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Abstract: Graph coloring problem (GCP) is getting more popular to solve the problem of coloring the adjacent regions in a map with 

minimum different number of colors. It is used to solve a variety of real-world problems like map coloring, timetabling and scheduling. 

Graph coloring is associated with two types of coloring as vertex and edge coloring. The goal of the both types of coloring is to color the 

whole graph without conflicts. Therefore, adjacent vertices or adjacent edges must be colored with different colors.  The number of the 

least possible colors to be used for GCP is called chromatic number. As the number of vertices or edges in a graph increases, the 

complexity of the problem also increases. Because of this, each algorithm can not find the chromatic number of the problems and may 

also be different in their executing times. Due to these constructions, GCP is known an NP-hard problem. Various heuristic and 

metaheuristic methods have been developed in order to solve the GCP. In this study, we described First Fit (FF), Largest Degree 

Ordering (LDO), Welsh and Powell (WP), Incidence Degree Ordering (IDO), Degree of Saturation (DSATUR) and Recursive Largest 

First (RLF) algorithms which have been proposed in the literature for the vertex coloring problem and these algorithms were tested on 

benchmark graphs provided by DIMACS. The performances of the algorithms were compared as their solution qualities and executing 

times. Experimental results show that while RLF and DSATUR algorithms are sufficient for the GCP, FF algorithm is generally 

deficient. WP algorithm finds out the best solution in the shortest time on Register Allocation, CAR, Mycielski, Stanford Miles, Book 

and Game graphs. On the other hand, RLF algorithm is quite better than the other algorithms on Leighton, Flat, Random (DSJC) and 

Stanford Queen graphs. 
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1. Introduction 

Graph theory is a problem represented with vertices (nodes) and 

edges (arcs) [1]. Otherwise, graph coloring problem (GCP) is a 

problem where adjacent vertices or edges in graph must be 

colored by using different colors [2]. GCP was proposed by 

Francis Gutrie as the four color problem. Four color problem has 

described by F. Gutrie to solve the problem of coloring the 

adjacent regions in a map using the minimum number of diffrent 

colors [3]. 

Graph coloring is associated with two types of coloring as vertex 

and edge coloring [2]. The goal of the both types of coloring is to 

color the whole graph without conflicts. Therefore, adjacent 

vertices or edges must be colored with different colors. If there is 

at least one link (edge) between two nodes, it is called adjacent 

vertices. If the Fig. 1 examines, it can be seen that there is no 

edge between  V2 and V4  vertices. Therefore, these vertices are 

not adjacent vertices. However, the other vertices in the graph are 

adjacent because there is at least one edge between each other. In 

the context of this study we described vertex coloring problem in 

graphs. If an undirected = (𝑉, 𝐸 ) graph is examining; 𝑉 is the set 

of vertices and 𝐸 is the set of edges. The graph which is given in 

Fig. 1, the set of vertices are 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and the set of 

edges are 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}. In addition, R =

{1,2, … … … , 𝑘} is the set of colors which are used for coloring the 

vertices. In this case, if the whole graph colored without conflicts 

is performed by utilizing the minimum number of different 

colors, it’s called “k-coloring graph” [4].  This minimum number 

of different colors is known as chromatic number. Chromatic 

number is indicated by χ(G) [5,6]. 

 

 

Figure 1. A graph with four vertex  and five edge 

Graph coloring problem is mostly used for solving computer 

based applications and problems. Graph coloring algorithms are 

usable for solving the many engineering applications and real-

world problems [2].  Some of the these problems are Map 

Coloring [7], Timetabling and Scheduling problems [8,9], 

Register Allocation problems [10,11], Sudoku problem [12] and 

Frequency Assignment problems [13]. 

As the number of vertices or edges in a graph increases, the 

complexity of the problem also increases. Because of this, each 

algorithm can not find the chromatic number of the problems and 

may also be different in their executing times. Due to these 

conditions, GCP is known an NP-hard problem [14].  Hence, for 

getting a better solution for GCP many hueristic and meta-

huestistic algorithms are developed. Huerictic algorithms 

generally can be used for a problem with fewer numbers of 
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vertices. On the other hand, for the complex graphs meta-

hueristic algorithms can find better solutions [15].   

Tabu Search (TS) Algorithm [16], Simulated Annealing (SA) 

Algorithm [17], Genetic Algorithm (GA) [7], Ant Colony (ACO) 

Algorithm [18], Cuckoo (COA) Algorithm [15] are some of the 

meta heueristic algorithms used for graph coloring problem. 

