
xn, xn

])
+
(
β
[
x1, x1

]
, ..., β

[
xn, xn

])
= αx+ βx.

Further, x � y means
[
xk, xk

]
⊆
[
yk, yk

]
for each k and hence for every (positive or negative) α ∈ R, α

[
xk, xk

]
⊆

α
[
yk, yk

]
. This implies αx � αy.

Example 3.1. The symmetric subspace of I2R is
(
I2R
)
sym

= {([−a, a] , [−b, b]) : a, b ∈ R} . Further, the singular sub-
space of I2R is just (

I2R
)
s

=
{([

x1, x1

]
,
[
x2, x2

])
: x1 6= x1 or x2 6= x2

}
∪ {([0, 0] , [0, 0])}

and the regular subspace is(
I2R
)
r

= {([a, a] , [b, b]) : a, b ∈ R} ≡ {({a} , {b}) : a, b ∈ R} ≡ R2.

Thus, we can see R2 as a regular subspace of I2R. The equivalence mentioned here means that there is a linear
bijection and even an isometry when the normed space structure is introduced between these spaces. In general, InR
has these special subspaces and we can see Rn ≡ (InR)r is a linear part of InR.

Definition 3.1. [8] In a QLS X, a real function ‖.‖X : X −→ R is called a norm if the following conditions hold:

‖x‖X > 0 if x 6= 0, (3.1)

‖x+ y‖X ≤ ‖x‖X + ‖y‖X , (3.2)

‖αx‖X = |α| ‖x‖X , (3.3)

if x � y, then ‖x‖X ≤ ‖y‖X , (3.4)

if for any ε > 0 there exists an element xε ∈ X such that (3.5)
x � y + xε and ‖xε‖X ≤ ε then x � y.

A quasilinear space X with a norm defined on it, is called normed quasilinear space (briefly, normed QLS). It
follows from Lemma 2 that if any x ∈ X has an inverse element x′ ∈ X then the concept of normed QLS coincides
with the concept of real normed linear space. Hausdorff metric or norm metric on X is defined by the equality

hX(x, y) = inf {r ≥ 0 : x � y + ar1, y � x+ ar2 and ‖ari ‖ ≤ r, i = 1, 2} .

Since x � y + (x− y) and y � x+ (y − x), the quantity hX(x, y) is well-defined for any elements x, y ∈ X , and
the function hX satisfies all axioms of the metric. Further, hX(x, y) may not equal to ‖x− y‖X if X is not a linear
space, but always hX(x, y) ≤ ‖x− y‖X for every x, y ∈ X [8].

Example 3.2. A norm on InR is defined by

‖x‖∞ = max
1≤k≤n

|xk| = max
k

{
max

{∣∣xk∣∣ , |xk|}}
where k ∈ {1, 2, ..., n} and |xk| is the absolute value of the interval xk. Another important norm on InR is

‖x‖2 =

(
n∑

k=1

|xk|2
)1/2

=

(
n∑

k=1

{
max

{∣∣xk∣∣ , |xk|}}2

)1/2
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which is perhaps the most important one. This norm is the classical norm of InR. To prove ‖.‖2 is a norm on
InR let us only verify the last condition. Let ε > 0 be given and let x = (x1, x2, ...xn). =

([
x1, x1

]
, ...,

[
xn, xn

])
and y = (y1, y2, ...yn). =

([
y1, y1

]
, ...,

[
yn, yn

])
∈ InR. Assume that there exists an element xε = (xε1, x

ε
2, ..., x

ε
n). =([

xε1, x
ε
1

]
, ...,

[
xεn, x

ε
n

])
∈ InR such that x � y + xε and ‖xε‖2 =

(∑n
k=1 |xεk|

2
)1/2

≤ ε. This implies, for each

k ∈ {1, 2, ..., n} ,
[
xk, xk

]
⊆
[
yk, yk

]
+
[
xεk, x

ε
k

]
and |xεk| = max

{∣∣∣xεk∣∣∣ , ∣∣xεk∣∣} ≤ ε. Now for ε→ 0 we get |xεk| → 0 for
each k ∈ {1, 2, ..., n} and this means ‖xε‖2 → 0 and hence xε → 0 in InR. Eventually, we get x � y.

