

International Journal of

Intelligent Systems and

Applications in Engineering

Advanced Technology and Science

ISSN:2147-67992147-6799 www.atscience.org/IJISAE Original Research Paper

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(Special Issue), 1–7 | 1

A Performance Comparison of Graph Coloring Algorithms

Murat Aslan*1, Nurdan Akhan Baykan1

Accepted 3rd September 2016

Abstract: Graph coloring problem (GCP) is getting more popular to solve the problem of coloring the adjacent regions in a map with

minimum different number of colors. It is used to solve a variety of real-world problems like map coloring, timetabling and scheduling.

Graph coloring is associated with two types of coloring as vertex and edge coloring. The goal of the both types of coloring is to color the

whole graph without conflicts. Therefore, adjacent vertices or adjacent edges must be colored with different colors. The number of the

least possible colors to be used for GCP is called chromatic number. As the number of vertices or edges in a graph increases, the

complexity of the problem also increases. Because of this, each algorithm can not find the chromatic number of the problems and may

also be different in their executing times. Due to these constructions, GCP is known an NP-hard problem. Various heuristic and

metaheuristic methods have been developed in order to solve the GCP. In this study, we described First Fit (FF), Largest Degree

Ordering (LDO), Welsh and Powell (WP), Incidence Degree Ordering (IDO), Degree of Saturation (DSATUR) and Recursive Largest

First (RLF) algorithms which have been proposed in the literature for the vertex coloring problem and these algorithms were tested on

benchmark graphs provided by DIMACS. The performances of the algorithms were compared as their solution qualities and executing

times. Experimental results show that while RLF and DSATUR algorithms are sufficient for the GCP, FF algorithm is generally

deficient. WP algorithm finds out the best solution in the shortest time on Register Allocation, CAR, Mycielski, Stanford Miles, Book

and Game graphs. On the other hand, RLF algorithm is quite better than the other algorithms on Leighton, Flat, Random (DSJC) and

Stanford Queen graphs.

Keywords: Chromatic number, Graph coloring algorithms.

1. Introduction

Graph theory is a problem represented with vertices (nodes) and

edges (arcs) [1]. Otherwise, graph coloring problem (GCP) is a

problem where adjacent vertices or edges in graph must be

colored by using different colors [2]. GCP was proposed by

Francis Gutrie as the four color problem. Four color problem has

described by F. Gutrie to solve the problem of coloring the

adjacent regions in a map using the minimum number of diffrent

colors [3].

Graph coloring is associated with two types of coloring as vertex

and edge coloring [2]. The goal of the both types of coloring is to

color the whole graph without conflicts. Therefore, adjacent

vertices or edges must be colored with different colors. If there is

at least one link (edge) between two nodes, it is called adjacent

vertices. If the Fig. 1 examines, it can be seen that there is no

edge between V2 and V4 vertices. Therefore, these vertices are

not adjacent vertices. However, the other vertices in the graph are

adjacent because there is at least one edge between each other. In

the context of this study we described vertex coloring problem in

graphs. If an undirected = (𝑉, 𝐸) graph is examining; 𝑉 is the set

of vertices and 𝐸 is the set of edges. The graph which is given in

Fig. 1, the set of vertices are 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and the set of

edges are 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}. In addition, R =

{1,2, … … … , 𝑘} is the set of colors which are used for coloring the

vertices. In this case, if the whole graph colored without conflicts

is performed by utilizing the minimum number of different

colors, it’s called “k-coloring graph” [4]. This minimum number

of different colors is known as chromatic number. Chromatic

number is indicated by χ(G) [5,6].

Figure 1. A graph with four vertex and five edge

Graph coloring problem is mostly used for solving computer

based applications and problems. Graph coloring algorithms are

usable for solving the many engineering applications and real-

world problems [2]. Some of the these problems are Map

Coloring [7], Timetabling and Scheduling problems [8,9],

Register Allocation problems [10,11], Sudoku problem [12] and

Frequency Assignment problems [13].