When the vertices in a graph 𝐺 are colored by means of the 

greedy algorithms, the coloring issue is performed with selecting 

and coloring methods of algorithms. These algorithms are called 

greedy algorithms because of the algorithms choice the best 

validy selection for every operation step. The greedy algorithms 

generally provide effective and sufficient results for vertex 

coloring [15]. In this study, we described First Fit (FF) [19], 

Largest Degree Ordering (LDO) [19], Welsh and Powell (WP) 

[5], Incidence Degree Ordering (IDO) [19], Recursive Largest 

First (RLF) [20] and Degree of Saturation (DSATUR) [21] 

algorithms which have been proposed in the literature for the 

vertex coloring problem and these algorithms were tested on 

benchmark graphs provided by DIMACS [22]. The performances 

of the algorithms were compared with each other in terms of their 

solution qualities and executing times. 

2. Vertex Coloring Problem 

If the vertices in a graph are colored with different colors without 

considering their adjacencies, this graph would be colored 

utilizing the number of the different colors which are equal to 

number of vertices. However, this is not a good solution for GCP. 

Because, the purpose of the GCP is to find the minimum number 

of the colors for adjacent vertices colored with different colors. 

As the number of vertices or edges in a graph increases, the 

complexity of the graph also increases. Because of this, coloring 

the entire graph is getting difficult by the least possible different 

colors. Therefore, we need some particular methods for coloring 

the graphs. Thanks to particular methods, the graphs can be 

colored with minimal different colors.  

Algorithms in the literature use the adjacency matrix for coloring 

the vertices of graphs. Adjacency matrix is generated based on 

the condition that whether any edge exists between vertices [1].  

For a 𝐺 graph, the set of vertices are shown in the set of  𝑉 =

{𝑣1, 𝑣2, … … … . , 𝑣𝑛}. The adjacency matrix of a graph is 

generated by the equation 1. 𝐴 is represents the adjacency matrix. 

 

𝐴 = {
1, if the exists an egde between  𝑉𝑖  𝑖𝑙𝑒 𝑉𝑗            (1)

0 otherwise

 

 

 

Another important constraint for the selection of the vertex to be 

colored is vertex degree.  A degree of a vertex in an undirected 

and unweight graph is equal to the total number of edges 

connected to the vertex. It’s shown with 𝑑𝑒𝑔(𝑣𝑖) [1]. The graph 

given in Fig. 2 has seven vertices and nine edges. 

 
Figure 2. A graph with seven vertices 

Table 1 shows the adjacency matrix for the graph presented in 

Fig. 2 and and Table 2 shows the degrees of vertices for this 

graph. 

Table 1. Adjacency matrix 

 A B C D E F G 

A 0 1 1 0 0 0 0 

B 1 0 1 0 0 0 1 

C 1 1 0 1 1 0 0 

D 0 0 1 0 0 1 0 

E 0 0 1 0 0 1 1 

F 0 0 0 1 1 0 0 

G 0 1 0 0 1 0 0 
 

 

Table 2. The degree of  vertices 

Vertex A B C D E F G 

𝐷𝑒𝑔(v) 2 3 4 2 3 2 2 
 

 

3. Vertex Coloring Algorithms In Graphs 

At this section of the study we describe the steps of the some 

algorithms which have been proposed in the literature for the 

vertex coloring problem. Also these algorithms will be tested on 

the graph in Fig. 2. Then the selecting order of the vertices and 

the color of each vertex are given. 

3.1. First Fit Algorithm (FF) 

For the given G graph, the set of the vertices is described as 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑛} and the set of the colors is described as 𝑅 =
{𝑟1, 𝑟2, … , 𝑟𝑘}. The steps of the algorithm: 

Step 1:  Create a color set. (initially the color set is empty).  

Step 2:  The first vertex in the set of V is selected as the starting 

vertex. The selected vertex is colored with first color and this 

color is added to color set. 

Step 3: Next vertex in the set of V is selected for coloring. 

Step 4: For selected vertex, find the adjacent vertices of it from 

the adjacency matrix.  A color which is in the color set, but not 

color of the adjacent vertices of selected vertex is given to the 

selected vertex. If the colors in the color set unsuitable for 

coloring the selected vertex, a new color is defined. The new 

color is added to the color set and appointed to the selected 

vertex. If the uncolored vertex exists, it is returned to the step 3. 

Table 3 shows the result for the graph shown in Fig. 2. Selected 

order of the vertices and their colors are given in Table 3. 

According to Table 3, the first colored vertex is 𝐴 and the color 

 𝑟1 is given this vertex.  The last colored vertex is 𝐺 and the color 

 𝑟3 is given this vertex. 

 
Table 3. The result of the colored graph using the FF algorithm 

 A B C D E F G 

Selected order 1 2 3 4 5 6 7 

Vertex color 𝑟1 𝑟2 𝑟3 𝑟1 𝑟1 𝑟2 𝑟3 
 

 

3.2. Welsh Powell Algorithm (WP) 

For the given graph 𝑮, the set of the vertices is described as 𝑽 =

{𝒗𝟏, 𝒗𝟐, … . . , 𝒗𝒏} and the set of the colors of the vertices is 

described as 𝑹 = {𝒓𝟏, 𝒓𝟐, … , 𝒓𝒌}. The steps of the WP algorithm: 

Step 1: The vertex degree of each vertex is calculated and the 

vertex degrees are added to the degree set 𝐷𝑒𝑔(𝑣𝑖), such that 𝑖 =

1,2, … , 𝑛. 

