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Abstract 

In this paper, a waypoint-based path tracking approach is suggested for the swarm robots to follow the desired path in an organized 

way. In the study, the applicability of the waypoint-based path tracking on the swarm robots that show flexible and scalable behavior 

has been demonstrated. To evaluate the proposed path planing approach with regard to scalability and flexibility, simulations have 

been applied in with/without obstacle arenas with different numbers of robots and according to different lookahead distances. With 

the proposed approach, each swarm robots exhibit swarm behavior in an organized manner depending on the distance of the 

lookahead to the path to track in the with / without obstacle arenas. 
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1. Introduction 

 

Path tracking is one of the most important tasks for autonomous vehicles and mobile robots. Path tracking for a mobile robot is the 

determination of the path that a robot will travel from the starting position to the final position it will reach (J. Kim & Kim, 2020). The 

path tracking approach can consist of multiple points for the robot to follow to reach the target point. These points are named as 

waypoints (Saeed et al., 2020).  

 

The increase in the number of mobile robots and the development of each robot's abilities to perform tasks have increased the ability 

of robots to perform difficult tasks by collaborating in a coordinated manner (Gong et al., 2020). In recent years, the increase in research 

on the collaboration of robots in multiple robot systems in a coordinated manner has been remarkable. 

 

The robots encounter obstacles and other robots in the process of following the desired path and they are expected to reach their final 

positions without collision (Oliveira et al., 2013). It is aimed that the robots follow the shortest distances in the desired path trajectory 

and the path under the most suitable conditions according to the robot characteristics. Optimum conditions at the path tracking stage 

includes criteria such as robot velocity, avoidance of obstacles and robot collisions, orbital planning suitable for robot kinematics and 

dynamics (Chen et al., 2018). 

 

Path tracking control approaches generally include geometric and model based (kinematic and dynamic) methods (Cibooglu et al., 

2017). Geometric path tracking is based on geometric correlation between the robot and the desired path. Depending on the distance 

the robot will follow, the movement of the robot is determined based on the lookahead distance (Bacha et al., 2017; Cibooglu et al., 

2017). Geometric path tracking methods can be done by controllers that enable the robots to move in the path orbit they will follow.  

The most researched and studied geometric path tracking methods are listed as Pure-Pursuit (Craig Coulter, 1990), Stanley (Thrun et 

al., 2006) and Vector Pursuit (Yeu et al., 2006). Pure-Pursuit algorithm is more preferred in terms of applicability and efficiency among 

the geometric path tracking methods. Pure-Pursuit algorithm makes geometric calculations to follow the desired path of the robot or 

vehicle (Lal et al., 2018). In these calculations, the robot determines its movement according to the relative position of the robot to the 

center of gravity of the path to be followed and applies the path tracking according to the viewpoint of the distance between the robot 

and the path and the heading direction of the robot. In the literature, the robot heading direction distance is called Lookahead Distance 

(Horvath et al., 2019). Model tracking methods provide path tracking control depending on the kinematic and dynamic model structure 

of the robot / vehicle in path tracking (Cibooglu et al., 2017; Patle et al., 2019).  Kinematic path tracking methods use position, speed, 

and acceleration parameters to enable the robot to track the path. In dynamic path tracking methods, the robot behavior is determined 

depending on the dynamic effects of the robot along the trajectory that the robot will follow (Morgansen et al., 2007; Patle et al., 2019; 

Zhou et al., 2017). 

 

Most of the work on path tracking is done with single mobile robots. The increase of work efficiency of multiple robot systems in recent 

years has brought the popularity of swarm robots to the fore. Multiple robot systems can consist of heterogeneous robot sets with 

different abilities or swarm robot sets with similar features (Bayindir & Şahin, 2007).   It is noteworthy that the studies on the 

coordinated path tracking of the swarm robots are limited(Heo et al., 2018). 