4. Quasilinear independence and basis

In this section, we will give some algebraic definitions [9, 11]. Let X be a QLS and {xk}nk=1 be a subset of X
where n is a positive integer. A (linear) combination of the set {xk}nk=1 is an element z of X in the form

α1x1 + α2x2 + ...+ αnxn = z

where the coefficients α1, α2, ..., αn are real scalars. On the other hand, a quasilinear combination of the set {xk}nk=1 is
an element z ∈ X such that

α1x1 + α2x2 + ...+ αnxn � z
for some real scalars α1, α2, ..., αn. Hence, the quasilinear combination, briefly ql-combination, is defined by the
partial order relation on X. In fact, the definition of linear combination in a QLS is also depend on the partial order
relation and it can be defined as in the following form; a linear combination of the set {xk}nk=1 is an element z of X
such that

α1x1 + α2x2 + ...+ αnxn � z and z � α1x1 + α2x2 + ...+ αnxn,

where the coefficients α1, α2, ..., αn are real scalars. In a linear QLS, this is the definition of the classical linear
combination since the relation "�" turns to the relation "=". Clearly, a linear combination of {xk}nk=1, is a quasilinear
combination of {xk}nk=1, but not conversely. For any nonempty subset A of a QLS X, we know that the span of A is
written by SpA and

SpA = {
n∑

k=1

αkxk : x1, x2, ..., xn ∈ A, α1, α2, ..., αn ∈ R, n ∈ N}.

However, QspA, the quasispan (q-span, for short) of A, is defined by the set of all possible quasilinear combinations
of A, that is,

QspA = {x ∈ X :

n∑
k=1

αkxk � x,

for some x1, x2, ..., xn ∈ A and for some scalars α1, α2, ..., αn}.

Obviously, SpA ⊆ QspA. Further, SpA = QspA for some linear QLS (linear space), hence, the notion of QspA is
redundant in linear spaces. Moreover, we say A quasi spans X whenever QspA = X.

Let us give an example from the quasilinear space of compact intervals.

Example 4.1. Let X = I1R and take A = {[1, 3]}, a singleton in X. The q-span of A is

QspA = {x ∈ I1R : λ [1, 3] ⊆ x, λ ∈ R}.

For example, [2, 7] ∈ QspA since 2 [1, 3] ⊆ [2, 7] whereas [2, 7] /∈ SpA since there is no λ ∈ R satisfying λ [1, 3] = [2, 7].
Further, [2, 3] /∈ QspA since we cannot find any λ ∈ R satisfying the condition λ [1, 3] ⊆ [2, 3]. Clearly, QspA 6= I1R
Let B = {{1}}, another singleton in X. It consist of a regular element or degenerate interval. For any x ∈ X, clearly,
we can write λ.{1} ⊆ x for some λ ∈ R. This means QspB = X . It can be easily shown that a singleton arising from
nonzero regular element can quasispans X. A singular element cannot quasi spans X.

Theorem 4.1. Let A = {x1, x2, ..., xn} be a subset of the QLS X . Then QspA is a subspace of X.

Definition 4.1. (Quasilinear independence and dependence) A set A = {x1, x2, ..., xn} in a QLS X is called quasilinear
independent (briefly ql-independent ) whenever the inequality

θ � λ1x1 + λ2x2 + ...+ λnxn (4.1)

holds if and only if λ1 = λ2 = ... = λn = 0. Otherwise, A is called quasilinear dependent (briefly ql-dependent ).
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If we recall again that every linear space is a QLS with the relation "=", it can be seen that the notions of
quasilinear independence and dependence coincide with linear independence and dependence.