Step 2: The uncolored vertex that has the largest degree in the 

degree set 𝐷𝑒𝑔(𝑣𝑖) is selected for coloring. Initially, the first 

color in the color set is selected as the active color. 
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Step 3: The selected vertex is colored with active color. After 

that,  find the uncolored vertices from adjacency matrix which are 

not adjacent vertices of the colored vertex and these vertices are 

added to the  𝑉′ set ( 𝑉′ = {𝑣′
1, 𝑣′

2, … . , 𝑣′
𝑛} ).  

 The uncolored vertex that has the largest degree in the 
𝑉 is selected for coloring. This vertex is colored with 
active color. After that, the adjacent vertices of the this 
vertex deleted from 𝑉′. This step is repeated until all 
vertices colored in the set of 𝑉′. 

Step 4: If the uncolored vertex exists, next color in the color set 

is selected as active color and it is returned to the step 2. 

Otherwise the program is terminated, because all vertices in the 

graph are colored. 

Table 4 shows the result for the graph shown in Fig. 2. Selected 

order of the vertices and their colors are given in Table 4. 

Table 4. The result of the colored graph using the WP algorithm 

 A B C D E F G 

Selected order 7 4 1 6 5 2 3 

Vertex color 𝑟3 𝑟2 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1 
 

 

3.3. Largest Degree Ordering Algorithm (LDO) 

For the given graph 𝑮, the set of the vertices is described as 𝑽 =

{𝒗𝟏, 𝒗𝟐, … . . , 𝒗𝒏} and the set of the colors of the vertices is 

described as 𝑹 = {𝒓𝟏, 𝒓𝟐, … , 𝒓𝒌}. The steps of the LDO 

algorithm: 

Step 1: Create a color set (initially the color set is empty).  The 

vertex degree of each vertex is calculated and the vertex degrees 

are added to the degree set 𝐷𝑒𝑔(𝑣𝑖), such that 𝑖 = 1,2, … , 𝑛. 

Step 2: The uncolored vertex that has the largest degree in the 

degree set 𝐷𝑒𝑔(𝑣𝑖) is selected for coloring. Firstly, the selected 

vertex is tried to color with the colors in the color set. If the color 

set is empty or the colors in the color set are not appropriate (all 

colors int the color set used from the adjacent vertices) for color 

the vertex, a new color is defined. The new color is added to the 

color set and appointed to the selected vertex. 

Step 3: If the uncolored vertex exists, it is returned to the step 2. 

Otherwise the program is terminated. 

Table 5 shows the result for the graph shown in Fig. 2. Selected 

order of the vertices and their colors are given in Table 5. 
 

Table 5. The result of the colored graph using the IDO algorithm  

 A B C D E F G 

Selected order 4 2 1 5 3 6 7 

Vertex color 𝑟3 𝑟2 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1 
 

 

3.4. Incidence Degree Ordering Algorithm (IDO) 

For the given graph 𝐺, the set of the vertices is described as 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑛} and the set of the colors of the vertices is 

described as 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑘}. The steps of the IDO algorithm: 

Step 1:  The vertex degree of each vertex is calculated and the 

vertices degrees are added to the degree set 𝐷𝑒𝑔(𝑣𝑖), such that 

𝑖 = 1,2, … , 𝑛. Initially, there is just one color in the color set. 

Step 2: The uncolored vertex that has the largest degree in the 

degree set 𝐷𝑒𝑔(𝑣𝑖) is selected for coloring. The selected vertex is 

colored with the first color. 

Step 3: The number of the colored adjacent vertices is calculated 

for every uncolored vertices. After that, the uncolored vertex 

whose colored neighboring vertices are the maximum is selected. 

If more than one vertex provides this condition, the vertex which 

has the largest degree among them is selected. 

Step 4: Firstly, the selected vertex with the colors in the color set 

is tried to color. If the colors in the color set are not appropriate to 

color the vertex, a new color is defined. The new color is added 

to the color set and appointed to the selected vertex. 

Step 5:  If the uncolored vertex exists, it is returned to the step 3. 

Otherwise, the program is terminated. 

Table 6 shows the result for the graph shown in Fig. 2. Selected 

order of the vertices and their colors are given in Table 6. 

 
Table 6. The result of the colored graph using the IDO algorithm 

 A B C D E F G 

Selected order 4 3 1 6 2 7 5 

Vertex color 𝑟3 𝑟2 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1 
 

3.5. Degree of Saturation Algorithm (DSATUR) 

For the given graph 𝐺, the set of the vertices is described as 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑛} and the set of the colors of the vertices is 

described as 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑘}. The steps of the DSATUR 

algorithm: 

Step 1: The vertex degree of each vertex is calculated and the 

vertices degrees are added to the degree set 𝐷𝑒𝑔(𝑣𝑖), such that 

𝑖 = 1,2, … , 𝑛. 