 

Swarm robot systems are a robotic approach that aims to perform robots with simple features by using collaboration power together 

(Heinrich et al., 2019). The main and the most important feature of the swarm robotic approach is that the robots move without any 

central control unit (Mısır et al., 2020). Robots with simple features are required to be flexible, robust and scalable during the tasks 

they carry out (Bayindir, 2016). Swarm robots determine their own organization according to the conditions around them and this show 

that they are flexible in the task they perform. Despite the increase or decrease of the number of robots their performance shows that 

they are scalable. The fact that the swarm robots show a strong behavior in the face of the problems they face while performing the 

tasks reveals their robust characteristics (Soysal et al., 2007). 

 

The main source of motivation of this study is to demonstrate the applicability of waypoint-based path tracking on swarm robots that 

exhibit flexible and scalable behavior.  The main contribution of this study is to examine the Pure-Pursuit path tracking algorithm in 

the literature on robots that move in a swarm that has simple and same features. In the study, an approach is proposed for the swarm 

robots to cooperate in an organized way on a desired path and to track the waypoint-based path. In this approach, the error of the path 

distance according to the reference trajectory is minimized by keeping the swarm motion of each of the swarm robots and it is ensured 

that the swarm robots reach the waypoints. The Vector Field Histogram (VFH) method is used to avoid collisions and obstacles when 

each robot is close enough to collide an obstacle or neighboring robots. With the proposed approach, each swarm robots exhibit 

organized swarm behavior based on the lookahead distance to the path it will follow. In the study, several systematic experiments have 

been applied to evaluate the proposed path tracking approach in terms of scalability and flexibility. These systematic experiments were 

carried out in a simulated environment with different numbers of robots and different look ahead distances in the with/without obstacle 

arena. 

 

This paper is organized as follows; related works are explained in section 2. In the 3rd section, the proposed approach in addition to 

swarm robot kinematics, Pure-Pursuit and VFH methods is explained. In section 4, it includes experimental setup and problem 

definition. Experimental results are given in section 5. Section 6 consists of results. 
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2. Related Works 

Path tracking studies generally focus on geometrical and model-based methods. In addition to these studies, current intuitive and 

evolutionary control methods are also available. In this section, studies on current path tracking are examined. 

 

(Chandrasekhar Rao et al., 2018) have improved Krill Herd (KH) in order to create efficient path navigation by using KH behaviors. 

They expressed the algorithm that they developed as Improved KH (IKH). They compared KH and Differential Evolution (DE) 

algorithms to evaluate the efficiency of their proposed algorithm. According to their results, they reported that the HR algorithm yielded 

better results in the experimental and simulation environment compared to other algorithms.  

 

In a recent study by (Lee et al., 2019) the model-based Linear Quadratic Gauss (LQG) is proposed with an adaptive Q-matrix for noise, 

path-related errors and problems in the process of tracing control. It is noteworthy that the proposed method is adaptable even if the 

vehicle technical and dynamic characteristics change. It has been stated that the experimental results obtained at various speeds give 

better results than other conventional path tracking algorithms. 

 

(Wang et al., 2019) proposed model predictive control (MPC) using the fuzzy adaptive weight approach.  They used MPC to monitor 

paths with minimal errors and to increase ride comfort during the path tracking process. With the MPC approach they have proposed, 

they have achieved control according to the dynamic structure of the vehicle they use. They also compared their approach with one of 

the other traditional approaches and achieved improvements. 

 

(Zhang et al., 2019) study, an edible path tracking method based on Double Deep Q Network (Double DQN) is presented. The proposed 

approach applied the DQN based controller both with a robot used in lawn applications and in the simulation environment. They 

compared the Pure-Pursuit algorithm to test the performance of their proposed DQN-based controller. 

 

(Yaguchi & Tamagawa, 2020) propose waypoint navigation that can avoid obstacle and robot collisions using the artificial potential 

method (APF). They proposed a new waypoint method with random priority APF method for waypoint-based path tracking method. 

Shan et al. (Shan et al., 2015) proposed a new Pure-Pursuit-based method called CF-Pursuit. To reduce the fitting error with the 

proposed method, a clothoid "C" ^1 curve is used to change the curve used in Pure-Pursuit. This improvement has helped to reduce 

tracking errors in Pure-Pursuit. Compared to some other geometric controllers, the CF-Pursuit performed better in stability, tracking 

errors and stability. 

