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Abstract

The purpose of this paper is to study the O-operators on Malcev algebras and discuss
the solutions of Malcev Yang-Baxter equation by O-operators. Furthermore we introduce
the notion of weighted O-operators on Malcev algebras, which can be characterized by
graphs of the semi-direct product Malcev algebra. Then we introduce a new algebraic
structure called post-Malcev algebras. Therefore, post-Malcev algebras can be viewed
as the underlying algebraic structures of weighted O-operators on Malcev algebras. A
post-Malcev algebra also gives rise to a new Malcev algebra. Post-Malcev algebras are
analogues for Malcev algebras of post-Lie algebras and fit into a bigger framework with a
close relationship with post-alternative algebras.
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1. Introduction

Malcev algebras play an important role in the geometry of smooth loops. Just as the
tangent algebra of a Lie group is a Lie algebra, the tangent algebra of a locally analytic
Moufang loop is a Malcev algebra [18,21,27,28]. A Malcev algebra is a non-associative
algebra A with an anti-symmetric multiplication [-,-] that satisfies the Sagle’s identity

[z, 2], ly, t]] = [ll=, 9], 2], 6] + [[ly, 21, t], 2] + [[[2, 8], =], 9] + ([t 2], 9], 2], Ve, g, 2,8 € A

Pre-Malcev algebras have been studied extensively since [26] which are the generalization
of pre-Lie algebras, in the sense that any pre-Lie algebra is a pre-Malcev algebra but the
converse is not true. Studying pre-Malcev algebras independly is significant not only to
its own further development, but also to develop the areas closely connected with such
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algebras. A pre-Malcev algebra is a vector space A endowed with a bilinear product >
satisfying the following identity for z,y, z,t € A,

[y, z] > (x> t) + [[z,y], 2] > t+y > ([x, 2] >t) —a> (y> (2> 8)) + 2> (x> (y> t) = 0, (1.1)

where [x,y] = x >y — y > . The existence of subadjacent Malcev algebras and compatible
pre-Malcev algebras was given in [26, Proposition 5]. For a given pre-Malcev algebra (A, >>),
there is a Malcev algebra A® defined by the commutator [z,y] = 2 >y — y > x, and the
left multiplication operator in A induces a representation of Malcev algebra A€,

Rota-Baxter operators were introduced by G. Baxter [7] in 1960 in the study of fluctuation
theory in Probability. These operators were then further investigated, by G.-C. Rota [30],
Atkinson [1], Cartier [9] and others. In the 1980s, the notion of Rota-Baxter operator of
weight 0 was introduced in terms of the classical Yang-Baxter equation for Lie algebras (see
[4,5,13-15,17,23] for more details). Later on, B. A. Kupershmidt [19] introduced the notion
of O-operator as generalized Rota-Baxter operators to understand classical Yang-Baxter
equations and related integrable systems. In fact, a skew-symmetric solution of the CYBE
(see [2]) is exactly a special O-operator (associated to the coadjoint representation). Our
first goal is to study the connections between O-operators and symmetric solutions of the
analogue of CYBE on Malcev algebras motivated by the point of Kupershmidt and Bai.

The notion of post-algebras goes back to Rosenbloom in [29] (1942). An equivalent
formulation of the class of post-algebras was given by Rousseau in [31] (1969, 1970) which
became a starting point for deep research. Post-Lie algebras have been introduced by
Vallette in 2007 [33] in connection with the homology of partition posets and the study
of Koszul operads. However, J. L. Loday studied pre-Lie algebras and post-Lie algebras
within the context of algebraic operad triples, see for more details [24,25]. In the last
decade, many works [8,10,34] intrested in post-Lie algebra structures, motivated by the
importance of pre-Lie algebras in geometry and in connection with generalized Lie algebra
derivations.

Recently, Post-Lie algebras which are non-associative algebras played an important role
in different areas of pure and applied mathematics. They consist of a vector space A
equipped with a Lie bracket [-, -] and a binary operation > satisfying the following axioms

wvly, 2] = [e>y, 2] + [y, 2 2],
[z,y] >z = ass(x,y, 2) — ass(y, , 2). (1.3)

If the bracket [-, ] is zero, we have exactly a pre-Lie structure. It is worth to note that, in
spite the post-Lie product does not yield a Lie bracket by antisymmetrization, the bilinear
product {-,-} : A® A — A, defined for all z,y € A by

{v,yt=z>y—y>z+ |z, (1.4)

defines on A another Lie algebra structure. The varieties of pre- and post-Lie algebras
play a crucial role in the definition of any pre and post-algebra through black Manin
operads product, see details in [3,12]. Whereas pre-Lie algebras are intimately associated
with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of
homogeneous spaces, and are also closely related to Cartan’s method of moving frames.
Ebrahimi-Fard, Lundervold and Munthe-Kaas [10] studied universal enveloping algebras of
post-Lie algebras and the free post-Lie algebra.

In this paper we use weighted O-operators to split operations, although a generalization
exists in the alternative setting in terms of bimodules. Diagram (1.5) summarizes the
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results of the present work.

Post-Malcev Post-alternative
alg. alg.
| -
Post-Lie Dendriform
alg. trialg.
| (1.5)
Malcev Alternative
alg. alg.
/ _—
Lie Associative
alg. alg.

In Section 2, we study the relationship between O-operators and Malcev Yang-Baxter
equation. We construct in Section 3 alternative algebras structure associated to any
post-alternative algebra. The multiplication is given by

TxYy=r<y+y-x+x-y.

In addition, in Section 4 we investigate the notion of a weighted O-operator to construct a
post-alternative algebra structure on the A-bimodule K-algebra of an alternative algebra
(A,-). Section 4 is devoted to introduce the notion of post-Malcev algebra and we show
that weighted O-operators can be used to construct post-Malcev algebras. We also reveal
a relation between post-Malcev algebras and post-alternative algebras by the commutative
diagram (1.5).

Throughout this paper, all algebras are finite-dimensional and over a field K of charac-
teristic 0.

2. (O-operators and Malcev Yang-Baxter equation

In this section, we recall the classical result that a skew-symmetric solution of CYBE
in a Malcev algebra gives an O-operator through a duality between tensor product and
linear maps. Not every O-operator on a Malcev algebra comes from a solution of CYBE in
this way. However, any O-operator can be recovered from a solution of CYBE in a larger
Malcev algebra.

We first recall the concept of a representation (see [20]) and construct the dual represen-
tation.

Definition 2.1 ([20]). A representation (or a module) of a Malcev algebra (A4, [-,])
on a vector space V is a linear map p: A — End(V') such that, for all z,y, z € A,

pllz,yl, 21) = p(@)p(y)p(2) — p(2)p(@)p(y) + p(y)p([z, 2]) = p([y, 2Dp(x).  (2.1)
We denote this representation by (V, p).

For all z,y € A, define the map ad : A — End(A) by ad,(y) = [z,y]. Then ad
is a representation of the Malcev algebra (A,[:]) on A, which is called the adjoint
representation.

Let (A4, ], ]) be a Malcev algebra and (V, p) is a representation on A. Consider the dual
space V* of V and End(V*). Define the linear map p* : A — End(V*) by

(p*(z)a*,b) = —(a”, p(x)b), VaxeAbeV,a" eV, (2.2)
where (-, -) is the canonical pairing between V* and V.

Proposition 2.1. With the above notations, (V*,p*) is a representation of A which is
called the dual representation of (V, p).