As the number of vertices or edges in a graph increases, the

complexity of the problem also increases. Because of this, each

algorithm can not find the chromatic number of the problems and

may also be different in their executing times. Due to these

conditions, GCP is known an NP-hard problem [14]. Hence, for

getting a better solution for GCP many hueristic and meta-

huestistic algorithms are developed. Huerictic algorithms

generally can be used for a problem with fewer numbers of

1 Department of Computer Engineering, Engineering Faculty, Selcuk

University, Konya, Turkey

* Corresponding Author: Email: murataslan@selcuk.edu.tr

Note: This paper has been presented at the 3rd International Conference

on Advanced Technology & Sciences (ICAT'16) held in Konya (Turkey),

September 01-03, 2016.

mailto:murataslan@selcuk.edu.tr

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(Special Issue), 1–7 | 2

vertices. On the other hand, for the complex graphs meta-

hueristic algorithms can find better solutions [15].

Tabu Search (TS) Algorithm [16], Simulated Annealing (SA)

Algorithm [17], Genetic Algorithm (GA) [7], Ant Colony (ACO)

Algorithm [18], Cuckoo (COA) Algorithm [15] are some of the

meta heueristic algorithms used for graph coloring problem.

When the vertices in a graph 𝐺 are colored by means of the

greedy algorithms, the coloring issue is performed with selecting

and coloring methods of algorithms. These algorithms are called

greedy algorithms because of the algorithms choice the best

validy selection for every operation step. The greedy algorithms

generally provide effective and sufficient results for vertex

coloring [15]. In this study, we described First Fit (FF) [19],

Largest Degree Ordering (LDO) [19], Welsh and Powell (WP)

[5], Incidence Degree Ordering (IDO) [19], Recursive Largest

First (RLF) [20] and Degree of Saturation (DSATUR) [21]

algorithms which have been proposed in the literature for the

vertex coloring problem and these algorithms were tested on

benchmark graphs provided by DIMACS [22]. The performances

of the algorithms were compared with each other in terms of their

solution qualities and executing times.

2. Vertex Coloring Problem

If the vertices in a graph are colored with different colors without

considering their adjacencies, this graph would be colored

utilizing the number of the different colors which are equal to

number of vertices. However, this is not a good solution for GCP.

Because, the purpose of the GCP is to find the minimum number

of the colors for adjacent vertices colored with different colors.

As the number of vertices or edges in a graph increases, the

complexity of the graph also increases. Because of this, coloring

the entire graph is getting difficult by the least possible different

colors. Therefore, we need some particular methods for coloring

the graphs. Thanks to particular methods, the graphs can be

colored with minimal different colors.

Algorithms in the literature use the adjacency matrix for coloring

the vertices of graphs. Adjacency matrix is generated based on

the condition that whether any edge exists between vertices [1].

For a 𝐺 graph, the set of vertices are shown in the set of 𝑉 =

{𝑣1, 𝑣2, … … … . , 𝑣𝑛}. The adjacency matrix of a graph is

generated by the equation 1. 𝐴 is represents the adjacency matrix.

𝐴 = {
1, if the exists an egde between 𝑉𝑖 𝑖𝑙𝑒 𝑉𝑗 (1)

0 otherwise

Another important constraint for the selection of the vertex to be

colored is vertex degree. A degree of a vertex in an undirected

and unweight graph is equal to the total number of edges

connected to the vertex. It’s shown with 𝑑𝑒𝑔(𝑣𝑖) [1]. The graph

given in Fig. 2 has seven vertices and nine edges.

Figure 2. A graph with seven vertices

Table 1 shows the adjacency matrix for the graph presented in

Fig. 2 and and Table 2 shows the degrees of vertices for this

graph.

Table 1. Adjacency matrix

 A B C D E F G

A 0 1 1 0 0 0 0

B 1 0 1 0 0 0 1

C 1 1 0 1 1 0 0

D 0 0 1 0 0 1 0

E 0 0 1 0 0 1 1

F 0 0 0 1 1 0 0

G 0 1 0 0 1 0 0

Table 2. The degree of vertices

Vertex A B C D E F G

𝐷𝑒𝑔(v) 2 3 4 2 3 2 2

3. Vertex Coloring Algorithms In Graphs

At this section of the study we describe the steps of the some

algorithms which have been proposed in the literature for the

vertex coloring problem. Also these algorithms will be tested on

the graph in Fig. 2. Then the selecting order of the vertices and

the color of each vertex are given.