 

Many studies have demonstrated that it is very difficult to achieve a balance between accuracy and stability for most traditional path 

tracking methods (Ohta et al., 2016; H. G. Park et al., 2018; M. Park et al., 2015).To solve this problem, (Yu et al., 2020) proposed a 

Pure-Pursuit based path tracking method, called Fuzzy Pure-Pursuit Control with Front Axle Reference (FPPC-FAR). The method was 

applied on a bus. Firstly, the reference point was moved from the rear axle to the front axle. Secondly, a fuzzy-based parameter setting 

method has been applied to increase the accuracy and robustness of the tracing controller. Thirdly, a feedback-feedforward control 

algorithm that improves speed monitoring efficiency has been designed. 

 

(Morales et al., 2009) proposed an effective and generally applicable approach for reactive motion control, based on Pure-Pursuit and 

commonly used distance detection sensors. In this approach, they tried to make the control of the steering angle more precise and to 

soften the vehicle response by choosing the distance to look forward. An additional advantage of the approach is the possibility to use 

the basic Pure-Pursuit strategy as a common framework to track any combination of closed and / or open paths that can be efficient in 

large-scale environments. 

 

(Bibuli et al., 2014) proposed a swarm-based path tracking guidance system for marine vehicles. The main purpose of the study is to 

create a formation while maintaining the distance between each other while proceeding along the path as well as the swarm approaching 

the desired reference path and to protect this formation along the way. The study also shows an aggregation behavior based on the 

virtual push / pull forces used in another aspect. 

 

(Zhao et al., 2018) proposed self-adaptive collective motion algorithms that enable swarm robots to move towards a certain target on 

a pre-planned path. The proposed algorithm makes decisions using information from neighboring robots and operates without a central 

control. The proposed algorithm has been tested in 3 different ways. These are 1) no obstacles or leaders, 2) with a leader and no 

obstacle, 3) with obstacles (with and without a leader). 
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3. Method 

In this section, waypoint-based path tracking approach is examined in cooperation of swarm robots.  Pure-Pursuit is used for waypoint-

based path tracking and VFH methods are used to avoid obstacle / collision. An approach that determines the behavior of each swarm 

robot is suggested in order for the swarm robots to follow the path in cooperation. 

 

3.1. Kinematics of differential drive swarm robot 

The modeling of a differential driven mobile robot consists of three steps: kinematic modeling, dynamic modeling and actuator 

modeling. Kinematic modeling deals with the geometric relations of the model and examines the mathematical structure of the motion, 

regardless of the effects of external forces (Buccieri et al., 2009; Campion et al., 1996; Oriolo et al., 2002). Dynamic modeling is based 

on the study of the movement in which forces and energies are included. The actuator must also be modeled to find the relationship 

between the control signal and the input of the mechanical system. As shown in Figure 1, the configuration of a differential driven 

mobile robot with two wheels with radius "R” placed at a distance  
𝐿

2
   from the robot center can be defined by generalized coordinate. 

 

 

 

Figure 1. A two-wheeled differentially driven swarm robot and reference parameters  

𝑞 = [𝑥, 𝑦, 𝜃]𝑇 (1) 
 

𝑞, represents the generalized coordinate and using the above expression, the kinematic model is represented by Equation (2). 

�̇� = [

�̇�
�̇�

�̇�

] = [
cos 𝜃
sin 𝜃

0
] 𝑣 + [

0
0
1

] 𝜔 

 

(2) 

 

 

As shown in Figure 1, 𝑣, represents the linear velocity of the robot and 𝜔, represents the angular velocity of the robot. For the left and 

right wheels, there is a relationship between the angular velocity and the linear velocity of the two wheels indicated by 𝜔𝐿 and 𝜔𝑅, 

respectively, as shown in the following equations. 

 

𝑣 =
𝑅(𝜔𝐿 + 𝜔𝑅)

2
            𝜔 =

𝑅(𝜔𝐿 − 𝜔𝑅)

𝐿
 

(3) 

 

Here, the angular velocities 𝜔𝐿 and  𝜔𝑅 are obtained. 
 