Example 4.2. Consider the singleton A = {[1, 2]} in I1R. It is obvious that {0} = [0, 0] ⊆ α[1, 2] if and only if α = 0
where {0} is the zero element of I1R. Therefore, A is ql-independent. However, the singleton B = {[−1, 2]} is
ql-dependent since [0, 0] ⊆ β[−1, 2] for β = 2 6= 0. This is a unusual case since a non-zero singleton is obviously
linear independent in linear spaces. On the other hand, the set {[1, 2], [−1, 2]} is ql-dependent. In general, we can
see from the definition that any subset including an element related to zero must be ql-dependent in a QLS. This is
a generalization of the well-known fact that a subset including zero must be linear independent in linear spaces.

Example 4.3. In I2R, let v1 = ([−2, 1] , [0, 0]) and v2 = ([0, 0] , [−2, 3]) . Then the set {v1, v2} is ql-dependent since

([0, 0] , [0, 0]) ⊆ λ1v1 + λ2v2 = ([−2, 1] , [−2, 3])

for λ1 = λ2 = 1 where ([0, 0] , [0, 0]) is the zeros of I2R. However, {u1, u2} is ql-independent where u1 =
([−2,−1] , [0, 0]) and u2 = ([0, 0] , [2, 3]) . On the other hand, let u = ([−2, 2] , [−3, 3]) then the singleton {u} is
ql-dependent in I2R since ([0, 0] , [0, 0]) ⊆ u.

Definition 4.2. A ql-independent subset A of a QLS X which quasi spans X is called a basis (or Hamel basis) for X .

Remark 4.1. For any a ∈ R, the singleton {{a}} is a basis for I1R. Further, B = {([1, 1] , [0, 0]) , ([0, 0] , [1, 1])} is a basis
for I2R. In general, B = {([1, 1] , [0, 0] , ..., [0, 0]) , ..., ([0, 0] , [0, 0] , ..., [1, 1])} is a basis for InR. As can be seen, a basis of
InR is a set of degenerate intervals of InR.

Following example is extraordinary since it presents an example of QLS which has no basis. This is an unusual
case since all linear spaces have a (Hamel) basis.

Example 4.4. Let us consider singular subspace

{{0}} ∪ {[a, b] : a < b and a, b ∈ R} = (I1R)s

of I1R. This quasilinear space has no basis. Any singleton {[a, b]} in (I1R))s cannot quasi spans (I1R)s where a < b.

Now let us introduce the notion of dimension of a QLS. Our investigation shows that it is necessary to split it
into two different notion as regular and singular dimension. Previously, let us give analog of a classical definition.

Definition 4.3. Let S be a ql-independent subset of the QLS X . S is called maximal ql-independent subset of X
whenever S is ql-independent, but any superset of S is ql-dependent.

Definition 4.4. Regular (Singular) dimension of any QLS X is the cardinality of any maximal ql-independent subsets
of Xr(Xs). If this number is finite then X is said to be finite regular (singular)-dimensional, otherwise; is said to
be infinite regular (singular)-dimensional. Regular dimension is denoted by r-dimX and singular dimension is
denoted by s-dimX . If r-dimX = a and s-dimX = b then we say that X is an (ar, bs)-dimensional QLS where a and
b are natural numbers or∞.

Remark 4.2. The above definition means that r-dimX is classical definition of dimension of the linear space Xr. So,
r-dimX = dimXr. Notice that a non-trivial singular subspace of a QLS cannot be a linear space. Further, we can
easily see that any QLS is (nr, 0s)-dimensional if and only if it is n-dimensional linear space. In this respect, the
trivial linear space {0} is a (0r, 0s)-dimensional QLS. Later, we will give an example of a (0r, 0s)-dimensional QLS
other than {0}.

Let us determine dimensions of some nonlinear QLSs.