3.1. First Fit Algorithm (FF)

For the given G graph, the set of the vertices is described as 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑛} and the set of the colors is described as 𝑅 =
{𝑟1, 𝑟2, … , 𝑟𝑘}. The steps of the algorithm:

Step 1: Create a color set. (initially the color set is empty).

Step 2: The first vertex in the set of V is selected as the starting

vertex. The selected vertex is colored with first color and this

color is added to color set.

Step 3: Next vertex in the set of V is selected for coloring.

Step 4: For selected vertex, find the adjacent vertices of it from

the adjacency matrix. A color which is in the color set, but not

color of the adjacent vertices of selected vertex is given to the

selected vertex. If the colors in the color set unsuitable for

coloring the selected vertex, a new color is defined. The new

color is added to the color set and appointed to the selected

vertex. If the uncolored vertex exists, it is returned to the step 3.

Table 3 shows the result for the graph shown in Fig. 2. Selected

order of the vertices and their colors are given in Table 3.

According to Table 3, the first colored vertex is 𝐴 and the color

 𝑟1 is given this vertex. The last colored vertex is 𝐺 and the color

 𝑟3 is given this vertex.

Table 3. The result of the colored graph using the FF algorithm

 A B C D E F G

Selected order 1 2 3 4 5 6 7

Vertex color 𝑟1 𝑟2 𝑟3 𝑟1 𝑟1 𝑟2 𝑟3

3.2. Welsh Powell Algorithm (WP)

For the given graph 𝑮, the set of the vertices is described as 𝑽 =

{𝒗𝟏, 𝒗𝟐, … . . , 𝒗𝒏} and the set of the colors of the vertices is

described as 𝑹 = {𝒓𝟏, 𝒓𝟐, … , 𝒓𝒌}. The steps of the WP algorithm:

Step 1: The vertex degree of each vertex is calculated and the

vertex degrees are added to the degree set 𝐷𝑒𝑔(𝑣𝑖), such that 𝑖 =

1,2, … , 𝑛.

Step 2: The uncolored vertex that has the largest degree in the

degree set 𝐷𝑒𝑔(𝑣𝑖) is selected for coloring. Initially, the first

color in the color set is selected as the active color.

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(Special Issue), 1–7 | 3

Step 3: The selected vertex is colored with active color. After

that, find the uncolored vertices from adjacency matrix which are

not adjacent vertices of the colored vertex and these vertices are

added to the 𝑉′ set (𝑉′ = {𝑣′
1, 𝑣′

2, … . , 𝑣′
𝑛}).

 The uncolored vertex that has the largest degree in the
𝑉 is selected for coloring. This vertex is colored with
active color. After that, the adjacent vertices of the this
vertex deleted from 𝑉′. This step is repeated until all
vertices colored in the set of 𝑉′.

Step 4: If the uncolored vertex exists, next color in the color set

is selected as active color and it is returned to the step 2.

Otherwise the program is terminated, because all vertices in the

graph are colored.

Table 4 shows the result for the graph shown in Fig. 2. Selected

order of the vertices and their colors are given in Table 4.

Table 4. The result of the colored graph using the WP algorithm

 A B C D E F G

Selected order 7 4 1 6 5 2 3

Vertex color 𝑟3 𝑟2 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1

3.3. Largest Degree Ordering Algorithm (LDO)

For the given graph 𝑮, the set of the vertices is described as 𝑽 =

{𝒗𝟏, 𝒗𝟐, … . . , 𝒗𝒏} and the set of the colors of the vertices is

described as 𝑹 = {𝒓𝟏, 𝒓𝟐, … , 𝒓𝒌}. The steps of the LDO

algorithm:

Step 1: Create a color set (initially the color set is empty). The

vertex degree of each vertex is calculated and the vertex degrees

are added to the degree set 𝐷𝑒𝑔(𝑣𝑖), such that 𝑖 = 1,2, … , 𝑛.

Step 2: The uncolored vertex that has the largest degree in the

degree set 𝐷𝑒𝑔(𝑣𝑖) is selected for coloring. Firstly, the selected

vertex is tried to color with the colors in the color set. If the color

set is empty or the colors in the color set are not appropriate (all

colors int the color set used from the adjacent vertices) for color

the vertex, a new color is defined. The new color is added to the

color set and appointed to the selected vertex.

Step 3: If the uncolored vertex exists, it is returned to the step 2.