 

𝜔𝐿 =
𝑣 − (

𝐿
2) 𝜔

𝑅
        𝜔𝑅 =

𝑣 + (
𝐿
2) 𝜔

𝑅
 

 
  (4) 

 

3.2. The Pure-Pursuit method 

Pure-Pursuit method is one of the most frequently used methods due to basic and superior(Cibooglu et al., 2017). It is a geometric path 

planing method in which the mobile robot creates a turning radius to return to the reference path (D. H. Kim et al., 2010). The main 

purpose of the Pure-Pursuit method is to determine the steering angle that allows the vehicle to go through this target point by 

determining a continuous target point on the predetermined path. In this way, the path planing problem becomes a simple geometry 

problem. 
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The rotation angle that will allow the vehicle to go through the target point is obtained as shown in Equation (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 2. Geometric examination of Pure-Pursuit method 

 

𝛿𝑝𝑝(𝑡) = tan−1 (
2𝐿 sin(𝛼(𝑡))

𝑙𝑑
) 

 
(5) 

 

where 𝛼(𝑡) is the angle between L and 𝑙𝑑. 𝑙𝑑 is the distance between the vehicle's center of axle and the target point (the yellow line in 

Figure 2).  L is the radius of the physical structure of the robot. 

 

Thus, the Pure-Pursuit algorithm can be identified by the pseudocode below  (Chen et al., 2018).

 

The parameter to be set in the Pure-Pursuit method is the lookahead distance (𝑙𝑑). In this sense, 𝑙𝑑 acts as proportional gain (Cibooglu 

et al., 2017). If 𝑙𝑑 is chosen small, the vehicle tracks the path quite precisely, but the control signal, that is, the steering angle, changes 

rapidly, which can cause oscillations in the response (Snider, 2009). When kept large, the response becomes smoother, but in some 

cases large corner bends can be seen, which reduce the quality and safety of monitoring. 𝑙𝑑 can be adjusted according to the vehicle's 

path geometry and speed, as shown in previous studies (Hoffmann et al., 2007; Snider, 2009).  

3.3. Vector Field Histogram (VFH) 

Avoiding obstacles and collisions is one of the most basic tasks in mobile robot systems. To accomplish this task, a real-time obstacle 

avoidance approach Virtual Force Field (VFF) algorithm has been developed by Borenstein and Koren (Borenstein & Koren, 1989) 

for fast mobile robots. This approach relates to the orientation of the robot in order to ensure that a mobile robot moving towards the 

target avoids collisions by detecting unknown obstacles. A grid map approach is used in the proposed approach. In this map, each cell 

occupied by obstacles creates a virtual force on the robot. In line with the virtual forces that are formed, the mobile robot tries to 

advance without hitting the obstacles by producing a rotation angle in the direction where the force is low. However, some deficiencies 

have emerged in this approach (Survey, 2005). The most important of these deficiencies is that the robot cannot move between obstacles 

close to each other (De Ryck et al., 2020). In order to prevent this, it has been demonstrated that a more effective control is required 

for local minimum and narrow transitions as well as correcting the control of the rotation angle. Borenstein and Koren introduced the 

Vector Field Histogram (VFH) algorithm as a new approach to solve these problems (Borenstein & Koren, 1991). VFH is an object-
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oriented method of avoiding obstacles. Specifically, VFH is used to represent the environment surrounding the mobile robot, and the 

next direction of movement is selected based on the cost function of each direction (Qu et al., 2015). The histogram shows the obstacle 

density seen from the robot perspective. A density of obstacles is constantly calculated in every possible direction. The direction of the 

robot is towards the region where the obstacle density is low. In addition, this algorithm is not concerned with kinematic and dynamic 

constraints (Qu et al., 2015). 

 

 

Figure 3. Vector Field Histogram (VFH)(Survey, 2005) 

The content of each of the active cells in Figure 3 is represented as an obstacle vector at any (𝑖, 𝑗)  coordinate. The direction of the 

obstacle vector is obtained by the expression in equation (6). 