Proof. By (2.1), we have, for z,y,z € A,

p([ly, z], 2]) = —p([[z, y], 2]) = p(2)p(y) p(x) — p(y)p(x)p(2) — p(z)p([2, y]) + p([z, 2]) p(y)-
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So, for any z,y,z € A, a* € V*, b € V, we have
(o ([T, ), 2", b) = —(a*, pl[l, ), 2)b) = —(a*, —p([ly, ], 2])b)
= —(a", (p()p(2)p(2) = p(2)p(y)p(x) + p(@)p([z,9]) — pl[, 2])p(y))b)

= (=P ()" @)p* () + p* (@) (W)™ (2) + p" (28" (@) = p* ()" ([, 2])) ", b).
Hence, since (-, -) is nondegenerate, we obtain
o ([l ), ) = *(@)p"W)0* () — 5" (2)p" (@) () + 0* )6 (2 2]) — " [y, 2" (2). O
Definition 2.2. Let (4, [,]) be a Malcev algebra and r =3 z; ® y; € A® A. r is called
a solution of Malcev Yang-Baxter equation in A if r satisﬁesz

[r12,713] + [r12,723] + [r13,723] = 0, (2.3)
where
re=Y % ®y®l, rz=Y 010y, rs=» 100y, (2.4)
and
[ri2,m13) =Y [ 2] @y @ yj,  [r13,rs] =Y 2 @ 25 @ [y3, Y51,
i,j i,J
(112, 23] = le ® [yi, ] ® ;.
(2]
Let V be a vector space. The twisting operator ¢ : V®2 — V%2 is defined for all
a,b eV by
cla®b) =b®a.
We call 7 = 3 a; ® b; € V®? skew-symmetric (resp. symmetric) if 7 = —o(r) (resp.
i
r = o(r)). Furthermore, r can be regarded as a linear map from V* to V in the following
way
(a*,r(b")) = (a* ®@b", 1), Va*,b" € V* (2.5)
Equation (2.3) gives the tensor form of Malcev Yang-Baxter equation. What we will do
next is to replace the tensor form by a linear operator satisfying some conditions.

Theorem 2.1. Let (A, [-,-]) be a Malcev algebra and r € AR A. Thenr is a skew-symmetric
solution of Malcev Yang-Bazxter equation in A if and only if r satisfies for all x*,y* € A*,

[r(2®),r(y")] = r(ad"r(z")(y") — ad"r(y*)(z")). (2.6)
Proof. Let {e;,...,en} be a basis of A and {e],...,e}} be its dual basis. Suppose that
lei,ej] = Zcfjep and r =3, ; a;je; ® e;. Hence a;; = —ag;. Now, we have
P
[r2,m18] = | D aijei ®e; 1Y aper @ 1@ ¢ | = Y ajjapche, ®e; @ ey,
T iy k.l T igkilp
(113, 723]) = Z aije; 1@ ey, Z agl Vep @ey| = Z ajjapcye; ® ey @ ep,
iy k.l T dgklp
(112, 723) = Z ajje; ®e; @1, Z apl ®ep R e| = Z aijaklcgkei ®ep @ e
R Kl T dgklp
Then r is a solution of the Malcev Yang-Baxter equation in (A, [-,-]) if and only if (for any

7,05 1)

: )
Z (aijaklc?k + AgpaijCr; + apiaklcgk)ep ®e; ®@e =0.
ik
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On the other hand, by (2.5), we get 7(e}) = > a;je;. Then, if we set ¥ = e} and y* =¢],
i
by (2.6),
> (aijaklcfk + arpaijch; + apiaklcgk)ep =0.
ik
Therefore, it is easy to see that r is a solution of Malcev Yang-Baxter equation in A if and
only if r satisfies (2.6). O

Definition 2.3. Let (A, [,:]) be a Malcev algebra. A symmetric bilinear form B on A is
called invariant if, for all x,y,z € A,

B([z,y], 2) = B(x, [y, 2]). (2.7)

Definition 2.4. Let (A, [-,-]) be a Malcev algebra. A Rota-Baxter operator of weight 0 on
A is a linear map R : A — A satisfying for all x,y € A,

[R(z), R(y)] = R([R(2), y] + [z, R(y)])-

Corollary 2.1. Let (A,[-,:]) be a Malcev algebra and r € A ® A. Assume r is skew-
symmetric and there exists a nondegenerate symmetric invariant bilinear form B on A.
Define a linear map ¢ : A — A* by (p(x),y) = B(x,y) for any x,y € A. Then r is a
solution of the Malcev Yang-Baxter equation in A if and only if R =rp: A — A is a
Rota-Baxter operator.

Proof. For any z,y,z € A, we have

(plad(x)y), z) = B([z,y], 2) = B(z, [z, y]) = =By, [z, 2]) = (ad" (z)¢(y), 2).
Hence ¢(ad(z)y) = ad*(z)p(y) for any =,y € A. Let z* = p(z), y* = ¢(y), then by
Theorem 2.1, r is a solution of the Malcev Yang-Baxter equation in A if and only if

[re(z),re(y)] = [r(2"),r(y")] = r(ad™r(z)(y*) —ad r(y*)(z")) = re([re(@), yl+[z, re(y)]).-
Therefore the conclusion holds. ]

Now, we introduce the notion of O-operator of a Malcev algebra.

Definition 2.5. Let (A, [, ]) be a Malcev algebra and let (V, p) be a representation of A.
A linear map T : V — A is called an O-operator associated to p if for all a,b € V,

[T'(a), T(b)] = T (p(T(a))b — p(T'(b))a). (2.8)
Example 2.1. Let (A, [, -]) be a Malcev algebra. Then a Rota-Baxter operator (of weight
zero) is an O-operator of A associated to the adjoint representation (A, ad) and a skew-

symmetric solution of Malcev Yang-Baxter equation in A is an O-operator of A associated
to the representation (A*,ad*).

Let (A, [,-]) be a Malcev algebra. Let p* : A — gl(V*) be the dual representation of
the representation p : A — gl(V') of the Malcev algebra A. A linear map T : V — A
can be identified as an element in A ® V* C (A X, V*) @ (A X« V) as follows. Let
{e1,-+ ,en} be a basis of A. Let {vy, -+ ,vn} be a basis of V and {v],--- ,v}} be its

n

dual basis, that is v} (v;) = 0;;. Set T'(v;) = Y ajjej,i =1,--- ,m. Since as vector spaces,
j=1
Hom(V,A) =2 A® V*, we have
m m n
T = ZT(%‘) (X)v;k = ZZaijej (X)U;<
i=1

i=1j=1
EAQRVT C(Axp V)@ (A xpe VF). (2.9)
Theorem 2.2. Let (A,[-,]) be a Malcev algebra. Then T is an O-operator of A associated

to (V,p) if and only if r =T —o(T) is a skew-symmetric solution of the Malcev Yang-Baxter
equation in A X« V*.
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Proof. From (2.9), we have r =T — o(T) = >, T'(v;) ® v} — v} ® T'(v;). Thus,

[r12,713] Z {IT )] @ v @ vy — p*(T(v;))vi, @ vj @ T'(vy)
i,k=1

+p*(T(vk))v* ® T'(v;) ® vi},
(112, 723] Z {—=vi @ [T(vi), T(vi)] ® v — T(vi) ® p*(T'(vk))v; ® v,
i,k=1
+vi @ p"(T(vi)) v @ T'(vi) }

[r13, 723] Z {vi @ v @ [T'(vi), T'(vx)] + T'(vi) ® v @ p™(T'(vk))vi
i,k=1

—v; @ T(vg) @ p"(T'(vi)) vy }-

By the definition of dual representation, we know p*(T'(vg))v; = — 37 vf (p(T'(v))vs)vy .
Thus,

T(vi) @ p*(T (vk))v; © v = — Z T(vi) @ [y —vi (p(T (v))vj)v;] @ v

\
iNGE

ik=1 ik=1 j=1
= D v (p(T (0r)vi) T (v) @ v} @ vf, = Z T (05 (p(T(vi))vi)vy) @ v} © v
1j=1 ik=1 j=1

T(p(T (vg))vi) ® v; @ vf.

ik=1
Therefore,
(712, 713) + [r12, 23] + [r13, 723]
= gjl{([T(w), T(vg)] + T (p(T(vr))vi) = T(p(T (vi))vr)) © v @ vy,
—sz s ([T (vi), T ()] + T (p(T(vx))vi) = T (p(T (vi))vr)) © v
+v; @ v @ ([T'(vi), T(op)] + T (p(T (vx))vi) = T(p(T (0i))v))}-
So r is a classical r-matrix in A x ,« V* if and only if T" is an O-operator. O

In fact, Theorem 2.2 gives a relation between O-operator and Malcev Yang-Baxter
equation. Then, we get a direct conclusion from Theorems 2.1 and 2.2.

Corollary 2.2. Let (A,[-,+]) be a Malcev algebra. Let p: A — gl(V') be a representation of

A Set A= Ax,V*. Let T : V — A be a linear map. Then the following three conditions
are equivalent:

(i) T is an O-operator of A associated to p;
(ii) T — o(T) is a skew-symmetric solution of the Malcev Yang-Baxter equation in A;
(iii) T — o(T) is an O-operator of the Malcev algebra A associated to ad*.