Otherwise the program is terminated.

Table 5 shows the result for the graph shown in Fig. 2. Selected

order of the vertices and their colors are given in Table 5.

Table 5. The result of the colored graph using the IDO algorithm

 A B C D E F G

Selected order 4 2 1 5 3 6 7

Vertex color 𝑟3 𝑟2 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1

3.4. Incidence Degree Ordering Algorithm (IDO)

For the given graph 𝐺, the set of the vertices is described as 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑛} and the set of the colors of the vertices is

described as 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑘}. The steps of the IDO algorithm:

Step 1: The vertex degree of each vertex is calculated and the

vertices degrees are added to the degree set 𝐷𝑒𝑔(𝑣𝑖), such that

𝑖 = 1,2, … , 𝑛. Initially, there is just one color in the color set.

Step 2: The uncolored vertex that has the largest degree in the

degree set 𝐷𝑒𝑔(𝑣𝑖) is selected for coloring. The selected vertex is

colored with the first color.

Step 3: The number of the colored adjacent vertices is calculated

for every uncolored vertices. After that, the uncolored vertex

whose colored neighboring vertices are the maximum is selected.

If more than one vertex provides this condition, the vertex which

has the largest degree among them is selected.

Step 4: Firstly, the selected vertex with the colors in the color set

is tried to color. If the colors in the color set are not appropriate to

color the vertex, a new color is defined. The new color is added

to the color set and appointed to the selected vertex.

Step 5: If the uncolored vertex exists, it is returned to the step 3.

Otherwise, the program is terminated.

Table 6 shows the result for the graph shown in Fig. 2. Selected

order of the vertices and their colors are given in Table 6.

Table 6. The result of the colored graph using the IDO algorithm

 A B C D E F G

Selected order 4 3 1 6 2 7 5

Vertex color 𝑟3 𝑟2 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1

3.5. Degree of Saturation Algorithm (DSATUR)

For the given graph 𝐺, the set of the vertices is described as 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑛} and the set of the colors of the vertices is

described as 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑘}. The steps of the DSATUR

algorithm:

Step 1: The vertex degree of each vertex is calculated and the

vertices degrees are added to the degree set 𝐷𝑒𝑔(𝑣𝑖), such that

𝑖 = 1,2, … , 𝑛.

Step 2: The uncolored vertex that has the largest degree in the

degree set 𝐷𝑒𝑔(𝑣𝑖) is selected for coloring. The selected vertex is

colored with first color.

Step 3: Firstly, calculate the number adjacent vertices which are

colored with different colors for every uncolored vertex. After

that, the uncolored vertex whose number of adjacent vertices

colored with different colors is the maximum is selected for

coloring. If more than one vertex provide this condition, the

vertex which has the largest degree among them is selected.

Step 4: Firstly, the selected vertex is tried to color with the colors

in the color set. If the colors in the color set are not appropriate to

color the vertex, a new color is defined. The new color is added

to the color set and appointed to the selected vertex.

Step 5: If the uncolored vertex exists, it is returned to the step 3.

Otherwise the program is terminated.

For DSATUR algorithm; Table 7 shows the result for the graph

shown in Fig. 2.

Table 7. The result of the colored graph using the DSATUR algorithm

 A B C D E F G

Selected order 4 3 1 5 2 6 7

Vertex color 𝑟3 𝑟2 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1

3.6. Recursive Largest First Algorithm (RLF)

RLF is used a recursive structure for coloring the vertices in

graph. This recursive structure is the most important feature of

the RLF algorithm [20]. According to this recursive structure,

whole graph is colored with minimum different colors. For the

given G graph, the set of the vertices is described as 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑛} and the set of the colors is described as 𝑅 =
{𝑟1, 𝑟2, … , 𝑟𝑘}. The steps of the RLF algorithm:

Step 1: Vertex degree is calculated for each vertex and the

degrees of vertices added to the set of 𝐷𝑒𝑔(𝑣𝑖). Initially, the first

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(Special Issue), 1–7 | 4

color in the color set is selected as the active color. Select the

uncolored vertex which has the largest degree from set of

𝐷𝑒𝑔(𝑣𝑖) for coloring.