Step 2: The uncolored vertex that has the largest degree in the 

degree set 𝐷𝑒𝑔(𝑣𝑖) is selected for coloring. The selected vertex is 

colored with first color. 

Step 3: Firstly, calculate the number adjacent vertices which are 

colored with different colors for every uncolored vertex. After 

that, the uncolored vertex whose number of adjacent vertices 

colored with different colors is the maximum is selected for 

coloring. If more than one vertex provide this condition, the 

vertex which has the largest degree among them is selected. 

Step 4: Firstly, the selected vertex is tried to color with the colors 

in the color set. If the colors in the color set are not appropriate to 

color the vertex, a new color is defined. The new color is added 

to the color set and appointed to the selected vertex. 

Step 5: If the uncolored vertex exists, it is returned to the step 3. 

Otherwise the program is terminated. 

For DSATUR algorithm; Table 7 shows the result for the graph 

shown in Fig. 2.  

 
Table 7. The result of the colored graph using the DSATUR algorithm 

 A B C D E F G 

Selected order 4 3 1 5 2 6 7 

Vertex color 𝑟3 𝑟2 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1 
 

 

3.6. Recursive Largest First Algorithm (RLF) 

RLF is used a recursive structure for coloring the vertices in 

graph. This recursive structure is the most important feature of 

the RLF algorithm [20]. According to this recursive structure, 

whole graph is colored with minimum different colors. For the 

given G graph, the set of the vertices is described as 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑛} and the set of the colors is described as 𝑅 =
{𝑟1, 𝑟2, … , 𝑟𝑘}. The steps of the RLF algorithm: 

Step 1: Vertex degree is calculated for each vertex and the 

degrees of vertices added to the set of 𝐷𝑒𝑔(𝑣𝑖). Initially, the first 
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color in the color set is selected as the active color. Select the 

uncolored vertex which has the largest degree from set of 

𝐷𝑒𝑔(𝑣𝑖) for coloring. 

Step 2: The selected vertex is colored with active color. Adjacent 

vertices of the selected vertex can not color with active color. But 

the uncolored vertices which are not adjacent vertices of the 

colored vertex can be colored with active color. So RLF uses a 

recursive structure for select the uncolored vertices to color with 

active color. During this process the below steps should be 

followed: 

 Adjacent vertices of the selected vertex vi are found 

from adjacency matrix. Adjacent vertices are added to 

the adjacent set U. ( 𝑈 = {𝑢1, 𝑢2, … … . , 𝑢𝑡} )  

 The vertices which are not adjacent vertices of the 

selected vertex vi are found from adjacency matrix. 

These vertices are added to the set of  𝑉′ . Calculate the 

number adjacent vertices which are in the set of U for 

every vertex in set of V′. After that, the uncolored 

vertex whose has maximum adjacent vertices (which 

are in the set of U ) in the set of  𝑉′ is selected for 

coloring. The selected vertex is colored with active 

color. 

 The colored vertex and the adjacent vertices of the 

colored vertex are deleted from 𝑉′ and added to the set 

of U. 

 If the set of V′ is not empty, it is returned to the step 2. 

Otherwise move to step 3. 

Step 3: If the uncolored vertex exists, next color in the color set 

is selected as active color. Otherwise the program is terminated.  

Step 4: Calculate the number adjacent vertices for every 

uncolored vertex. After that, the uncolored vertex whose has 

maximum adjacent vertices is selected for coloring process.  If 

more than one vertex provide this condition, the vertex which has 

the largest degree among them is selected. Then, it is returned to 

the step 2 

For RLF algorithm; Table 8 shows the result for the graph shown 

in Fig. 2. Selected order of the vertices and their colors are given 

in Table 8. 

Table 8. The result of the colored graph using the RLF algorithm 

 A B C D E F G 

Selected order 4 7 1 5 6 2 3 

Vertex color 𝑟2 𝑟3 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1 
 

4. Experiment Result 

FF, LDO, WP, IDO, DSATUR and RLF algorithms were tested 

on benchmark graphs provided by DIMACS [22]. The reason of 

preferring the DIMACS graph, it’s given a standard for 

performance comparison of the algorithms.  The performances of 

the algorithms were compared as their solution quality and 

executing times. The edge density (D) of the benchmark graphs 

which are used in this study are calculated from equation 2.  E 

represents the number of the edges and V represents the vertices 

number of the graph [23]. 