𝛽𝑖,𝑗 = tan−1 (
𝑦𝑖 − 𝑦0

𝑥𝑖 − 𝑥0
) 

 

(6) 

 

(𝑥0, 𝑦0) represents the current position of the robot. (𝑥𝑖 , 𝑦𝑖) represents the coordinates of the cell occupied by an obstacle. The 

magnitude of the vector in any coordinate (𝑖, 𝑗) is obtained by the following equation. 

 

𝑚𝑖,𝑗 = 𝐶(𝑖, 𝑗)2(𝑎 − 𝑏𝑑(𝑖, 𝑗)) (7) 

Here  𝐶(𝑖, 𝑗) represents the precision value of the cell occupied by the obstacles. 𝑎 and 𝑏 are positive constant coefficients, and 

𝑑(𝑖, 𝑗) is the distance between the robot and the active cell. The histogram consists of a series of sectors (𝑘) at an arbitrarily chosen 

angle resolution (Survey, 2005). The sum of the magnitudes of these vectors, which belong to each angle sector, defines their value 

in the histogram. 

ℎ𝑘 = ∑ 𝑚𝑖,𝑗
𝑖,𝑗

  

(8) 

As seen in Figure 3, the resulting histogram consists of peaks and low-value points on the histogram map according to the position 

and shape of the obstacle. Any histogram value that falls below a predetermined histogram threshold is defined as a candidate low-

value point. The algorithm chooses the candidate low value point and moves the robot in this direction. VFH, like other potential 

field methods, provides a smooth control according to histogram density without any filtering (Survey, 2005). 

3.4. Collaboration-based path tracking approach using Pure-Pursuit and VFH for swarm robots 

The main parameter used for path tracking in the Pure-pursuit algorithm is lookahead distance (𝑙𝑑). 𝑙𝑑 is the distance from the target 

point determined by the vehicle for the path to be followed. Depending on the 𝑙𝑑 of the vehicle that tracks the path, the heading direction 
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and speed are determined. Figure 4 shows the collaboration-based path tracking approach flow chart diagram using Pure-Pursuit and 

VFH methods. Collaboration based path tracking approach using Pure-Pursuit and VFH provides organized path tracking of swarm 

robots. With the proposed approach, they can follow the predetermined path in a scalable way, depending on the number change of the 

swarm robots. The swarm robots that follow the paths in an organized way can exhibit flexible behaviors depending on the surrounding 

obstacles and conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Collaboration based path tracking approach flow chart diagram using Pure-Pursuit and VFH 

In the proposed approach, each of the swarm robots decides how path to follow, depending on 𝑙𝑑. Each robot checks if 𝑙𝑑 is less than 

2 units to the predetermined path.  If the 𝑙𝑑 value of the swarm robot is more than 2 units, it checks whether there is an obstacle or 

robot in collision distance around it. If the swarm robot encounters an obstacle or robot under these conditions, it is directed by VFH 

method in the direction where there is no obstacle or robot. If the swarm robot does not encounter an obstacle or robot, it follows the 

path with Pure-Pursuit method. 

If the 𝑙𝑑 value of the swarm robot is less than 2 units, it is checked whether there is a robot in the robot detection area. If there are 

robot or robots in the detection area of the swarm robot, it approaches the direction of these robots. If the swarm robot gets close 

enough to collide with an obstacle or robot with this condition, it moves away from the obstacle with the VFH algorithm. Otherwise, 

it follows the predetermined path with Pure-Pursuit algorithm. 

4. Experimental Setup and Problem Definition 

In this section, covers systematic experiments and results applied on a predetermined path for the proposed approach. Experiments 

were conducted using different robot numbers to test the scalability of the proposed approach, and different arena (with/without 

obstacle) conditions to test their flexible behavior. In the proposed approach, it is examined how the swarm robots influence path 

tracking due to the change of the value of 𝑙𝑑 used in the Pure-Pursuit algorithm. In the systematic experiments, the number of robots, 

the arena conditions with and without disabilities and the value of 𝑙𝑑 are examined for how long the swarm robots have completed 

the predetermined path. The experiments are carried out with the non-holonomic swarm robot shown in Table 1. Experiments are 

carried out in MATLAB simulation environment. 
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Table 1. Swarm robot features 