Step 2: The selected vertex is colored with active color. Adjacent

vertices of the selected vertex can not color with active color. But

the uncolored vertices which are not adjacent vertices of the

colored vertex can be colored with active color. So RLF uses a

recursive structure for select the uncolored vertices to color with

active color. During this process the below steps should be

followed:

 Adjacent vertices of the selected vertex vi are found

from adjacency matrix. Adjacent vertices are added to

the adjacent set U. (𝑈 = {𝑢1, 𝑢2, … … . , 𝑢𝑡})

 The vertices which are not adjacent vertices of the

selected vertex vi are found from adjacency matrix.

These vertices are added to the set of 𝑉′ . Calculate the

number adjacent vertices which are in the set of U for

every vertex in set of V′. After that, the uncolored

vertex whose has maximum adjacent vertices (which

are in the set of U) in the set of 𝑉′ is selected for

coloring. The selected vertex is colored with active

color.

 The colored vertex and the adjacent vertices of the

colored vertex are deleted from 𝑉′ and added to the set

of U.

 If the set of V′ is not empty, it is returned to the step 2.

Otherwise move to step 3.

Step 3: If the uncolored vertex exists, next color in the color set

is selected as active color. Otherwise the program is terminated.

Step 4: Calculate the number adjacent vertices for every

uncolored vertex. After that, the uncolored vertex whose has

maximum adjacent vertices is selected for coloring process. If

more than one vertex provide this condition, the vertex which has

the largest degree among them is selected. Then, it is returned to

the step 2

For RLF algorithm; Table 8 shows the result for the graph shown

in Fig. 2. Selected order of the vertices and their colors are given

in Table 8.

Table 8. The result of the colored graph using the RLF algorithm

 A B C D E F G

Selected order 4 7 1 5 6 2 3

Vertex color 𝑟2 𝑟3 𝑟1 𝑟2 𝑟2 𝑟1 𝑟1

4. Experiment Result

FF, LDO, WP, IDO, DSATUR and RLF algorithms were tested

on benchmark graphs provided by DIMACS [22]. The reason of

preferring the DIMACS graph, it’s given a standard for

performance comparison of the algorithms. The performances of

the algorithms were compared as their solution quality and

executing times. The edge density (D) of the benchmark graphs

which are used in this study are calculated from equation 2. E

represents the number of the edges and V represents the vertices

number of the graph [23].

𝐷 =
2 ∗ 𝐸

V ∗ (V − 1)
 (2)

In this study we used Mycielski, CAR, Stanford Graph Base

(SGB), Register Allocation, Leighton, Flat, Random (DSJC) and

Random geometric (DSJR and R250) DIMACS graphs. V

represents the number of the vertices, E is the number of the

edges, Den. represents density, Best/χ(G) means chromatic

number or the best known number, R represents the number of

colors that algorithms are found, T is computation time in

seconds. The algorithms are written in the programming language

Matlab R2010a. For experiments we used a Laptop computer. It

has Intel Core i5 2.20 GHz processor and 8 GB DDR3 RAM.

Mycielski graphs are triangle free graphs. It’s mean that the edge

connections in the graph must be free of triangle. For mycielski

graph, if the vertices in the graph increases, the number of the

colors for coloring the graph increases too [24]. Stanford

GraphBase (SGB) graphs are created from Donald Knuth. SGB

graph can be divided to books, miles, game and queen graphs

[22]. For books graphs, a character in the book represents a

vertex. So the books graphs are created for holds to relationship

between characters. If the characters in the book have relationship

to each other, an edge is generated between two vertex which

characters run across in the book. These books are Charles

Dicken's David Copperfield (david), Victor Hugo's Les

Misêrables (jean), Lev Tolstoy's Anna Karenina (anna), Homer’s

Iliad (homer) and Mark Twain's Huckleberry Finn (huck). For

miles graphs the vertices represents some of the United States

cities and if there is a road between two cities which provides the

conditions, there is an edge generated between them. For game

graph, any vertex in the graph represents a college team. There is

an edge generated between for every two teams when the teams

played to each other during the season. Table 9 shows the results

for algorithms which are used for this study. Except the FF

algorithm all other algorithms find out the best/χ(G) results. In

addition, FF algorithm finds out the best/χ(G) results for graphs

which are used for this study except miles graphs and anna,

David, homer graph. On the other hand, if the algorithms

compared to each other about their computation times, WP

algorithm is reached these conclusions in a quite short time.