𝐷 =
2 ∗ 𝐸

V ∗ (V − 1)
                                                                               ( 2) 

In this study we used Mycielski, CAR, Stanford Graph Base 

(SGB), Register Allocation, Leighton, Flat, Random (DSJC) and 

Random geometric (DSJR and R250) DIMACS graphs. V 

represents the number of the vertices, E is the number of the 

edges, Den. represents density, Best/χ(G)  means chromatic 

number or the best known number, R represents the number of 

colors that algorithms are found, T is computation time in 

seconds. The algorithms are written in the programming language 

Matlab R2010a. For experiments we used a Laptop computer. It 

has Intel Core i5 2.20 GHz processor and 8 GB DDR3 RAM. 

Mycielski graphs are triangle free graphs. It’s mean that the edge 

connections in the graph must be free of triangle. For mycielski 

graph, if the vertices in the graph increases, the number of the 

colors for coloring the graph increases too [24]. Stanford 

GraphBase (SGB) graphs are created from Donald Knuth. SGB 

graph can be divided to books, miles, game and queen graphs 

[22]. For books graphs, a character in the book represents a 

vertex. So the books graphs are created for holds to relationship 

between characters. If the characters in the book have relationship 

to each other, an edge is generated between two vertex which 

characters run across in the book. These books are Charles 

Dicken's David Copperfield (david), Victor Hugo's Les 

Misêrables (jean), Lev Tolstoy's Anna Karenina (anna), Homer’s 

Iliad (homer) and Mark Twain's Huckleberry Finn (huck).  For 

miles graphs the vertices represents some of the United States 

cities and if there is a road between two cities which provides the 

conditions, there is an edge generated between them. For game 

graph, any vertex in the graph represents a college team. There is 

an edge generated between for every two teams when the teams 

played to each other during the season. Table 9 shows the results 

for algorithms which are used for this study. Except the FF 

algorithm all other algorithms find out the best/χ(G) results. In 

addition, FF algorithm finds out the best/χ(G) results for graphs 

which are used for this study except miles graphs and anna, 

David, homer graph. On the other hand, if the algorithms 

compared to each other about their computation times, WP 

algorithm is reached these conclusions in a quite short time.

 
Table 9. The results and computation times for Mycielski and SGB graphs 

Graph V E Den. Best/χ(G) 
RLF DSATUR WP LDO IDO FF 

R T R T R T R T R T R T 

myciel3 11 20 0,33 4 4 0,0004 4 0,0023 4 0,0001 4 0,0002 4 0,0009 4 0,0001 

myciel4 23 71 0,27 5 5 0,0009 5 0,0077 5 0,0002 5 0,0005 5 0,0028 5 0,0003 

myciel5 47 236 0,21 6 6 0,0024 6 0,0255 6 0,0003 6 0,0010 7 0,0085 6 0,0006 

myciel6 95 755 0,17 7 7 0,0075 7 0,0876 7 0,0004 7 0,0024 7 0,0309 7 0,0016 

myciel7 191 2360 0,13 8 8 0,0293 8 0,3254 8 0,0006 8 0,0068 8 0,1366 8 0,0054 

miles1000 128 3216 0,39 42 42 0,1065 42 1,2942 43 0,0016 43 0,0123 43 0,7013 44 0,0121 

miles1500 128 5198 0,63 73 73 0,3158 73 2,6877 73 0,0024 73 0,0219 73 1,6033 76 0,0220 

miles500 128 1170 0,14 20 20 0,0250 20 0,3249 20 0,0010 20 0,0055 20 0,1360 22 0,0049 

miles750 128 2113 0,26 31 31 0,0522 31 0,7112 32 0,0013 32 0,0083 31 0,3443 34 0,0081 

anna 138 493 0,05 11 11 0,0135 11 0,1231 11 0,0006 11 0,0037 11 0,0457 12 0,0026 

david 87 406 0,11 11 11 0,0076 11 0,1026 11 0,0005 11 0,0025 11 0,0346 12 0,0017 
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homer 561 1629 0,01 13 13 0,3404 13 0,5412 13 0,0024 13 0,0232 13 0,2460 15 0,0183 

huck 74 301 0,11 11 11 0,0062 11 0,0745 11 0,0005 11 0,0021 11 0,0244 11 0,0014 

jean 80 254 0,08 10 10 0,0060 10 0,0616 10 0,0004 10 0,0020 10 0,0198 10 0,0013 

games120 120 638 0,09 9 9 0,0180 9 0,1537 9 0,0006 9 0,0039 9 0,0577 9 0,0032 

R: Result of the algorithm, T: Computation time (in second) 
 

Queen graphs are 𝑛𝑥𝑛  dimensional chessboard graphs. If two 

queens on the chessboard are in the same row, column, or 

diagonal, there is an edge generated between them. So, if two 

queens placed in same row, column or diagonal, one queen can 

eat the other one. Because of this, there is an edge between them 

for they don’t eat each other. For queens graph if only the graph 

is colored with minimum number n, two queens can move on 

chessboard.  