Properties Ranges 

Robot Model Non-Holonomic, 2 Wheels 

Robot Detection [ 0 8] units, 360 degree 

Obstacle Detection [ 0 8] units, 360 degree 

Robot-robot Communication [ 0 8] units 

Robot radius 0.4 radian units 

 

Each swarm robots can detect obstacles and robots within the detection range. They can detect the angle and distance information of 

obstacles and neighboring robots. A swarm robot can exchange data with robots within the detection range. In Figure 5 shows the 

swarm robot model used in the simulation environment. The swarm robot moves with a two-wheel differential drive system with a 

circular structure of 0.4 unit radius.  

 

 

Figure 5. A non-holonomic swarm robot 

 

4.1. Problem definition 

In this section, the path tracking problem of swarm robots is defined. In the with and without obstacles arena, it is aimed to track the 

paths depending on the change of the number of robots of the swarm robots and the 𝑙𝑑  value determined by the Pure-Pursuit 

algorithm of the swarm robots. It is aimed for the swarm robots to cooperate in an organized way and follow the path by passing the 

waypoints placed sequentially on the predetermined path. Swarm robots should be able to move without colliding each other and 

obstacles during path tracking. 
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                                                      (a)                                                   (b)  

Figure 6. (a)with obstacle and (b)without obstacles arenas for path tracking 

The swarm robots are aimed to follow the path consisting of 6 waypoints placed in a row as shown in Figure 6.  The path tracking, 

which consists of 6 waypoints, is also implemented in with and without obstacle arena shown in Figure 6 (a) and (b). The obstacles 

have been specially selected to examine how the swarm robots behave on the path created with 6 waypoints. 

Swarm robots are asked to follow the path determined from the 1st waypoint to the 6th waypoint in with and without obstacle arena 

given in Figure 6. In with and without obstacle arena, all of the different number of swarm robots should be able to follow the path 

starting from the 1st waypoint to the 6th waypoint.   

5. Results 

In the study, the path tracking process consisting of predetermined sequential waypoints of swarm robots in with and without obstacles 

arenas is examined. Following the waypoints-based predetermined path, experiments are carried out according to the different number 

of swarm robots and the 𝑙𝑑 value determined by the Pure-Pursuit algorithm used. Experiments include different systematic applications 

for 3, 5 and 7 robots with 0.3, 0.5 and 1 unit 𝑙𝑑 values. Experiments were repeated 50 times. The applied systematic experiments are 

carried out in with and without obstacles arenas given in Figure 6. Arena sizes are selected as 80 x 80 square units. After the swarm 

robots have passed 6 determined waypoints, the experiments are ended. The time until the experiments are terminated (number of 

iterations) measures the performance of the experiment. In the results obtained through systematic experiments, the scalability and 

flexibility of swarm robots are examined in terms of path tracking behavior.  

The systematic experiment results applied for the 0.3 unit 𝑙𝑑 value determined in the approach proposed in Figure 7 are shown. Repeated 

experiments for 0.3 unit 𝑙𝑑 value is systematically implemented in with and without obstacles arenas with 3, 5 and 7 swarm robots. 

The data obtained from the applied systematic experiments are expressed with box plots. The lines in the middle of the box plots show 

the median value of the completed iteration times of the systematic experiments applied. In systematic experiments applied for 0.3 unit 

𝑙𝑑  value and 3.5 and 7 robots, the lowest median value was realized with 3 robots in the without obstacles arena as 1360.5 steps and 

the highest median value was with 7 robots in the with obstacles arena in 2015.5 steps. Considering these values, the experiments 

carried out in with obstacles arena took longer than those without obstacles. The main reason for this result is that when the swarm 

robots encounter the obstacle while they follow the path in an organized way, they determine the path both without colliding obstacles 

and colliding each other. In addition, the distance to the waypoints determined sequentially increases when the robots encounter the 

obstacle. When the experiments are compared in terms of the number of robots according to the 0.3 unit 𝑙𝑑  value, the increase in the 

number of robots causes an increase in the duration of the experiment. 
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Figure 7. Systematic test results applied for 0.3 unit 𝑙𝑑 value 