3. Alternative and post-alternative algebras

In this section, we recall some basic definitions about alternative and pre-alternative
algebras studied in [6,22].
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3.1. Some basic results on alternative algebras

Definition 3.1. An alternative algebra (A4,-) is a vector space A equipped with a
bilinear operation (x,y) — x - y satisfying, for all z,y, z € A,

asa(z,x,y) = asa(y,z,x) =0, (3.1)
where asa(z,y,2) = (x-y)-z—x - (y-z) is the associator.

Remark 3.1. If the characteristic of the field is not 2, then an alternative algebra (A, -)
also satisfies the stronger axioms, for all x,y,z € A,

CLSA(JJ,y, Z) +CLSA(y,ﬂZ‘, Z) =0, (32)
CLSA(Z,I‘,y) +CLSA(Z,y,$) = 0. (33)
Now, recall that an algebra (A, -) is called admissible Malcev algebra if (A, [-,]) is a

Malcev algebra, where [x,y] =2z -y —y - =.

Example 3.1. Any alternative algebra is Malcev admissible. That is if (A,:) be an
alternative algebra, then (A, [-,-]) is a Malcev algebra, where [z,y] =z -y —y - z, for all
x,y € A.

Definition 3.2 ([32]). Let (A,-) be an alternative algebra and V be a vector space. Let
t: A — End(V) be two linear maps. Then, (V,[,t) is called a representation or a
bimodule of A if, for any x,y € A,

t(2)e(y) +e(y)e(e) —v(z-y) -ty -2) = (3-4)
((z-y) + Uy - z) = Uz)(y) — y)l(z) = (3.5)
(2 - y) + e(y)Uz) — Uz)l(y) — Ua)e(y )20, (3.6)
t(y)Uz) + e(y)e(z) — Ha)e(y) —e(z-y) = 0. (3.7)

Definition 3.3. A pre-alternative algebra is a triple (A, <, >), where A is a vector
space, <,>: A® A — A are bilinear maps satisfying for all z,y,z2 € Aand z-y = x <
y+x -y,

(x>y)<z—z=-(y<z2)+y<z)<z—y<(x-z)=0, (3.8)
(x=y)<z—zxz=(y<z2)+(z-2)=y—z=(r>=y) =0, (3.9)
(x-y)-z—axz>=Yy=2)+W-z)=2—y>(r>2)=0, (3.10)
(z=<z)<y—z=<(z*xy)+(z<y)<x—2<(y-z)=0. (3.11)

Proposition 3.1. Let (A, <,>) be a pre-alternative algebra. Then the product z -y = x <
y -+ x =y defines an alternative algebra A. Furthermore, (A, L., R<), where Ly (z)y =
x =1y and Ro(x)y =y < x, gives a representation of the associated alternative algebra

(A,-) on A.

Proposition 3.2. Let (A, <,>) be a pre-alternative algebra. Then the product x >y =
x =y —y < defines a pre-Malcev structure in A.

3.2. A-bimodule alternative algebras, weighted O-operators and
post-alternative algebras

Definition 3.4. Let (A, ) be an alternative algebra. Let (V,-1/) be an alternative algebra
and [,v: A — End(V) be two linear maps. We say that (V, -y, [, t) is an A-bimodule alter-
native algebra if (V, [, t) is a representation of (A, -) such that the following compatibility
conditions hold (for all x € A, a,b € V)

t(x)(a v b) —a-y (¢(z)b) +t(z)(b-v a) — by (¢(x)a) =0, (3.12)
((z)a) v b—1(z)(a-vb)+ ((z)b) va—lx)(b-yva)=0, (3.13)



1158 F. Harrathi, S. Mabrouk, O. Ncib, S. Silvestrov

((x)a) v b—a-v (I(z)b) + (v(x)a) v b—(x)(a-yv b) =0, (3.14)
(t(z)a) v b—a-yv ((x)b) +t(z)(a-yv b) —a-v (t(x)b) = 0. (3.15)
Proposition 3.3. Let (A,-) and (V,-v) be two alternative algebras and l,v: A — End(V)
be two linear maps. Then (V, -y, t) is an A-bimodule alternative algebra if and only if the

direct sum A @V of vector spaces is an alternative algebra (the semi-direct sum) with the
product on A @V defined for all x,y € A, a,beV by

(x+a)*x(y+b) =z -y+(z)b+t(y)a+a-vb. (3.16)

We denote this algebra by A %V or simply A x V. Further, if (A,-) is an alternative
algebra, then it is easy to see that (A,-, L., R.) is an A-bimodule alternative algebra, where
L. and R. are the left and right multiplication operators corresponding to the multiplication

Proof. For any x,y,z € A,a,b,ceV

asaav (T +a,y+b,z+c)+asaev(y+bx+a,z+c)
=((z+a)x(y+b)*x(z+c)—(@x+a)«(y+b)*(z+¢c)+ ((y+b) * (x+a))*(z+c)

— W+ ((z+a)x(2+0)
=(@-y+Ux)b+ryatavb)(z4+c)—(z+a)(y-z+y)c+e(z)b+bvc)

+ - zt+lyate@)b+bva)«(z+c)—(y+b)*(x-z+{z)ct+r(z)ata-yc)
(- y) 21z e+ () (@ +ey)at ary ) + (@) +ely)atary b) -y o

—z-(y-2) =) (W(y)e+e(2)b+byve)—t(y-2)a—a-v ((y)e+e(z)b+b-ve)

F(ya) 2+ Uy 2ot o) (p)at v@b+bey o) + (()a+ @b +by a) ve

—y-(x-2) = y)((z)c+e(z)a+a-yc)—t(@-2)b—b-y ([(z)c+t(2)a+a-yc).
Hence, asagy(z+a,y+b,z+c¢) +asaev(y+b,x+a,z+c) =0 if and only if (3.2), (3.12)
and (3.14) hold.

Analogously, asaqyv(z+c,z+a,y+b) +asagy(z+c,y+b,x+a) =0 if and only if (3.3),
(3.13) and (3.15) hold. O

Definition 3.5 ([3]). A post-alternative algebra (4, <, >, -) is a vector space A equipped
with bilinear operations <, >, : A® A — A obeying the following equations for x =< + >
+-and all z,y,z € A,

(@-y)z—z-(y-2)+ @y x)-z2—y-(v-2)=0, (3.17)
(z-z) y—z-(@-y)+(zy)-z—2(y 2)=0, (3.18)
(x-y)<z—z-(y<2)+@y-z)<z—y- - (x<2)=0, (3.19)
(x=y)-z—ax>=(y-2)+(@>=2)-y—xz>(2-y) =0, (3.20)
(y=z)-z—z-(y=2)+(x<y)-z—y>=(x-2)=0, (3.21)
(z=<z)y—z-(@>y)+(z-y) <z—z-(y<z)=0, (3.22)
(@-y)<z—z-(y<2)+y<z)<z-y=<(xxz)=0, (3.23)
(-y)Rz—z=(y=<2)+E*xz)=y—z>(z>y) =0, (3.24)
(x*xy)=z—xz>=(y=2)+(yxz)=2z—y> (x>=2)=0, (3.25)
(z<zx)<y—z<(zxy)+(z<y)<z—2<(yxx)=0. (3.26)

Remark 3.2. Let (4, <, >, ") be a post-alternative algebra. If the operation - is trivial,
then it is a pre-alternative algebra.