Table 10 shows the results for queens graphs. Experimental 

results show that while RLF and DSATUR algorithms are 

sufficient for the queens graphs, but the other algorithms are 

generally deficient. RLF algorithm finds out just only the 

chromatic number of queen5_5 graph and also it finds out quite 

better results for the other queen graphs. DSATUR algorithm 

generally finds out good results, but it is very slow according to 

the RLF. 

Table 10. The results and computation times for Queen graphs 

Graph V E Den. Best/χ(G) 
RLF DSATUR WP LDO IDO FF 

R T R T R T R T R T R T 

queen5_5 25 160 0,51 5 5 0,0012 5 0,0332 7 0,0003 7 0,0006 7 0,0109 8 0,0005 

queen6_6 36 290 0,45 7 8 0,0028 9 0,0634 9 0,0003 9 0,0010 10 0,0218 11 0,0008 

queen7_7 49 476 0,40 7 9 0,0045 11 0,1090 12 0,0005 12 0,0016 12 0,0461 10 0,0013 

queen8_12 96 1368 0,30 12 13 0,0202 14 0,3851 15 0,0007 15 0,0045 15 0,1779 15 0,0041 

queen8_8 64 728 0,36 9 11 0,0081 12 0,1783 13 0,0005 13 0,0024 15 0,0923 13 0,0020 

queen9_9 81 1056 0,32 10 12 0,0154 13 0,2853 15 0,0007 15 0,0036 15 0,1312 16 0,0030 

queen10_10 100 2940 0,59 11 13 0,0215 14 0,4351 17 0,0009 17 0,0052 17 0,1876 16 0,0044 

queen11_11 121 3960 0,54 11 14 0,0345 15 0,6300 17 0,0009 17 0,0072 18 0,2964 17 0,0063 

queen12_12 144 5192 0,50 13 15 0,0550 16 0,9163 19 0,0010 19 0,0100 20 0,4604 20 0,0092 

queen13_13 169 6656 0,47 13 16 0,0800 17 1,3226 23 0,0013 23 0,0134 22 0,6869 21 0,0125 

queen14_14 196 8372 0,44 16 17 0,1227 19 1,8408 25 0,0015 25 0,0170 24 1,0488 23 0,0169 

R: Result of the algorithm, T: Computation time (in second) 
 

 

CAR graphs are created from inspiration of the mycielski graphs. 

After the some new vertices inserted graph, the graph size 

increases, but the density of the graph is unchanging [25]. The 

CAR graphs are more difficult than the mycielski graphs. Table 

11 shows the results for CAR graphs. According to the Table 11; 

RLF, DSATUR, WP and LDO algorithms reach the best/χ(G) 

results. Furthermore the IDO algorithm generally finds out the 

best/χ(G) results. But FF algorithm is generally deficient. If the 

algorithms compare to each other about their computation times, 

the best algorithm for CAR graphs is WP algorithm. Because WP 

algorithm reaches the best/χ(G) results shortest computation 

times. 
 

Table 11. The results and computation times for CAR graphs 

Graph V E Den. Best/χ(G) 
RLF DSATUR WP LDO IDO FF 

R T R T R T R T R T R T 

1_Fullins_4 93 593 0,14 5 5 0,0069 5 0,0869 5 0,0003 5 0,0021 6 0,0298 11 0,0016 

1_Fullins_5 282 3247 0,08 6 6 0,0612 6 0,5026 6 0,0007 6 0,0104 7 0,2167 14 0,0098 

1_Insertions_4 67 232 0,10 5 5 0,0058 5 0,0258 5 0,0002 5 0,0013 5 0,0090 5 0,0008 

1_Insertions_5 202 1227 0,06 6 6 0,0314 6 0,1527 6 0,0005 6 0,0055 6 0,0569 6 0,0038 

1_Insertions_6 607 6337 0,03 7 7 0,3575 7 1,2288 7 0,0023 7 0,0344 7 0,6011 7 0,0308 

2_Fullins_3 52 201 0,15 5 5 0,0027 5 0,0237 5 0,0002 5 0,0010 5 0,0076 10 0,0008 

2_Fullins_4 212 1621 0,07 6 6 0,0329 6 0,2116 6 0,0006 6 0,0060 6 0,0796 14 0,0052 

2_Fullins_5 852 12201 0,03 7 7 0,8307 7 3,2494 7 0,0044 7 0,0703 7 1,8256 18 0,0763 

2_Insertions_4 149 541 0,05 5 5 0,0188 5 0,0621 5 0,0004 5 0,0036 5 0,0230 5 0,0021 

2_Insertions_5 597 3936 0,02 6 6 0,3721 6 0,6322 6 0,0023 6 0,0276 6 0,2985 6 0,0211 

3_Fullins_3 80 346 0,11 6 6 0,0060 6 0,0380 6 0,0003 6 0,0017 6 0,0134 12 0,0012 

3_Fullins_4 405 3524 0,04 7 7 0,1476 7 0,5354 7 0,0012 7 0,0157 8 0,2370 17 0,0150 