Figure 8 shows the systematic test results applied in with and without obstacles arenas for 0.5 𝑙𝑑  value with 3, 5 and 7 robots. In the 

systematic experiments applied for 3,5 and 7 robots, the lowest median value was realized with 3 robots in the without obstacle arena 

as 1340.5 steps, and the highest median value was 1885.5 steps with 7 robots in with obstacles arena. According to the results of 

experiments applied in with and without obstacles arenas, the experiments applied in the disabled arena take longer than the 

experimental results applied in the without obstacle arena, similar to the results of the experiment applied with a value of 0.3 unit 𝑙𝑑. 

Similarly, the increase in the number of robots causes an increase in the duration of the experiment.  Experimental results applied for 

0.5 unit 𝑙𝑑 value is obtained at more (wide) time intervals than 0.3 unit 𝑙𝑑 value.  

 

 

Figure 8. Systematic test results applied for 0.5 unit 𝑙𝑑 value 

 

3 Robots 5 Robots 7 Robots 

with obstacle without obstacle 

3 Robots 5 Robots 7 Robots 

with obstacle without obstacle 
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Figure 9 shows the systematic test results applied in with and without obstacle arena for 1 unit 𝑙𝑑  value with 3, 5 and 7 robots. In the 

systematic experiments applied for 3,5 and 7 robots, the lowest median value was realized with 3 robots in the without obstacle arena 

as 1345.5 steps, and the highest median value was 1749.5 steps with 7 robots in with obstacle arena. Similar to the systematic 

experiments performed with the choice of 0.3 and 0.5 𝑙𝑑 the with obstacle test results lasted longer than the without obstacle test results. 

In addition, the increase in the number of robots causes an increase in the duration of the experiment. Unlike 0.3 and 0.5 𝑙𝑑 selection 

in the systematic experiments applied depending on the 1 unit 𝑙𝑑 selection, the time intervals for the completion of the experiment are 

shorter. Due to the increase in 𝑙𝑑 value, the decrease in its oscillation in path following does not cause major changes in the duration 

of the experiment completion. With the oscillation that occurs during path tracking, the collision status of the robots decreases. With 

this situation, the time for each robot to follow the path without colliding each other decreases.  

 

 

 

Figure 9. Systematic test results applied for 1 unit 𝑙𝑑 value 

When the applied systematic experiments are evaluated depending on the change of the ld selection, the time to complete the experiment 

decreases as the distance 𝑙𝑑 increases. When the 𝑙𝑑 value increases, collision situations decrease because the swarm robots oscillate 

less on the desired path.  

In Figure 10 (a) and (b), 5 swarm robots, whose 𝑙𝑑 value is chosen as 0.5 units, and two of the systematic experiments performed in 

the with and without obstacle arena are shown. In the with and without obstacle experiments, the path trace of each of the swarm robots 

along the path they follow is shown in Figure 10 (a) and (b). In the systematic experiments applied, the robots are randomly positioned 

at the beginning of the experiment at the area bounded by 10x10 unit square of 80x80 unit square arena. This determined location is 

behind the 1st waypoint. In Figure 10 (a) the experiment applied in the without obstacle arena was completed in 1479 iterations. The 

experiments applied in the without obstacle arena, the swarm robots follow the path determined from the 1st waypoint to the 6th 

waypoint sequentially. In this experiment, swarm robots move in an organized way without colliding each other on the path with sharp 

turns. The experiment applied in with obstacle arena in Figure 10 (b) was completed in 1716 iterations. In this experiment, swarm 

robots are observed both for sharp path turns and how the robots follow when they encounter an obstacle.  