Let (A, <,>,-) be a post-alternative algebra, it is obvious that (A, -) is an alternative
algebra. On the other hand, it is straightforward to get the following conclusion:
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Theorem 3.1. If (A, <, >, ) is a post-alternative algebra, then with a new bilinear operation
*: Ax A— A on A defined for all x,y € A by

rxy=r<yt+r=y+ax-y, (3.27)
(A, %) becomes an alternative algebra. It is called the associated alternative algebra of
(A, =,=,).
Proof. In fact, for any x,y,z € A, we have
asa(z,y,z) +asa(y,z,z) = (x*xy)*z—xx(yxz2)+ (yxxz)*xz2 —y* (x % 2)
=(xxy)<z+(x*rxy)=z+(xxy) - z2—z<(yxz)—x > (y*2)—x-(y*2)
+y*z)<z4+(yxx)=z+(y*xz) - z2—y<(z*xz)—y>=(xxz)—y-(r*2)
=@=<y)<z+@-y)<z+(@y) <z+t(@*xy)-z+(@<y)-2+@>-y) 2
+@y)z—z<(yxz)—x=y=<z)—z=y=z2)—xz>(y-2)—z-(y<2)
—z-(y=z)—z-(y-2)+y<z)<z+@y-z)<z+{y-z)<z+(yxx) > =z
+y=2)z+(y=a) 2ty a)z-y<(z*xz)—y=(z=<2) -y (z>2)
Y (@A) —y @<=y (=) -y (@ 2) =0,

and then replacing (z, y, z) in this computation by (z, z,y) yields asa(z, z,y)+asa(z,y,z) =
0, which completes the proof according to Definition 3.1 and Remark 3.1. O

The following terminology is motivated by the notion of A-weighted O-operator as a
generalization of (the operator form of) the classical Yang-Baxter equation in [2,19].

Definition 3.6. Let (A,-) be an alternative algebra and (V,-y,[,t) be an A-bimodule
alternative algebra. A linear map T : V — A is called a A-weighted O-operator associated
to (V, v, ) if T satisfies, for all a,b € V,

T(a)-T(b) =T((T(a))b+ (T (b))a+ Aa -y b). (3.28)
When (V,-y,l,t) = (A,-, L., R.), the condition (3.28) becomes
R(x)-R(y) = R(R(z) -y +x- R(y) + Az - y). (3.29)

The property (3.29) implies that R : A — A is a Al-weighted Rota-Baxter operator on the
alternative algebra (4, ).

Theorem 3.2. Let (A,-) be an alternative algebra and (V,-y,l,t) be an A-bimodule
alternative algebra. Let T : V — A be a A-weighted O-operator associated to (V, -y, 1, t).
Define three new bilinear operations <,>,0:V &V =V on V as follows:

a=b=1T(a))b, a<b=t(T(b))a, aob=Aa-yb. (3.30)

Then (V, <, >, 0) becomes a post-alternative algebra and T is a homomorphism of alternative
algebras.

Proof. Since A is an alternative algebra, (3.17) and (3.18) obviously hold. Furthermore,
for any a,b,c € V, we have

(aob)<c—ao(b<c)+ (boa)<c—bo(a<rc)
=(Aa-yb) <c—ao(t(T(c))b)+ (Ab-va)<c—bo(x(T(c))a)
=A(®(T(0)(a v b) —a-y ((T(c)b) + (T (c)(b-v a) = b-v (x(T(c))a)) = 0.
So, (3.19) holds. Moreover, (3.20) holds. Indeed,
(a=b)oc—a>=(boc)+(a>c)ob—a> (cob)
=(I(T'(a))b)oc—a> (Ab-vc)+ ((T(a))c)ob—a > (Ac-v b)
=A((T'(a)b) -v ¢ = (T (a))(b-v c) + ((T(a))c) v b — UT(a))(c v b)) =
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To prove identity (3.21), we compute as follows
(b=a)oc—ao(b>c)+(a<b)oc—b> (aoc)
=((T(b))a) oc—ao ((T(b))c) + (¢(T(b))a)oc—b > (Aa-y c)
=A(UT(b))a) -v ¢ = a v ((T(b))e) + (v(T(b))a) v ¢ = (T (b))(a v c)) = 0.
The other identities can be shown similarly. O

Corollary 3.1. Let (A,-) be an alternative algebra and R : A — A be a \-weighted Rota-
Baazter operator for A. Then (A, <,>,0) is a post-alternative algebra with the operations

r<y=z-Ry), z=y=Rx)-y, xoy=Ar-y.

4. Weighted O-operators and post-Malcev algebras

We start this section by introducing the notion of post-Malcev algebra together with
some of its basic properties. We will also briefly discuss the post-Malcev algebra structure
underneath the A-weighted O-operators. We then show that there is a close relationship
between post-Malcev algebras and post-alternative algebras in parallel to the relationship
between pre-Malcev and pre-alternative algebras.

4.1. A-module Malcev algebras and weighted O-operators

Now, we extend the concept of a module to that of an A-module algebra by replacing the
K-module V by a Malcev algebra. Next, we introduce A\-weighted O-operators on Malcev
algebras and study some basic properties.

Definition 4.1. Let (A,[-,]) and (V,[-,-]y) be two Malcev algebras. Let p : A —
End(V) be a linear map such that (V) p) is a representation of (A4, [-,-]) and the following
compatibility conditions hold for all z,y, € A, a,b,c € V :

p([z,yD)]a, blv = p(z)[p(y)a, bly — [p(y)p(x)a, blv — [p(z)p(y)b, alv + p(y)[p(x)b, a]v,

(4.1)
[p(z)a, p(y)blv = [p([x, y])a,blv — p(x)[p(y)a, blv + p(y)p(z)[a, bly + [p(y)p(2)b, a]v, w2
[p(x)a, [b,clv]v = [[p(2)b, alv, clv — p(2)[[b, alv, clv — [p(z)[a, clv, blv — [[p()c, blv, CZ]ZLV?;)

Then (V, [, ]y, p) is called an A-module Malcev algebra.

In the sequel, an A-module Malcev algebra is denoted by (V;[-, ]y, p). It is straightfor-
ward to get the following:

Proposition 4.1. Let (A,[-,-]) and (V,[-,-]y) be two Malcev algebras and (V;|[-,]v,p) be
an A-module Malcev algebra. Then (A® V,[-,-],) carries a new Malcev algebra structure
with bracket

[z +a,y+ b, =[x,y + p(z)b— p(y)a+[a,bly, VYr,yc A, abelV. (4.4)
This is called the semi-direct product, often denoted by A x,V or simply Ax V.
Proof. For z,y,z,t € A and a,b,c,d €V,
[z +a, 2+ clp, [y + bt + dlp]p, = [[x, 2], [y, t] + p([z, 2])p(y)d — p([, 2]) p(t)b
+ o[z, 2D1b, dlv = p(ly, t])p(z)e + p(ly, t]) p(2)a — p(ly, t])[a, cv + [p(z)c, p(y)d]y
— [p(@)e, p(t)bly + [p(z)c, [b, dlv]v — [p(2)a, p(y)dlv + [p(z)a, p(t)blv — [p(2)a, [b, d]v]v
+ [la, v, p(¥)d]v — [la, v, p()b]v + [[a, c]v, [b, d]v]v,
[l + 0y + Vs 2 + st + dlp = ([T, 2] + p([2 ), 2D — p(&)p([z, y])e
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+ p(t)p(2)p(z)b — p(t)p(2)p(y)a + p(t)p(2)[a, blv — p(t)[p(2)b, cJv + p(t)[p(y)a, c]v
= p®)[a, 0], clv + [p([z,y])e, dlv — [p(2)p(2)b, d]v + [p(2)p(y)a, dlv — [p(z)[a,b]v, d]v
+ [[p(@)b, v, dlv — [[p(y)a, v, dv + [[[a,b]v. c]v, dlv,
[[[y +b,z4cp, t +dlp,x +al, = [[[y, 21, t], 2] + p([[y, 2], t])a — p(x)p([y, 2])d
+ p(@)p(t)p(y)c — p(x)p(t)p(2)b + p(z)p(t)[b, clv — p(@)[p(y)e, dlv + p(x)[p(2)b, d]v
= p(@)[[b. v, dlv + [p([y, 2])d, alv — [p(t)p(y)c, alv + [p(t)p(2)b, alv — [p(t)[b; ]y, a]v
+ [lo(w)e. dlv, alv = [[p(2)b, dlv, alv + [[[b, c]v, d]v, alv,
[[z+ct+dlp,z+alp,y+ b, = [[[2, 1] 2], y] + p([[2, 8], 2])b — p(y)p([2, t])a
+ p(y)p(x)p(2)d — p(y)p(x)p(t)c + p(y)p()[c, dlv — p(y)[p(2)d, alv + p(y)[p(t)c, alv
= pW)lle.dv, alv + [p([z,t])a, blv — [p(2)p(2)d, by + [p(2)p(t)c, bl — [p(z)]e, d]v, bl
+ [[p(2)d, alv, by = [[p(t)c, alv, blv + [[[e, d]v, alv, b]v,

([t +d,z + alp,y +blp, 2+ dlp = [[[t 2], 9], 2] + p([[t, 2], w])e — p(2)p([¢; 2])b
+0(2)p(W)p(t)a — p(2)p(y)p(x)d + p(2)p(y)ld; alv — p(2)[p(t)a, blv + p(2)[p(z)d, blv
= p(2)[ld, alv, blv + [p([t, z])b, v (O)a, v + [p(y)p(z)d, clv = [p(y)ld; alv, v

+[lp(H)a, by, v — [[p(x)d, ]y, ] + [lld, alv, blv, ]y

Then A @V is a Malcev algebra if and only if (V, p) is a representation on A satisfying
(4.1)-(4.3). 0

Remark 4.1. More generally, if we define a A-semi-direct product denoted by A x* V as
follow

[+ a,y+ b];‘ =lz,y] + p(x)b — p(y)a + Ma,bly, Vr,ye A, abeV (4.5)
we obtain the same characterization given in the above Proposition.