Example 4.5. It isn’t hard to prove that InR is (nr, ns)-dimensional QLSs, that is, n-dimensional nonlinear QLS.
Consider again the singular subspace (I1R)s of I1R. r − dim (I1R)s = 0 since ((I1R)s)r = {0}. Further, {[1, 2]} is
ql-independent in ((I1R)s)s and so s − dim (I1R)s = 1. Hence, (I1R)s is (0r, 1s)−dimensional. Obviously,

(
I1R
)
r

is
(1r, 0s)−dimensional. In this respect, R is also (1r, 0s)−dimensional

If X = (I2R)s ∪ {([t, t] , [0, 0]) : t ∈ R} then X is a subspace of I2R and r − dimX = 1 since Xr = {([t, t] , [0, 0]) :
t ∈ R}. Further, the set {u1, u2} in Example 4.3 is ql-independent. This proves s − dimX = 2. Hence X is a
(1r, 2s)−dimensional QLS.
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Consider the QLS X = ΩC(c0), the set of all closed bounded subsets of the Banach space c0. Regular subspace
Xr is equivalent to c0, the linear space of all sequences convergent to zero, and so r − dimX =∞. Let us define the
set

{{(t, 0, 0, ...) : 1 ≤ t ≤ 4}, {(0, t, 0, ...) : 1 ≤ t ≤ 4}, ...}
= {[1, 4]� e1, [1, 4]� e2, ...}

where
[1, 4]� ek = {(0, ..., 0, k. terms , 0...) : s ∈ [1, 4]}

is ql-independent in Xs, where ek’s are coordinate vectors of c0, k = 1, 2, ....Therefore, s − dimX = ∞ and so
X = ΩC(c0) is an (∞r :∞s)-dimensional QLS. In general, an infinite-dimensional linear space E is a (∞r, 0s)-
dimensional QLS while ΩC(E) is (∞r,∞s)-dimensional QLS.

In a finite dimensional linear space X let us recall that each x ∈ X has a unique representation

x =

n∑
k=1

akbk

where n is the dimension of X, B = {b1, b2, ..., bn} is a basis of X and a1, a2, ..., an are corresponding scalars. Since
a consolidate QLS has a basis we can give a similar representation. Let X be a (nr : ns)−dimensional (finite-
dimensional) QLS where nr and ns are positive integers, and nr = ns. Let us try to give a representation in X. If y
is any element of X then the floor Fy = {x ∈ Xr : x � y} of y have many regular elements. From linear algebra any
x ∈ Fy has a unique representation

x =

n∑
k=1

αx
kbk

where each αx
k, k = 1, 2, ..., n, is a real scalar depending on x. Now let us consider the supremum with respect to

the partial order relation "�" on the QLS X . Thus, by the definition of consolidate space, we get the representation

y = sup{x ∈ Xr : x � y} = sup{
n∑

k=1

αx
kbk : x � y, x ∈ Xr}

of each element y in X. That is, any element of a (nonlinear) consolidate QLS can be represented by the basis
elements and by the supremum with respect to "�". More practically, we can write

y = sup
x�y
x∈Xr

n∑
k=1

αx
kbk. (4.2)

Theorem 4.2. Any y ∈ InR has a unique representation

y = sup
x�y
x∈Xr

n∑
k=1

αx
kbk

where B = {bk}nk=1 = {([1, 1] , [0, 0] , ..., [0, 0]) , ..., ([0, 0] , [0, 0] , ..., [1, 1])} is the standard basis of InR and the supremum is
calculated by the partial order "�" on InR.

Proof. Let us first write y explicitly;

y = (y1, y2, ..., yn) =
([
y1, y1

]
, ...,

[
yn, yn

])
.

Now take an arbitrary tk ∈ yk and constitute the degenerate interval [tk, tk] . Obviously, [tk, tk] ⊆ yk for each

k and hence, ([tk, tk]) � (yk) = y. Since t = (tk) ∈ Rn has a unique representation t =
n∑

k=1

tkek, we can say
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([tk, tk]) := x ∈ (InR)r has the unique representation x = ([tk, tk]) =
n∑

k=1

tkbk. On the other hand, for any yk there may

be a lot of tk ∈ yk. In other words, there may be a lot of [tk, tk] ⊆ yk. You can easily see that, for each k,

yk = sup
⊆
{[tk, tk] : [tk, tk] ⊆ yk}

= sup
⊆

{
n∑

k=1

tkbk : [tk, tk] ⊆ yk

}
.