Table 9. The results and computation times for Mycielski and SGB graphs

Graph V E Den. Best/χ(G)
RLF DSATUR WP LDO IDO FF

R T R T R T R T R T R T

myciel3 11 20 0,33 4 4 0,0004 4 0,0023 4 0,0001 4 0,0002 4 0,0009 4 0,0001

myciel4 23 71 0,27 5 5 0,0009 5 0,0077 5 0,0002 5 0,0005 5 0,0028 5 0,0003

myciel5 47 236 0,21 6 6 0,0024 6 0,0255 6 0,0003 6 0,0010 7 0,0085 6 0,0006

myciel6 95 755 0,17 7 7 0,0075 7 0,0876 7 0,0004 7 0,0024 7 0,0309 7 0,0016

myciel7 191 2360 0,13 8 8 0,0293 8 0,3254 8 0,0006 8 0,0068 8 0,1366 8 0,0054

miles1000 128 3216 0,39 42 42 0,1065 42 1,2942 43 0,0016 43 0,0123 43 0,7013 44 0,0121

miles1500 128 5198 0,63 73 73 0,3158 73 2,6877 73 0,0024 73 0,0219 73 1,6033 76 0,0220

miles500 128 1170 0,14 20 20 0,0250 20 0,3249 20 0,0010 20 0,0055 20 0,1360 22 0,0049

miles750 128 2113 0,26 31 31 0,0522 31 0,7112 32 0,0013 32 0,0083 31 0,3443 34 0,0081

anna 138 493 0,05 11 11 0,0135 11 0,1231 11 0,0006 11 0,0037 11 0,0457 12 0,0026

david 87 406 0,11 11 11 0,0076 11 0,1026 11 0,0005 11 0,0025 11 0,0346 12 0,0017

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(Special Issue), 1–7 | 5

homer 561 1629 0,01 13 13 0,3404 13 0,5412 13 0,0024 13 0,0232 13 0,2460 15 0,0183

huck 74 301 0,11 11 11 0,0062 11 0,0745 11 0,0005 11 0,0021 11 0,0244 11 0,0014

jean 80 254 0,08 10 10 0,0060 10 0,0616 10 0,0004 10 0,0020 10 0,0198 10 0,0013

games120 120 638 0,09 9 9 0,0180 9 0,1537 9 0,0006 9 0,0039 9 0,0577 9 0,0032

R: Result of the algorithm, T: Computation time (in second)

Queen graphs are 𝑛𝑥𝑛 dimensional chessboard graphs. If two

queens on the chessboard are in the same row, column, or

diagonal, there is an edge generated between them. So, if two

queens placed in same row, column or diagonal, one queen can

eat the other one. Because of this, there is an edge between them

for they don’t eat each other. For queens graph if only the graph

is colored with minimum number n, two queens can move on

chessboard.

Table 10 shows the results for queens graphs. Experimental

results show that while RLF and DSATUR algorithms are

sufficient for the queens graphs, but the other algorithms are

generally deficient. RLF algorithm finds out just only the

chromatic number of queen5_5 graph and also it finds out quite

better results for the other queen graphs. DSATUR algorithm

generally finds out good results, but it is very slow according to

the RLF.

Table 10. The results and computation times for Queen graphs

Graph V E Den. Best/χ(G)
RLF DSATUR WP LDO IDO FF

R T R T R T R T R T R T

queen5_5 25 160 0,51 5 5 0,0012 5 0,0332 7 0,0003 7 0,0006 7 0,0109 8 0,0005

queen6_6 36 290 0,45 7 8 0,0028 9 0,0634 9 0,0003 9 0,0010 10 0,0218 11 0,0008

queen7_7 49 476 0,40 7 9 0,0045 11 0,1090 12 0,0005 12 0,0016 12 0,0461 10 0,0013

queen8_12 96 1368 0,30 12 13 0,0202 14 0,3851 15 0,0007 15 0,0045 15 0,1779 15 0,0041

queen8_8 64 728 0,36 9 11 0,0081 12 0,1783 13 0,0005 13 0,0024 15 0,0923 13 0,0020

queen9_9 81 1056 0,32 10 12 0,0154 13 0,2853 15 0,0007 15 0,0036 15 0,1312 16 0,0030