Example 4.1. It is known that (A, ad) is a representation of A called the adjoint repre-
sentation. Then (A, [-, ], ad) is an A-module Malcev algebra.

Proposition 4.2. Let (A,-) be an alternative algebra. Then the triplet (V;[-, ]y, [ —t)
defines an A-module Malcev admissible algebra of (A, [,"]).

Proof. By Proposition 3.3, A x;, V is an alternative algebra. For its associated Malcev

~~

algebra (A @V, [-,-]), we have

—N——

[z +a,y+b]=(x+a)x(y+b) = (y+b)*(z+a)

=z-y+lz)b+r(y)ata-vb—y-z—Il(y)a—r@x)b—>va
= [z,y] + (I=0)(2)b = (L= v)(y)a + [a, b]y.

According to (4.4), we deduce that (V[ ]y, —t) is an A-module Malcev admissible
algebra of (A, []). O

Definition 4.2. Let (A, [, ]) be a Malcev algebra and (V;[-, -]y, p) be an A-module Malcev
algebra. A linear map T : V — A is said to be a A-weighted O-operator associated to
(V5[ v, p) if for all a,b € V,

[T(a), T(b)] = T(p(T(a))b = p(T'(b))a + Ala, blv). (4.6)

Obviously, a A-weighted O-operator associated to (A, [, -], ad) is just a A-weighted Rota-
Baxter operator on A. A A-weighted O-operator can be viewed as the relative version of a
Rota-Baxter operator in the sense that the domain and range of an O-operator might be
different.
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Example 4.2. (i) A Rota-Baxter operator on A is simply a 0-weighted O-operator.
(ii) The identity map id : A — A is a (—1)-weighted O-operator.
(iii) If f : A — Ais a Malcev algebra homomorphism and f? = f (idempotent condition),
then f is a (—1)-weighted O-operator.
(iv) If T'is a A-weighted O-operator, then for any v € K, the map vT is a (v\)-weighted
O-operator.
(v) If T is a A-weighted O-operator, then —\id — T" is a A-weighted O-operator.

In the following, we characterize A-weighted O-operators in terms of their graph.

Proposition 4.3. Let (V; [, ]v,p) be an A-module Malcev algebra. Then a linear map
T:V — A is a \-weighted O-operator associated to (V, |-, v, p) if and only if the graph

Gr(T) ={T(a) +a|l a eV}
of the map T is a subalgebra of the \-semi-direct product A x* V.
Proof. Let T : V — A be a linear map. For all a,b € V', we have
[T(a) +a, T(b) + bl =[T(a), T(b)] + p(T(a))b — p(T(b))a + Aa, by,

which implies that the graph Gr(7T') = {T'(a) + a| a € V'} is a subalgebra of the Malcev
algebra A x* V if and only if T satisfies

[T(a), T(b)] = T (p(T(a))b — p(T'(b))a+ Ala, blv),
which means that T is a A-weighted O-operator. O

As a consequence of the above proposition, we get the following.

Corollary 4.1. Let T : V — A be a A-weighted O-operator. Since Gr(T) is isomorphism
to V' as a vector space, we get that V inherits a new Malcev algebra structure with the
bracket

[a,b]r = p(T'(a))b— p(T(b))a + Aa,bly, fora,beV.

In other words, (V,[-,-]r) is a Malcev algebra, denoted by Vi (called the induced Malcev
algebra). Moreover, T : Vp — A is a homomorphism of Malcev algebras.

Let T,T": (A,],"]) = (V,[,-]v) be two A\-weighted O-operators. A homomorphism
from T to T" consists of Malcev algebra homomorphisms ¢ : A — A and ¢ : V — V such
that

poT = T oq, (4.7)
P(p(x)a) = p(o(x))(P(a)), VeeAacV. (4.8)

In particular, if both ¢ and v are invertible, (¢,) is called an isomorphism from 7" to
T.

Proposition 4.4. Let (¢,1) be a homomorphism of A-weighted O-operators from T to
T'. Then ¢ : V. — V is a homomorphism of induced Malcev algebras from (V,[-,-|r) to

(Vo[ lrr)-
Proof. For any a,b € V, we have
¥(la, b7 >=w( (T'(a)b = p(T'(b))a + Ala,b]v)
p(¢(T'(a)))((b)) — p(¢(T'(0)))(¥(a)) + Al (a), ¥ (b)]v
= p(T"(¥(a))) (¥ (b)) — p(T"(¥(b))) (¥ (a)) + Al (a), ¥ (0)]v = [¥(a), Y (b)]7
[

This shows that ¢ : (V,[-,-]r) — (V, [, ]7v) is a homomorphism of Malcev algebras. O
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In the sequel, we characterize A\-weighted O-operators associated to (V; [, -]y, p) in terms
of the Nijenhuis operators. Recall that a Nijenhuis operator on a Malcev algebra (A, [-,])
is a linear map N : A — A satisfying, for all x,y € A,

[N (2), N(y)] = N(IN(2),y] = [N(y),z] = N([z,y])).

Proposition 4.5. Let (V; [, ]y, p) be an A-module Malcev algebra. Then a linear map
T:V — A is a \-weighted O-operator associated to (V;[-, v, p) if and only if

Ny = [Aéd ‘(ﬂ ABV s ABV

is a Nijenhuis operator on the semi-direct product Malcev algebra A x V.
Proof. For all x,y € A, a,b € V, on the one hand, we have
[Nz(z +a), Ne(y + b)], = e — T(a), Ay — (b)),
= Nz,y] = Az, T(b)] = A[T(a), y] + [T(a), T(D)].
On the other hand, since Nr_% = N, we have
Nr([Nr(z +a),y +b], — [Nr(y + b), 2 + a], = Nr([z + a,y +3],))
=Ny ([Ax — T(a),y + b], — [\y = T(b),z + al, — No([z,y] + p(x)b — p(y)a + [a, b]v))
=N[a,y] = Az, T(b)] = MT(a),y] + T(p(T(a))b — p(T(b))a + Ala, b]v).

Therefore, Nt is a Nijenhuis operator on the semi-direct product Malcev algebra A x V if
and only if (4.6) is satisfied. O

Corollary 4.2. A linear map T : V — A is a A-weighted O-operator associated to
(V5[ -]v, p) if and only if the operator

Np = Fg _OT} LAV s AV

is a Nijenhuis operator on the A-semi-direct product Malcev algebra (A @V, |-, ];)\)

4.2. Definition and constructions of post-Malcev algebras

In this section, we introduce the notion of post-Malcev algebras. We show that post-
Malcev algebras arise naturally from a A-weighted O-operators. Therefore, post-Malcev
algebras can be viewed as the underlying algebraic structures of A-weighted O-operators
on Malcev algebras. Finally, we study some properties of post-Malcev algebras.