This representation is still unique by the properties of the suprema by the partial order relation ⊆ . Thus, we get

y = (yk)
n
k=1 =

(
sup
⊆

{
n∑

k=1

tkbk : [tk, tk] ⊆ yk

})n

k=1

= sup
�

{
n∑

k=1

txkbk : ([tk, tk])
n
k=1 = x � y = (yk)

n
k=1

}
.

The last supremum, of course, is taken over "�" relation on InR and the representation is obviously unique.

The representation is also known as the super position of y in InR.

Example 4.6. Let us give the super position of y = ([−1, 3] , [2, 2]) in I2R where y1 = [−1, 3] and y2 = [2, 2] . By the
discussion in the proof

y1 = [−1, 3] = sup
⊆
{[t, t] : [t, t] ⊆ y1} = sup

⊆
{[t, t] : t ∈ [−1, 3]}

and

y2 = [2, 2] = sup
⊆
{[t, t] : [t, t] ⊆ y2} = sup

⊆
{[t, t] : t ∈ [2, 2]}

= sup
⊆
{[2, 2]} = [2, 2] .

Hence,

y = ([−1, 3] , [2, 2]) =

(
sup
⊆

{
2∑

k=1

tkbk : [tk, tk] ⊆ yk

})2

k=1

= sup
⊆
{t1 ([1, 1] , [0, 0]) + t2 ([0, 0] , [1, 1]) : [tk, tk] ⊆ yk, k = 1, 2}

= sup
�

{
[t1, t1] ([1, 1] , [0, 0]) + [t2, t2] ([0, 0] , [1, 1])

: x = ([t1, t1] , [t2, t2]) � y

}
.

Definition 4.5. A quasilinear space X is called consolidate (solid-floored) QLS whenever y = sup{x ∈ Xr : x � y} for
each y ∈ X. Otherwise, X is called a non-consolidate QLS, briefly, nc-QLS.

The supremum in this definition is taken on the order relation "�" in the definition of a QLS. Above definition
assumes sup{x ∈ Xr : x � y} exists for each y ∈ X. Implicitly, we say that X is consolidate if and only if y = supFy,
for each y ∈ X.

We signify that any linear space is a consolidate QLS: Indeed, Xr = X for any linear space X and so

y = sup{x ∈ Xr : x � y} = sup{x ∈ Xr : x = y} = sup{y} = y

for any element y in X .

Example 4.7. InR is a consolidate QLS. Singular subspace of I1R is a nc-QLS since Fy = ∅ for the element y = [1, 2] in
(I1R)s. Further,

B = {[a, b] : a ≤ 0 ≤ b, a, b, 0 ∈ R}

is another nc-subspace of I1R. (I1R)sym is also a nc-QLS subspace of B and of I1R.
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Definition 4.6. For two quasilinear spaces (X,≤) and (Y,�) , Y is called compatible contains X whenever X ⊆ Y
and the partial order relation ≤ on X is the restriction of the partial order relation � on Y. We briefly use the symbol
X⊆Y in this case. We write X ≡ Y whenever X⊆Y and Y⊆X.

Remark 4.3. Hence X ≡ Y means X and Y are the same sets with the same partial order relations which make one
each quasilinear space. However, we may write X = Y for X ≡ Y whenever the relations are clear from context.

Definition 4.7. Let X be a QLS. Consolidation of X is the smallest consolidate QLS X̂ which compatible contains X,
that is, if there exists another consolidate QLS Y which compatible contains X then X̂ ⊆ Y.

Clearly, X̂ = X for some consolidate QLS X. Whether each QLS has a consolidation is not know yet. This notion
is unnecessary for consolidate QLSs, hence is in linear spaces.

Theorem 4.3. Consolidation of (I1R)s is I1R.