3_Fullins_5 2030 33751 0,02 8 8 10,3646 8 18,3988 8 0,0254 8 0,3786 9 11,5821 22 0,4600 

3_Insertions_3 56 110 0,07 4 4 0,0033 4 0,0125 4 0,0002 4 0,0010 4 0,0047 4 0,0006 

3_Insertions_4 281 1046 0,03 5 5 0,0731 5 0,1288 5 0,0007 5 0,0073 5 0,0498 5 0,0048 

3_Insertions_5 1406 9695 0,01 6 6 3,6966 6 2,3609 6 0,0128 6 0,1101 7 1,2766 6 0,0996 

4_Fullins_3 114 541 0,08 7 7 0,0107 7 0,0610 7 0,0004 7 0,0026 7 0,0216 14 0,0020 

4_Fullins_4 690 6650 0,03 8 8 0,5299 8 1,2976 8 0,0031 8 0,0386 8 0,6677 20 0,0387 

4_Fullins_5 4146 77305 0,01 9 9 89,5661 9 85,9533 9 0,1131 9 1,6550 9 55,6602 26 2,0289 

4_Insertions_3 79 156 0,05 4 4 0,0065 4 0,0180 4 0,0002 4 0,0015 4 0,0068 4 0,0009 

4_Insertions_4 475 1795 0,02 5 5 0,2527 5 0,2467 5 0,0015 5 0,0188 5 0,1009 5 0,0103 

5_Fullins_3 154 792 0,07 8 8 0,0220 8 0,0922 8 0,0005 8 0,0036 8 0,0332 16 0,0029 

5_Fullins_4 1085 11395 0,02 9 9 1,8848 9 2,9627 9 0,0080 9 0,0874 9 1,6530 23 0,0923 

R: Result of the algorithm, T: Computation time (in second) 
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Random (DSJ) graphs which are created from David Johnson and 

R250_5 graph are difficult to solve benchmark graphs [15]. Flat 

graphs are created from Culberson. [26]. First parameter of the 

Flat graphs represents the number of the vertices and the second 

parameter represents the chromatic number.  

Table 12 shows the results for Random and Flat graphs. 

According to the Table 12, RLF and DSATUR algorithms 

generally find out the best/χ(G) results. For the R250_5 graph, 

DSATUR algorithm’s computation time is further than RLF’s. 

But DSATUR finds out quite better result than RLF for R250_5 

graph.  On the other hand, RLF finds out quite better results for 

the other graphs and RLF is faster than the other algorithms.  

fpsol2*, inithx*, zeroin* and mulsol* graphs are computer 

register allocation problem graphs which are generated from Gary 

Lewandowski [24]. These graphs are real-world problem’s 

graphs. The computer registers and the operations are defined as 

vertices. If a register and an operation have a relationship, there is 

an edge generated between them.  

Table 13 shows the results for computer register allocation 

graphs. All algorithms which are used for this study reach the 

χ(G) results for computer register allocation graphs. If the 

algorithms compare to each other about their computation times, 

the best algorithm for register allocation graphs is WP algorithm 

and also FF algorithm reaches the χ(G) results a quite short times. 

The slowest algorithm for these graphs is DSATUR algorithm. 

 
Table 12.The results and computation times for Random and Flat graphs  

Graf V E Den. 
Eniyi/ 

χ(G) 

RLF DSATUR WP LDO IDO FF 

R T R T R T R T R T R T 

DSJC125_1 125 736 0,09 5 6 0,0135 6 0,0846 7 0,0005 7 0,0032 7 0,0320 8 0,0024 

DSJC125_5 125 3891 0,50 17 21 0,0468 22 0,6111 23 0,0011 23 0,0079 25 0,2966 26 0,0074 

DSJC125_9 125 6961 0,89 44 49 0,1811 51 1,4215 53 0,0019 53 0,0162 54 0,7575 56 0,0154 

DSJC250_1 250 3218 0,10 8 10 0,0665 10 0,4791 11 0,0011 11 0,0142 12 0,2086 13 0,0097 

DSJC250_5 250 15668 0,50 28 35 0,4661 37 4,9399 41 0,0025 41 0,0371 40 3,0145 43 0,0394 

DSJR500_1 500 3555 0,03 12 12 0,2863 13 0,5829 13 0,0023 13 0,0237 13 0,2609 15 0,0199 

R250_5 250 14849 0,48 65 71 0,7803 68 4,6108 70 0,0034 70 0,0439 69 2,7790 79 0,0478 

flat300_20 300 21375 0,48 20 38 0,7199 42 8,5125 44 0,0032 44 0,0554 45 5,3253 47 0,0609 

flat300_26 300 21633 0,48 26 39 0,8435 41 8,5990 45 0,0030 45 0,0566 48 5,5501 45 0,0610 

flat300_28 300 21695 0,48 28 38 0,8624 42 8,6611 45 0,0030 45 0,0564 48 5,5324 46 0,0613 