Definition 4.3. A post-Malcev algebra (A4, [, ],>) is a Malcev algebra (4, [,]) to-
gether with a bilinear map > : A ® A — A such that for all z,y,z € A, and {z,y} =
>y =yt

{z, 2z} [y, tl=x> [z yt]— [z (x> y)t]—[z> (z>t),y] + 2> [z > t,y], (4.9)
[z>z,y>t] = [{z,y} > 2t —x>[y>2,t] +y> (x> [2,8]) + [y > (x> 1), 2], (4.10)
x>z, [y,t] = [z >y, 2], 1] — 2> [y, 2], t] = [ > [2,8], 9] — [[x > 1,9], 2], (4.11)
{z,y},z}pt=2>(y>(z>t) —z> (2> (y>t) —y> ({z, 2} >t) —{y, 2} > (x(4>1t2))
Example 4.3. '

(1) A pre-Malcev algebra is a post-Malcev algebra with an abelian Malcev algebra
(A, [-,-] =0,1>). (See [16,26] for more details.)

(2) Post-Malcev algebras generalize post-Lie algebras.

(3) If (A4, [,]) is a Malcev algebra, then (A4, [-,-],>) is a post-Malcev algebra, where
x>y =ly,z| for all z,y € A.



1164 F. Harrathi, S. Mabrouk, O. Ncib, S. Silvestrov

Let (A, [, ],>>) and (4',[-,-],>’) be two post-Malcev algebras. A homomorphism of
post-Malcev algebras is a linear map f : A — A’ such that f([z,y]) = [f(x), f(y)]’ and

flaey) = f(z)>" f(y).
Proposition 4.6. Let (A,[,-],r>) be a post-Malcev algebra. Then the bracket
{z,y}=2>y—y>a+[zy (4.13)

defines a Malcev algebra structure on A. We denote this algebra by A€ and we call it the
sub-adjacent Malcev algebra of A.

Proof. The skew symmetry is obvious. For all z,y, z,t € A, we have

[ 2h {11 = {22} B (o8} — {2} & {2} + ({2 21, {9,

{2} B (1) — {32} (5 y) + {2} B ] — {98} B (2 2)
+{y,t}> (z>a)—{y,t}> [z, 2]+ x> z,y>t] — [z > 2,t >y
+z>z [yt - [z>a,y>tl+[z>at>y] — [z, [y, t]]
+ [z, 2],y > 8] = [[z, 2], t &> y] + [[=, 2], [y, 1],

{Hzyh bt} = Hayh b ot =t {9}, 2} + [{{z, 0}, 230 1]

={{z,y},z}t—t> {z,y}>2)+t> (2> (x>y)) —t> (2> (y> x))
+it> (20 [x,y]) —t>[z>y, 2] +t> [y> x, 2] —t > [[2,9], 2
+ {z,yt> 2t — 2> (x> y), |+ [ > (y> 2),t] — [2 > [2,9], ]
+ [z >y, 2t = [ly > 2, 2], t] + [[[z, 9], 2], 1],

{Hy, 25 th 2} =y, 25t o —w > {y, 21 8} + [{y, 2}, t), 2]

={{y.zht}pr—oz> {y,z}>t)+> (> (y>2) —z> (> (2> y))
+ao> (t>(y,2]) —x>[y> 2 t]+ x> [z>y,t] — x> [y, 2], 1]
+{y, 2z} tx] — [t (y> 2), 2]+ [t > (2> ), 2] — [t [y, 2], 2]
+ [y 2t 2] = [[z >y, t], 2] + [[ly, 2], 1], ],

{{{z.,th 2ty = {{z that oy —y > {2t} 2} + [{{z t}, 2}, 4]

={{zsthzloy—y>{ztlor)+y> (x> (z>t) —y> (x> (> 2))
+y> (x> [zt]) —y> 2>tz +y> [t> 2,2 —y > [[2,t], 2]
+{zttezyl -z >ty + 2> (> 2),y] — [z > [21],y]
+llz>t 2]yl = ([t > 2,2, 4] + [[[2, 1], 2], ],

(o) vz} = (o) 0} & 2 25 ({60} 0} + (L) o) )

={{t,zhy}>z—z> {t,z}>y)+2> (y> (t>z)) —2> (y> (z> 1))
+z> (y>[tz]) —z> t>x,yl+ 20> [z >ty — 2> [[t, 2],y
+[{t,z} >y, 2] —[y> (t>z), 2]+ [y> (x> t), 2] — [y > [t, 2], 2]
+ ([t >,y 2] = ([ > ¢,y), 2] + [[[t 2], ], 2].

By the identity of Malcev algebra and (4.9)-(4.12), we have
{{z. 2b Ay, t}) —{{{=,u}, 2 0} —{{{y, 2}, t}, o} —{{{z, t}a}, g} = {{{t, 2}, 9}, 2} = 0. O

Remark 4.2. Let (A, [-, -], >) be a post-Malcev algebra. If > is commutative, z>y = y >,
then the two Malcev brackets [-, -] and {-, -} coincide.

Corollary 4.3. If (A, [,-],>) be a post-Malcev algebra, then (A, o) is an admissible Malcev
algebra, with the product o defined for all x,y € A by

1
zoy=z>y+ gyl (4.14)



Malcev Yang-Bazxter equation, weighted O-operators ... 1165

Proposition 4.7. Let (A, ],r>) be a post-Malcev algebra. Define Ly : A — A by
Ly(z)y = x>y for any x,y € A. Then (A;[-,-], Ls) is an A-module Malcev algebra of

(AC7 {‘7 })
Proof. By (4.12), L. is a representation of (A®, {-,-}). Indeed, for z,y, z,t € A,
Lo ({{z,y}, 21t = {{z, 9} 2h > 8
=z>(y>(z>t)—z> (x> (y>t) —y> {x, 2} > t) —{y, 2z} > (x> t)
= Ly (2) L (y) L (2)t — L (2) Lo (2) L (y)t — Lo (y) L ({2, 2})2
— Lo ({y, 2}) L ()t
To prove (4.1), according to (4.9) we compute
LD({xvz})[%t]
={z,z}> [yt =z>[z>yt]—[z> (x>y),t]—[z> (z2>1),y] + 2> [z >, Y]
= Ly (2)[Le (2)y, 1] = [L (2) L (2)y, t] — [Ls (2) Lis (2)8, y] + Lo (2) [Ls ()2, 9.
Similarly, by (4.10) and (4.11), we have
[Le(2)z, L (y)1]
=z>z,y>t|=[{z,y} >zt —ax>y> 2t +y> (x> [2,t]) + [y > (x> 1), 2]
= [Le ({7, y})2,t] — Lo (2)[Le(y) 2, t] + L (y) Les (%) [2, t] + (L (y) Lis ()2, 2],
(L ()2, [y, 1]

=lee 2yt =[e>y, 2]t x>y, 2, 1] — [z > [z, 4], 9] = [[2 > 1,9], 2]
= [[Lo(2)y, 2], 8] = Lo (2)[ly, 2], ] = [Le(2)[2, 8], y] = [[L (2

)t yl, 2]
Therefore (A; [, ], L) is an A-module Malcev algebra of (A, {-,-}). O
Proposition 4.8. If (A,[-,-],>) is a post-Malcev algebra, then (A,—[-,],») is also a
post-Malcev algebra, where for all x,y € A,
zey=x>y+[zvy (4.15)
Moreover, (A,[-,-],>>) and (A, —[-,-],») have the same sub-adjacent Malcev algebra AC.