Proof. Obviously, I1R compatible contains (I1R)s. Suppose that Z is another consolidate QLS containing (I1R)s. For an
arbitrary element x of I1R we will show that x ∈ Z. If x ∈ (I1R)s then the proof is clear. If x /∈ (I1R)s then x have to be
a degenerate interval that is an element of (I1R)r. Hence, x = [a, a] for an a ∈ R. Assume that [a, a] /∈ Z. For any
ε > 0 we have that [a− ε, a+ ε] ∈ (I1R)s and so [a− ε, a+ ε] ∈ Z. Since Z is consolidate,

[a− ε, a+ ε] = sup{y ⊆ [a− ε, a+ ε] : y ∈ Zr}

for any ε > 0. This means there exists an element uε ∈ Zr such that uε ⊆ [a − ε, a + ε] in Z. Therefore, we
have [a, a] ∈ Zr, otherwise; the set [a− ε, a+ ε] cannot be a closed set in R and so this conflicts with the fact that
[a− ε, a+ ε] ∈ (I1R)s. Thus, the assumption [a, a] /∈ Z is incorrect.

For any element y of a QLS X , the set

F X̂
y =

{
z ∈

(
X̂
)
r

: z � y
}

denotes the floor of y in X̂ and sometimes F X̂
y is said to be the floor of y in the consolidation. For a consolidate QLS,

this notion is unnecessary. But the concept is important in a nc-QLS, especially, in producing of an inner-product on
a QLS.

Definition 4.8. Let X be a quasilinear space having a consolidation X̂ . A mapping 〈 , 〉 : X ×X → Ω(K) is called
an inner product on X if for any x, y, z ∈ X and α ∈ K the following conditions are satisfied :

If x, y ∈ Xr then 〈x, y〉 ∈ Ω(K)r ≡ K, (4.3)

〈x+ y, z〉 ⊆ 〈x, z〉+ 〈y, z〉 , (4.4)

〈αx, y〉 = α 〈x, y〉 , (4.5)

〈x, y〉 = 〈y, x〉 , (4.6)

〈x, x〉 ≥ 0 for x ∈ Xr and 〈x, x〉 = 0⇔ x = 0, (4.7)

‖〈x, y〉‖Ω(R) = sup
{
‖〈a, b〉‖Ω(R) : a ∈ F X̂

x , b ∈ F X̂
y

}
, (4.8)

if x � y and u � v then 〈x, u〉 ⊆ 〈y, v〉 , (4.9)

if for any ε > 0 there exists an element xε ∈ X such that (4.10)
x � y + xε and 〈xε, xε〉 ⊆ Sε (θ) then x � y,

where K is real or complex field and Ω(K) denotes the quasilinear space of the family of all compact subsets of K.
Further Sε (θ) is the zero-centered ε-radius closed circle in K. A quasilinear space with an inner product is called an
inner product quasilinear space, briefly, IPQLS.
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Theorem 4.4. For x =
([
x1, x1

]
, ...,

[
xn, xn

])
and y =

([
y1, y1

]
, ...,

[
yn, yn

])
∈ InR, the equality

〈x, y〉 =

n∑
k=1

[
xk, xk

] [
yk, yk

]
defines an inner-product and hence InR is an IPQLS on the field R by this inner product.

Proof. Let x, y ∈ (InR)r then x = ([x1, x1] , ..., [xn, xn]) and y = ([y1, y1] , ..., [yn, yn]) . So,

〈x, y〉 =

n∑
k=1

[xk, xk] [yk, yk]

=

n∑
k=1

{xkyk} ∈ Ω(R)r ≡ R.