R: Result of the algorithm, T: Computation time (in second) 
 

 
Table 13. The results and computation times for Register Allocation graphs 

Graph V E Den. Best/χ(G) 
RLF DSATUR WP LDO IDO FF 

R T R T R T R T R T R T 

fpsol2_i1 496 11654 0,09 65 65 0,9869 65 3,1791 65 0,0044 65 0,0646 65 1,8096 65 0,0552 

fpsol2_i2 451 8691 0,09 30 30 0,5217 30 1,9960 30 0,0024 30 0,0442 30 1,1139 30 0,0409 

fpsol2_i3 425 8688 0,10 30 30 0,5184 30 1,9752 30 0,0022 30 0,0427 30 1,0739 30 0,0407 

mulsol_i1 197 3925 0,20 49 49 0,1299 49 0,6347 49 0,0021 49 0,0153 49 0,2924 49 0,0137 

mulsol_i2 188 3885 0,22 31 31 0,1171 31 0,6423 31 0,0015 31 0,0145 31 0,2899 31 0,0133 

mulsol_i3 184 3916 0,23 31 31 0,1164 31 0,6189 31 0,0015 31 0,0143 31 0,2805 31 0,0134 

mulsol_i4 185 3946 0,23 31 31 0,1243 31 0,6328 31 0,0015 31 0,0145 31 0,2994 31 0,0130 

mulsol_i5 186 3973 0,23 31 31 0,1253 31 0,6286 31 0,0015 31 0,0145 31 0,2900 31 0,0128 

inithx_i1 864 18707 0,05 54 54 2,7427 54 6,7614 54 0,0066 54 0,1337 54 4,2802 54 0,1266 

inithx_i2 645 13979 0,07 31 31 1,4014 31 4,2319 31 0,0037 31 0,0839 31 2,5214 31 0,0800 

inithx_i3 621 13969 0,07 31 31 1,3034 31 4,1724 31 0,0035 31 0,0819 31 2,5577 31 0,0780 

zeroin_i1 211 4100 0,18 49 49 0,1427 49 0,6636 49 0,0020 49 0,0157 49 0,3188 49 0,0139 

zeroin_i2 211 3541 0,16 30 30 0,1062 30 0,5390 30 0,0014 30 0,0136 30 0,2504 30 0,0124 

zeroin_i3 206 3540 0,17 30 30 0,1150 30 0,5439 30 0,0014 30 0,0134 30 0,2530 30 0,0123 

R: Result of the algorithm, T: Computation time (in second) 
 

 

In the Leighton graphs, each graph consists of 450 vertices. First 

parameter of the Leighton graphs represents the number of the 

vertices and the second parameter represents the chromatic 

number [20]. Table 14 shows the results for Leighton graphs. 

Experimental results show that RLF algorithm finds out quite 

better results for Leighton graphs.  Just for le450_25b graph, WP 

algorithm finds out the χ(G) result the better  computation time. 

The other algorithms are generally deficient.

 

Table 14. The results and computation times for Leighton graphs 

Graph V E Den. Eniyi/χ(G) 
RLF DSATUR WP LDO IDO FF 

R T R T R T R T R T R T 

le450_15b 450 8169 0,08 15 17 0,3071 16 1,7589 18 0,0025 18 0,0348 18 0,9585 22 0,0337 

le450_25a 450 8260 0,08 25 25 0,3502 25 1,7952 26 0,0029 26 0,0367 25 1,0172 28 0,0355 

le450_25b 450 8263 0,08 25 25 0,3583 25 1,9924 25 0,0028 25 0,0371 25 1,0341 27 0,0355 

le450_25c 450 17343 0,17 25 28 0,7839 29 5,9978 29 0,0034 29 0,0626 31 3,6658 37 0,0674 

le450_5c 450 9803 0,10 5 5 0,2226 10 2,4336 12 0,0020 12 0,0352 12 1,3233 17 0,0375 

le450_5d 450 9757 0,10 5 6 0,2315 12 2,4073 14 0,0025 14 0,0362 13 1,2504 18 0,0382 

R: Result of the algorithm, T: Computation time (in second) 
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5. Conclusion

Experimental results show that while RLF and DSATUR 

algorithms are sufficient for the GCP, FF algorithm is generally 

deficient. WP algorithm finds out the best solution in the shortest 

time on Register Allocation, CAR, Mycielski, Stanford Miles, 

Book and Game graphs. On the other hand, RLF algorithm is 

quite better than the other algorithms on Leighton, Flat, Random 

(DSJC) and Stanford Queen graphs. As shown in the study, firstly 

it should be decided that the problems which we want solve with 

graph coloring algorithms is similar to what benchmark graphs. 

After that, the optimum graph coloring algorithms must be 

applied to the problem for finds out the the best solution. Thus, it 

can be avoided to waste of times and it can be reached the best 

results a quite short time. 
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