Proof. We check only that (A, —[-, -], ») verifies the first post-Malcev identity. The other
identities can be verified similarly. In fact, for all z,y, z,t € A,

—{z, z} e [y, t]+zw 2oy t]—[z» (x> y)t—[z» (z»t),y+2z» x>ty

=z 2oyt = [z, 2} [yt 2> 2oyt + o> (2,91 + [z, [2 >y, 1]
+a [zl ] = [z (2> y),t] = 2> [z, 9], 8 = [z, 2 > 9], ] = [[2,[2, 9], 1]
— [z (z0),y] = [z > [z 0],y] = [[z, 2> 8], y] = ([, [2,8]], 4] + 2> [z > 1,y
+z [l y] + [z, [z > 4yl + [z, [[2, 2], y]] = 0. m

Theorem 4.1. If (A, [-,-],>) is a post-Malcev algebra, then (AXx A,-,-) is a Malcev algebra,
with the double bracket product -,- on A x A defined for all a,b,z,y € A by

(a,x),(byy) =(a>b—br>a+|a,b], a>y—b>x+[z,y]). (4.16)

Proof. Let x,y,z,t,a,b,c,d € A. Tt is obvious that (a,x), (b,y) = —(b,y), (a, ). On the
other hand,

(a,2), (¢, 2), (b,y), (d; 1) =

{{a,c},{b,d}}, (a>c)>(b>t)—(a>c)>(d>y)— (c>a)> (b>t)
+(c>a)> (d>y) +[a,d > (b>t) —[a,c > (d>y) +{a,c} > [y, 1]
—(bd)>(a>z)+ (b>d)>(c>z)+(d>b) > (a>z)— (d>b) > (c> )
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—[b,d| > (ar>2) + [b,d] > (c>x) —{b,d} > [z,2] + [a> 2z, b1 t]
—la>z,d>y]—[c>x,b>t]+[c>x,d>y] —[a> 2 [y, t] + [c> z, [y, t]]
+ [[z, 2], b t] = [[z, 2], d > y] = [[z, 2], [y, ],
(a,2), (b9, (e, ), (d, 1) =
{{{a,b},c},d}, ((a>b)>c)>t—((b>a)>c)>t—(c>(a>b)) >t
+(c>(bra)>t+la>bd>t—[b>a,c>t+ {[ab],c} >t
—d> ((axb)>z)+d> ((b>a)>z)—d> ([a,b]>2)+d> (c> (a>y))
—d>(e> (b z))+d> (e [z,y]) —d>[a>y, 2] +d> bz, 2] — d > [[2,9], 2]
+ [{a,b} >z, t] — [e> (a>y), t] + [c> (b> x),t] — [e> [z, y], ]
+lla>y, 2]t = [[br> 2, 2], t] + [[[z, 4], 2], 1],
(0,y), (¢, 2),(d, 1), (a,z) =
{{{b, ¢}, d},a}, (b>co)>d)>z—((cxb)>d)>r—(d>(b>c))>a
+(d>(c>b)>z+ b d>a—[c>bd >z+{[bc,d} >z
—ab>((be)>t)+a> ((c>b)>t)—a (b >t)+a> (d> (b 2))
—a>(d>(c>y)+a> (d>y,z2]) —a>[b> 2zt +a> [c>y, t] —a> [y, 2], 1]
+[{b,cl>t,z]—[d> (b 2), 2]+ [d> (e > y),x] — [d> [y, 2], 2]
+ bzt 2] = [[e>y, 1], 2] + [[ly, 2], ], 2],
(¢,2),(d, 1), (a, ), (b,y) =
{{{c,d},a}, b}, (c>d)>a)py—(d>e)pa)>y—(a> (c>d)) >
+(a>d>e)>y+c>dal>by—[d>cal>y+{[c,d,a}l>y
—b>((c>d)>z)+b>(d>e)px)—b> ([e,d >x)+b> (a> (c>t))
—b>(a>(d>2)+b> (a>[zt]) —b>[c>t,z] +b> [d> z,2] — b [[2,], 2]
+Hedi>zy]—[ar (c>t),yl+la> (d> 2),y] = [ar> [2,1], y]
+llertal y] = [[d> 2,2, 9] + [[[2, 8], 2], 9],
(A1), (a.2). (b.9). (c. 2) =
{{{d,a},b},c}, (d>a)>b)>z—((a>d)>b)>z—(b>(d>a)) >z
+ (> (a>d)>z+[d>a,b>z—[a>d b >z+{[da],b} >z
—c>(d>a)>y)+e> ((a>d)>y)—c>([dya]>y)+e> (b> (d>x))
—c> (b (at)+e> (b [ta]) —e> [d>x,y] + c> [a> t,y] — e [[t, z], Y]
+H{da} >y z]—ly>(d>a) 2]+ [y> (a>t), 2] - [y > [t, 2], 2]
+[ld>z,y), 2] = [la>t,y], 2] + [[[t, 2], 9], 2].
Hence, using (4.13) of Proposition 4.6 and Definition 4.3, we have
(a,z),(c,2), (b,y), (d,t) = (a, ), (b,y), (¢, 2), (d, 1)
—(b,9), (¢, 2), (d, 1), (a, ) — (¢, 2), (d, 1), (a, z), (b, y)
— (d,t), (a,x),(b,y), (c,z) = (0,0). O
The following results illustrate that a A-weighted O-operator induces a post-Malcev
algebra structure.

Theorem 4.2. Let (A, [, ]a) be a Malcev algebra and (V; |-,
algebra. Let T : V — A be a A\-weighted O-operator associated to (V; [, v, p).

Jv,p) an A-module Malcev
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(i) Define two new bilinear operations [-,-], > : V xV — V as follows, for all a,b €V,
[a,b] = Aa,bly, ar>b=p(T(a))b. (4.17)

Then (V,[-,-],>) is a post-Malcev algebra.
(ii) T is a Malcev algebra homomorphism from the sub-adjacent Malcev algebra (V,{-,-})
given in Proposition 4.6 to (A,[-,-]a).

Proof. (i) We use (4.1)-(4.3) of representation of Malcev algebras on K-algebra.
[

{a,c¢} > [b,d] —ar [c>b,d]+ [c> (a>b),d] + [a> (¢c>d),b] —c> [a>d,b]
—p

= (p(T(a))e = p(T(¢))a+ Aa, clv) > Alb, dlv — p(T(a))[p(T'(c))b, d]
+[p(T(c)p(T(a)b, d] + [p(T(a))p(T(c))d, b] — p(T(¢))[p(T(a))d, b]

ZA(P(T(P(T(G))C) T(p(T(c))a) + T(Aa, cJv))[b, dlv — p(T(a))[p(T(c))b, d]v
+ [p(T(c))p(T(a))b, dv + [p(T(a))p(T(¢))d, blv — p(T(c))[p(T (a))d, b]v )20,

l[a>c,b>d] — [{a,b}>c,d+a>[b>c,d|—b> (a>[c,d]) — [b> (a>d), (]

= [p(T(a))e, p(T(b))d] = A[(p(T ()b — p(T(b))a + Aa,blv) > ¢, dlv
+ p(T(a)[p(T(b))e,d] — p(T(0))p(T (a)) e, d] — [p(T (b)) p(T'(a))d, ]

= ([ (T(@))e, p(T(b))d]y — [p(T(p(T(a))b) = T(p(T(b))a) + T (Ala,blv))e, dlyv
+ p(T(a)[p(T(b))e, dlv — p(T(b))p(T(a))le, dlv — [p(T(b))p(T (a))d, C]V) =0,

la> ¢, [b,d]] —[[a>b,c],d] +ar>[[b,c],d] + [a > [c,d],b] + [[a>d,b], ]
= [p(T(a))c, [b,d]] = [[p(T(a))b, c], d] + p(T'(a))[[b, ], d]
+ [p(T(a))lc, d], b] + [[p(T(a))d, b], c]
= 2([P(T(a))0 b, d]v]v — [[p(T(a)b, clv, dlv + p(T(a))[[b, clv, d]v
[

+ [p(T(@))le, )y, By + [[p(T(a))d, By, ey ) = 0.
Using the condition (2.1) of Definition 2.1, we check
{Ha,b},cld—a> (b> (c>d)) +c>(a> (b>d)) +b> ({a, ¢} > d) + {b,c} > (a>d)
= p(T(P(T(P(T a))b))e) = T(p(T(p(T(b))a))c) — T(p(T(c))p(T(a))d)
(

(
T(p(T(c)p(T(b))a) + T(p(T(Aa, blv))e) = T(p(T(c))Aa, blv) + T(A[p(T(a))d, c]v)
T(Np(T(b))a, cv) + T(N[a, blv, c]v))d = p(T(a)) p(T (b)) p(T(c))d
+ p(T())p(T(a))p(T(b))d + p(T (b)) p(T(p(T (a))c) = T(p ( (¢)a) + T(Aa,clv))d

)
+p(T(p(T (b)) — T(p(T(c))b) + T(Alb, clv)) p(T'(a))d =
(ii) The Malcev bracket {-,-} is defined for all a,b € V' by
{a,b} =a>b—-0br>a+[a,b] = p(T(a))b— p(T(b))a+ Aa,b]y.
Then the sub-adjacent Malcev algebra of the above post-Malcev algebra (V) [-,-],r>) is
exactly the Malcev algebra (V,[-,-]r) given in Corollary 4.1 Then the result follows. [

Proposition 4.9. Let T,7" : (V,[-,-]v) = (4,],]) be two A-weighted O-operators with
respect to an A-module Malcev algebra (V5 [+, v, p). Let (V,{-,-},>) and (V,{-,-}/,>') be
the post-Malcev algebras given in Theorem 4.2 and (¢,v) be a homomorphism from T to T.
Then 1 is a homomorphism from the post-Malcev algebra (V,{-,-},>) to the post-Malcev
algebra (V,{-,-}',>").
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Proof. For all a,b € V, by (4.7),(4.8) and (4.17), we have

Y({a,b}) = ¢(Aa,blv) = Al (a), v (0)lv = {¥(a), $ (D)},
dla>b) = P(p(T(a))b) = p(¢(T(a))(¥(b)) = p(T"(1h(a))) (1 (b)) = ¥(a) > ¥(b),

which implies that ¢ is a homomorphism between the post-Malcev algebras in Theorem
4.2. O

Given a Malcev algebra, the following result gives a necessary and sufficient condition
to have a compatible post-Malcev algebra structure.