Later three condition can be easily verified. Now for x ∈ (InR)r , 〈x, x〉 =
n∑

k=1

{xkxk} =
n∑

k=1

{
|xk|2

}
∈ Ω(R)r ≡ R

and so we can write 〈x, x〉 ≥ 0. Easily we can see that 〈x, x〉 = 0⇔ x = 0. Let us now verify the equality

‖〈x, y〉‖Ω(R) = sup
{
‖〈a, b〉‖Ω(R) : a ∈ F X̂

x , b ∈ F X̂
y

}
where X = InR. Since X is consolidate X̂ = X and

‖〈x, y〉‖Ω(R) =

∥∥∥∥∥
n∑

k=1

[
xk, xk

] [
yk, yk

]∥∥∥∥∥
Ω(R)

=

∥∥∥∥∥
n∑

k=1

sup
⊂

{
〈[tk, tk] , [sk, sk]〉 : [tk, tk] ⊂

[
xk, xk

]
, [sk, sk] ⊂

[
yk, yk

]}∥∥∥∥∥
Ω(R)

=

∥∥∥∥∥
n∑

k=1

sup
⊂

{
〈[tk, tk] , [sk, sk]〉 : [tk, tk] ∈ F I1R

[xk,xk]
, [sk, sk] ∈ F I1R

[yk,yk]

}∥∥∥∥∥
Ω(R)

=

∥∥∥∥∥sup

{
n∑

k=1

〈[tk, tk] , [sk, sk]〉 : [tk, tk] ∈ F I1R
[xk,xk]

, [sk, sk] ∈ F I1R
[yk,yk]

}∥∥∥∥∥
Ω(R)

=
∥∥∥sup

{
〈a, b〉 : a ∈ F InR

x , b ∈ F InR
y

}∥∥∥
Ω(R)

= sup
∥∥∥{〈a, b〉 : a ∈ F InR

x , b ∈ F InR
y

}∥∥∥
Ω(R)

= sup
{
‖〈a, b〉‖ : a ∈ F InR

x , b ∈ F InR
y

}
were a = ([t1, t1] , [t2, t2] , ..., [tn, tn]) and b = ([s1, s1] , [s2, s2] , ..., [sn, sn]) are degenerate interval vectors obeying
the above equality chain. Now let us only verify the last axiom of the inner product. Let us assume that for any
ε > 0 there exists an element xε =

([
x1ε , x1ε

]
, ...,

[
xnε , xnε

])
∈ InR such that

x =
([
x1, x1

]
, ...,

[
xn, xn

])
� y =

([
y1, y1

]
, ...,

[
yn, yn

])
+ xε

and 〈xε, xε〉 ⊆ Sε (θ) . This implies, for each k ∈ {1, 2, ..., n} , [xk, xk] ⊆ [yk, yk] +
[
xkε

, xkε

]
. Since

〈xε, xε〉 =

n∑
k=1

[
xkε

, xkε

] [
xkε

, xkε

]
⊆ Sε (θ) ,

we get [
xkε

, xkε

] [
xkε

, xkε

]
=
〈[
xkε

, xkε

]
,
[
xkε

, xkε

]〉
⊆ Sε (θ)
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for each k. Since ε→ 0 implies ‖Sε (θ)‖Ω(R) → 0, we obtain〈[
xkε

, xkε

]
,
[
xkε

, xkε

]〉
→ {0}

in Ω(R). This brings us [xk, xk] ⊆ [yk, yk] for each k. Eventually we can say x � y.
Verification of remaining axioms are easy.

Let us see verification of the condition (26) in the proof by an easy example in InR in order to well-understanding
of the condition.

Example 4.8. Let us consider x = ([−3, 3] , [2, 5]) , y = ([−1, 3] , [2, 2]) in I2R.

‖〈x, y〉‖Ω(R) =

∥∥∥∥∥
2∑

k=1

[
xk, xk

] [
yk, yk

]∥∥∥∥∥
Ω(R)

= ‖[−3, 3] [−1, 3] + [2, 5] [2, 2]‖Ω(R)

=

∥∥∥∥ sup {[t, t] [s, s] : [t, t] ⊂ [−3, 3] , [s, s] ⊂ [−1, 3]}
+ sup {[t, t] [s, s] : [t, t] ⊂ [2, 5] , [s, s] ⊂ [2, 2]}

∥∥∥∥
Ω(R)

=

∥∥∥∥∥∥ sup
{

[t, t] [s, s] : [t, t] ∈ F I1R
[−3,3], [s, s] ∈ F

I1R
[−1,3]