queen10_10 100 2940 0,59 11 13 0,0215 14 0,4351 17 0,0009 17 0,0052 17 0,1876 16 0,0044

queen11_11 121 3960 0,54 11 14 0,0345 15 0,6300 17 0,0009 17 0,0072 18 0,2964 17 0,0063

queen12_12 144 5192 0,50 13 15 0,0550 16 0,9163 19 0,0010 19 0,0100 20 0,4604 20 0,0092

queen13_13 169 6656 0,47 13 16 0,0800 17 1,3226 23 0,0013 23 0,0134 22 0,6869 21 0,0125

queen14_14 196 8372 0,44 16 17 0,1227 19 1,8408 25 0,0015 25 0,0170 24 1,0488 23 0,0169

R: Result of the algorithm, T: Computation time (in second)

CAR graphs are created from inspiration of the mycielski graphs.

After the some new vertices inserted graph, the graph size

increases, but the density of the graph is unchanging [25]. The

CAR graphs are more difficult than the mycielski graphs. Table

11 shows the results for CAR graphs. According to the Table 11;

RLF, DSATUR, WP and LDO algorithms reach the best/χ(G)

results. Furthermore the IDO algorithm generally finds out the

best/χ(G) results. But FF algorithm is generally deficient. If the

algorithms compare to each other about their computation times,

the best algorithm for CAR graphs is WP algorithm. Because WP

algorithm reaches the best/χ(G) results shortest computation

times.

Table 11. The results and computation times for CAR graphs

Graph V E Den. Best/χ(G)
RLF DSATUR WP LDO IDO FF

R T R T R T R T R T R T

1_Fullins_4 93 593 0,14 5 5 0,0069 5 0,0869 5 0,0003 5 0,0021 6 0,0298 11 0,0016

1_Fullins_5 282 3247 0,08 6 6 0,0612 6 0,5026 6 0,0007 6 0,0104 7 0,2167 14 0,0098

1_Insertions_4 67 232 0,10 5 5 0,0058 5 0,0258 5 0,0002 5 0,0013 5 0,0090 5 0,0008

1_Insertions_5 202 1227 0,06 6 6 0,0314 6 0,1527 6 0,0005 6 0,0055 6 0,0569 6 0,0038

1_Insertions_6 607 6337 0,03 7 7 0,3575 7 1,2288 7 0,0023 7 0,0344 7 0,6011 7 0,0308

2_Fullins_3 52 201 0,15 5 5 0,0027 5 0,0237 5 0,0002 5 0,0010 5 0,0076 10 0,0008

2_Fullins_4 212 1621 0,07 6 6 0,0329 6 0,2116 6 0,0006 6 0,0060 6 0,0796 14 0,0052

2_Fullins_5 852 12201 0,03 7 7 0,8307 7 3,2494 7 0,0044 7 0,0703 7 1,8256 18 0,0763

2_Insertions_4 149 541 0,05 5 5 0,0188 5 0,0621 5 0,0004 5 0,0036 5 0,0230 5 0,0021

2_Insertions_5 597 3936 0,02 6 6 0,3721 6 0,6322 6 0,0023 6 0,0276 6 0,2985 6 0,0211

3_Fullins_3 80 346 0,11 6 6 0,0060 6 0,0380 6 0,0003 6 0,0017 6 0,0134 12 0,0012

3_Fullins_4 405 3524 0,04 7 7 0,1476 7 0,5354 7 0,0012 7 0,0157 8 0,2370 17 0,0150

3_Fullins_5 2030 33751 0,02 8 8 10,3646 8 18,3988 8 0,0254 8 0,3786 9 11,5821 22 0,4600

3_Insertions_3 56 110 0,07 4 4 0,0033 4 0,0125 4 0,0002 4 0,0010 4 0,0047 4 0,0006

3_Insertions_4 281 1046 0,03 5 5 0,0731 5 0,1288 5 0,0007 5 0,0073 5 0,0498 5 0,0048

3_Insertions_5 1406 9695 0,01 6 6 3,6966 6 2,3609 6 0,0128 6 0,1101 7 1,2766 6 0,0996

4_Fullins_3 114 541 0,08 7 7 0,0107 7 0,0610 7 0,0004 7 0,0026 7 0,0216 14 0,0020