3 Robots 5 Robots 7 Robots 

with obstacle without obstacle 
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(a)                                                                                      (b)  
Figure 10. (a)With and (b)without obstacles arena experiment results for 𝑙𝑑 = 0.5 unit 

 

In Figure 11 (a) and (b) show the values 𝑙𝑑 of each of the swarm robots during with and without obstacle path tracking shown in Figure 

10. As shown in Figure 11 (a), it shows the conditions for approaching the swarm and applying the Pure-Pursuit algorithm, as indicated 

in the proposed approach during path tracing of the swarm robots. As in the proposed approach, if the distance of the swarm robots to 

the path they will follow is over 2 units, it approaches the robots it detects. If it is under 2 units, Pure-Pursuit algorithm is used. 

 
(a)                                                 
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(b)                                             

 
Figure 11. Lookahead distance test results for 𝑙𝑑 = 0.5 unit in (a)with and (b)without obstacles arenas 

 

In Figure 11 (b), the graph shows the values of 𝑙𝑑 from the experiment applied in the arena in Figure 10 (b). In addition, the obstacles 

that each swarm robot encounters during path tracking and the waypoints they pass through are indicated. When an obstacle or sharp 

turn encountered by the swarm robots during path tracking, the distance to the determined path increases and this can be seen by looking 

at the distances 𝑙𝑑 . As in the proposed approach, when the 𝑙𝑑 value of each of the swarm robots is above 2 units, the robots approach 

each other in an organized way, and they track the desired path. 

The graphs in Figure 11 show the tracking errors obtained from the experiments performed in with and without obstacle arenas shown 

in Figure 10. Tracking error, as expressed in equation (9), is the perpendicular distance of the swarm robot to the tracking path. 

 

𝑒 =
tan(𝛿𝑝𝑝(𝑡)).𝑙𝑑

2

2𝐿
      (9) 

 

As shown in Figures 11 (a) and (b), a tracking error at the time of an obstacle or sharp turn (S.T) is observed as each swarm robot 

passes through the specified waypoints. The distance of the swarm robots to the path increases to follow when they encounter an 

obstacle or (S.T). Each swarm robots that are rotating and avoiding obstacles are moving in an organized way to get closer to the path 

they will follow.  In the proposed approach, in the event that swarm robots encounter obstacles, priority is determined to avoid obstacles 

rather than following the path. 
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(a)                                

 
(b)                                

 
Figure 12. Tracking errors test results for 𝑙𝑑 = 0.5 unit in (a)with and (b)without obstacles arenas 

6. Conclusion 

In this paper, a waypoint-based path tracking approach is recommended for self-organized swarm robots. Each swarm robots act 

according to the behavior of neighboring robots, which they perceive individually during path tracking. To evaluate the proposed path 

tracking approach in terms of scalability and flexibility, systematic experiments have been carried out in with and without obstacle 

arena with different numbers of robots and depending on different lookahead distances. With the proposed approach, each swarm 

robots exhibit swarm behavior in an organized manner depending on the distance of the lookahead to the path to follow in the with / 

without obstacle arenas. 

According to the proposed approach, robots are not supposed to collide each other and obstacles. This condition affects the time to 

complete path tracking. In the results obtained from the systematic experiments, it was observed that the path following completion 

time increases as the number of robots increases. 



UMAGD, (2022) 14(2), 799-815, Gökrem et al. 

813 

As observed from the systematic experiments applied in the with obstacle arenas, the completion time of the experiment is extended 

as the robots escape from the obstacle on the path. According to the results obtained from the systematic experiments, the path following 

completion time of the swarm robots in with obstacle arena is more than the in without obstacle arena. 

Increasing the 𝑙𝑑 value also increases the distance to the path that the swarm robot will follow. In this way, the colliding situations of 

the swarm robots are also reduced. Thus, each swarm robots complete the specified path more quickly. According to the results of the 

experiment, as 𝑙𝑑 value increases, the time for the swarm robots to complete the path tracking decreases. 

Using the proposed approach, the results from systematic experiments showed that swarm robots can track path in a flexible and 

scalable way. Swarm robots also decide under which conditions to apply the Pure-Pursuit algorithm, depending on the neighboring 

robots they detect, and the individual 𝑙𝑑 values.  

In future studies, it is aimed to design a path tracking controller according to the dynamic lookahead distance according to the 

neighboring robots detected by the swarm robots and the surrounding obstacle and collision conditions for path tracking. 
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