}
+ sup

{
[t, t] [s, s] : [t, t] ∈ F I1R

[2,5], [s, s] ∈ F
I1R
[2,2]

} ∥∥∥∥∥∥
Ω(R)

=

∥∥∥∥∥∥ sup{
{

[t, t] [s, s] : [t, t] ∈ F I1R
[−3,3], [s, s] ∈ F

I1R
[−1,3]

}
+
{

[t, t] [s, s] : [t, t] ∈ F I1R
[2,5], [s, s] ∈ F

I1R
[2,2]

}
}

∥∥∥∥∥∥
Ω(R)

=
∥∥∥sup

{
〈a, b〉 : a ∈ F I2R

x , b ∈ F I2R
y

}∥∥∥
Ω(R)

= sup
∥∥∥{〈a, b〉 : a ∈ F I2R

x , b ∈ F I2R
y

}∥∥∥
Ω(R)

= sup
{
‖〈a, b〉‖ : a ∈ F I2R

x , b ∈ F I2R
y

}
.

Remark 4.4. The norm derived from this inner product is obtained in a usual way for any

x = (x1, x2, ...xn). =
([
x1, x1

]
, ...,

[
xn, xn

])
∈ InR :

‖x‖ =
√
‖〈x, x〉‖Ω(R) =

∥∥∥∥∥
n∑

k=1

[
xk, xk

] [
xk, xk

]∥∥∥∥∥
Ω(R)

1/2

=

(
n∑

k=1

|xk|2
)1/2

=

(
n∑

k=1

{
max

{∣∣xk∣∣ , |xk|}}2

)1/2

= ‖x‖2 .

This shows that the inner-product norm is just the 2-norm on InR. For n = 1 if x = [x, x] ∈ I1R then

‖x‖ =
√
‖〈x, x〉‖Ω(R) =

∥∥∥∥∥
1∑

k=1

[
xk, xk

] [
xk, xk

]∥∥∥∥∥
Ω(R)

1/2

= (|[x, x] [x, x]|)1/2

= (|[minS,maxS]|)1/2 , where S = {x2, xx, xx, x2}
= (max {minS,maxS})1/2 , where S = {x2, xx, xx, x2}

=
(
max

{∣∣a2
∣∣ : a ∈ [minS,maxS]

})1/2

=
(
|[x, x]|2

)1/2

= |[x, x]| .

Note in general that [x, x] [x, x] 6= [x, x]
2 where [x, x]

2 is defined as [x, x]
2

=
{
t2 : t ∈ [x, x]

}
in I1R. However,

‖x‖2 = |[x, x] [x, x]| = |[x, x]|2 .
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Definition 4.9. Let x = ([x1, x1] , ..., [xn, xn]) and y = ([y1, y1] , ..., [yn, yn]) be two elements in InR. x and y are called
orthogonal if

〈x, y〉 =

n∑
k=1

[
xk, xk

] [
yk, yk

]
= [0, 0] = {0} .

Any set A in InR is called orthogonal if each two elements in A are orthogonal. Moreover, if we know each elements of
A has norm 1 then A is called orthonormal.

Example 4.9. Let us consider x = ([−3, 3] , [0, 0]) , y = ([0, 0] , [2, 5]) in I2R. Obviously x and y are orthogonal. These
two elements are singular elements which are orthogonal. ([−3,−3] , [0, 0]) and y = ([0, 0] , [2, 2]) are regular
(degenerate) orthogonal elements. The set

A = {([1, 1] , [0, 0] , ..., [0, 0]) , ([0, 0] , [1, 2] , ..., [0, 0]) , ..., ([0, 0] , [0, 0] , ..., [1, n])

is an orthogonal set in InR which is not a basis. However,

B = {([1, 1] , [0, 0] , ..., [0, 0]) , ([0, 0] , [1, 1] , ..., [0, 0]) , ..., ([0, 0] , [0, 0] , ..., [1, 1])

is an orthonormal basis in InR.
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