Proposition 4.10. Let (A,[-,-]) be a Malcev algebra. Then there exists a compatible
post-Malcev algebra structure on A if and only if there exists an A-module Malcev algebra
(V5[ -]v, p) and an invertible 1-weighted O-operator T : V — A.

Proof. Let (A,[-,],>) be a post-Malcev algebra and (A4, [-,-]) be the associated Malcev
algebra. Then the identity map id : A — A is an invertible 1-weighted O-operator on
(A, [-,-]) associated to (A, [, ], ad).

Conversely, suppose that there exists an invertible 1-weighted O-operator of (4, [-,-])
associated to an A-module Malcev algebra (V;[-, ]y, p) . Then, using Theorem 4.2, there
is a post-Malcev algebra structure on T'(V') = A given by

{o,y} = MT(T @), T U y)ly), 20y = T(p@)T(y)).
This is compatible post-Malcev algebra structure on (A, [-,-]). Indeed,
z>y—y>a+{z,y} =Tp)T " (y) — ply)T (x) + [T~ (), T (v)lv)
= [TT ' (2), T (y)] = [x,y). O

An obvious consequence of Theorem 4.2 is the following construction of a post-Malcev
algebra in terms of A-weighted Rota-Baxter operator on a Malcev algebra.

Corollary 4.4. Let (A,[-,-]) be a Malcev algebra and the linear map R : A — A is a
A-weighted Rota-Baxter operator. Then, there exists a post-Malcev structure on A given,
forall z,y € A, by

{z,y} = Alz,y], 2> y=I[R@)yl
If in addition, R is invertible, then there is a compatible post-Malcev algebra structure on
A given, for all z,y € A, by

{z,y} = RIR(2), R ()], x>y=R(z, R W)

Example 4.4. In this example, we calculate (—1)-weighted Rota-Baxter operators on
the Malcev algebra A and we give the corresponding post-Malcev algebras. Let A be the
simple Malcev algebra over the field of complex numbers C [11, Example 3]. In this case A
has a basis {e1, ea, e3, 4, €5, €6, e7} with the following table of multiplication:

[ ] e e es3 e4 es eg er

€1 0 262 —263 264 —265 266 —267

ey | —2eo 0 el ey 0 —2e; 0

€3 263 —e1 0 0 —266 0 264

€4 —264 —267 0 0 €1 263 0
€5 265 0 266 —€1 0 0 —262
(& —266 265 0 —263 0 0 €1

er 2er 0 —2ey 0 269 —eq 0
Now, define the linear map R : A — A by

1
R(er) = 56 + 2aes + 2fes5 + 2veg, R(ez) =0, R(esz) = ez — aer + des — 2[eg,
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R(eq) = eq4 — Ber — deq + peg, R(es) = R(eg) =0, R(er) = er — ver + 2Peay — ues.

Then R is a (—1)-weighted Rota-Baxter operator on A. Using Corollary 4.4, we can
construct a post-Malcev algebra on A given by

{}] e ) es e4 es €6 ey
€1 0 2)\62 —2)\63 2)\64 —2)\65 2)\66 —2)\67
es | —2Xey 0 ey 2 e7 0 —2)es 0
€3 2/\63 —>\81 0 0 —2)\66 0 2)\64
€q —2)\64 —2)\67 0 0 )\61 2)\63 0
€5 2)\65 0 2)\66 —)\61 0 0 —2)\62
€6 —2)\66 2)\65 0 —2)\63 0 0 )\61
er7 2)\e7 0 —2)ey 0 2)Xeq —ep 0
> €1 €2 €3 €4 es €6 er
4Bes5 — daen 2ae; — e3 eq4 + daer _ _ 2ve1 —e7
| e ez +dves +4Bes | —2Ber — dyes s | e daes —4Bex
e2 0 0 0 0 0 0 0
2e3 + 2de;5 —e1 — 2aes 48e3 — 2aey 2e4 + 2ae7
es 44 Beq 4Bes 2aes + 20eg s 2aes — 2eg 2aeg —28es — 286,
20ea — 2e4 2ues — 2er —2fe4 — 20e7 2e3 + 2des
e4 “oues —2Bes 2Be3 — dey oues e1 + 20es " ofes 28er + pe1
es 0 0 0 0 0 0 0
€6 0 0 0 0 0 0 0
2e7 — 4f8es _ 28e1 + 2ves per — 2vea —e1 — 2veg
er “oues 2vea —2e4 — 2pieg +4Ber 2eo + 2ves _4Bes 2ver + 2pes

The following result establishes a close relation between a post-alternative algebra and a
post-Malcev algebra.

Theorem 4.3. Let T : V — A be a M\-weighted O-operator of alternative algebra (A, -)
with respect to (V. -y, t) and (V,0,=<, =) be the associated post-alternative algebra given in
Theorem 3.2. Then T is a A\-weighted O-operator on the Malcev admissible algebra (A, [-,])
with respect to an A-module Malcev algebra (V[ -]y, [ — ).

Moreover, if (V,{-,-},t>) be a post-Malcev algebra associated to the Malcev admissible
algebra (A, [,-]) on (V;[, ]v,l—1). Then, the products ({-,-},t>) are related with (o, <, >)
as follow, for all a,b €V,

{a,b} =aob—boa, a>b=a>b—-b=<a. (4.18)

Proof. Using the condition of A-weighted O-operator in (3.28) and Proposition 4.2, for
a,be A,

[T(a), T(b)] = T(p(T(a))b — p(T(b))a + Ala, blv)
=T(a)-T(b)=T®) -T(a) —T((1—)(T(a))b— (—2)(T(b)a+Aa-yvb—b-ya)=0.
Then T is a A-weighted O-operator on the Malcev admissible algebra (A, |-, -]) with respect

to an A-module Malcev algebra (V; [, ]y, —t).
On the other hand, from (3.30) of Theorem 3.2 and (4.17) of Theorem 4.2 that
{a,b} = A[a,bly =Xa-yvb—Ab-ya=aob—boa,
a>b=(1-1)(T(a)b=1UT(a))b—t(T(a))b=a>b—b=<a. O

Corollary 4.5. Let (A,o0,<,>) be a post-alternative algebra given in Corollary 3.1,
(A, {-,-},>) be a post-Malcev algebra associated to the Malcev algebras (A, [-,-]) and let R
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be a A-weighted Rota-Baxter operator of (A,-). Then, the operations
{z,y} =2oy—yox, zry=2-y-y=<u, (4.19)
define a post-Malcev structure in A.

It is easy to see that (4.13) and (4.19) fit into the commutative diagram

Post-alternative Z3YHT=Y+TY ,ltornative
_— .
alg. alg. (4 20)
{z,y}=zoy—yox | z>Yy=x>y—y=<z THY—YXT

post-Malcev a>y—y>at(z,yl Malcev
%
alg. alg.

When the operation - of the post-alternative algebra and the bracket [-, -] of the post-Malcev
algebra are both trivial, we obtain the following commutative diagram.

Pre-alternative r=y+T-y Alternative
alg. alg.
T>Yy—y<x TxY—Y*T
Pre-Malcev r>y—ybr Malcev
alg. ’ alg.
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