4_Fullins_4 690 6650 0,03 8 8 0,5299 8 1,2976 8 0,0031 8 0,0386 8 0,6677 20 0,0387

4_Fullins_5 4146 77305 0,01 9 9 89,5661 9 85,9533 9 0,1131 9 1,6550 9 55,6602 26 2,0289

4_Insertions_3 79 156 0,05 4 4 0,0065 4 0,0180 4 0,0002 4 0,0015 4 0,0068 4 0,0009

4_Insertions_4 475 1795 0,02 5 5 0,2527 5 0,2467 5 0,0015 5 0,0188 5 0,1009 5 0,0103

5_Fullins_3 154 792 0,07 8 8 0,0220 8 0,0922 8 0,0005 8 0,0036 8 0,0332 16 0,0029

5_Fullins_4 1085 11395 0,02 9 9 1,8848 9 2,9627 9 0,0080 9 0,0874 9 1,6530 23 0,0923

R: Result of the algorithm, T: Computation time (in second)

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(Special Issue), 1–7 | 6

Random (DSJ) graphs which are created from David Johnson and

R250_5 graph are difficult to solve benchmark graphs [15]. Flat

graphs are created from Culberson. [26]. First parameter of the

Flat graphs represents the number of the vertices and the second

parameter represents the chromatic number.

Table 12 shows the results for Random and Flat graphs.

According to the Table 12, RLF and DSATUR algorithms

generally find out the best/χ(G) results. For the R250_5 graph,

DSATUR algorithm’s computation time is further than RLF’s.

But DSATUR finds out quite better result than RLF for R250_5

graph. On the other hand, RLF finds out quite better results for

the other graphs and RLF is faster than the other algorithms.

fpsol2*, inithx*, zeroin* and mulsol* graphs are computer

register allocation problem graphs which are generated from Gary

Lewandowski [24]. These graphs are real-world problem’s

graphs. The computer registers and the operations are defined as

vertices. If a register and an operation have a relationship, there is

an edge generated between them.

Table 13 shows the results for computer register allocation

graphs. All algorithms which are used for this study reach the

χ(G) results for computer register allocation graphs. If the

algorithms compare to each other about their computation times,

the best algorithm for register allocation graphs is WP algorithm

and also FF algorithm reaches the χ(G) results a quite short times.

The slowest algorithm for these graphs is DSATUR algorithm.

Table 12.The results and computation times for Random and Flat graphs

Graf V E Den.
Eniyi/

χ(G)

RLF DSATUR WP LDO IDO FF

R T R T R T R T R T R T

DSJC125_1 125 736 0,09 5 6 0,0135 6 0,0846 7 0,0005 7 0,0032 7 0,0320 8 0,0024

DSJC125_5 125 3891 0,50 17 21 0,0468 22 0,6111 23 0,0011 23 0,0079 25 0,2966 26 0,0074

DSJC125_9 125 6961 0,89 44 49 0,1811 51 1,4215 53 0,0019 53 0,0162 54 0,7575 56 0,0154

DSJC250_1 250 3218 0,10 8 10 0,0665 10 0,4791 11 0,0011 11 0,0142 12 0,2086 13 0,0097

DSJC250_5 250 15668 0,50 28 35 0,4661 37 4,9399 41 0,0025 41 0,0371 40 3,0145 43 0,0394

DSJR500_1 500 3555 0,03 12 12 0,2863 13 0,5829 13 0,0023 13 0,0237 13 0,2609 15 0,0199

R250_5 250 14849 0,48 65 71 0,7803 68 4,6108 70 0,0034 70 0,0439 69 2,7790 79 0,0478

flat300_20 300 21375 0,48 20 38 0,7199 42 8,5125 44 0,0032 44 0,0554 45 5,3253 47 0,0609

flat300_26 300 21633 0,48 26 39 0,8435 41 8,5990 45 0,0030 45 0,0566 48 5,5501 45 0,0610

flat300_28 300 21695 0,48 28 38 0,8624 42 8,6611 45 0,0030 45 0,0564 48 5,5324 46 0,0613

R: Result of the algorithm, T: Computation time (in second)

Table 13. The results and computation times for Register Allocation graphs

Graph V E Den. Best/χ(G)
RLF DSATUR WP LDO IDO FF

R T R T R T R T R T R T

fpsol2_i1 496 11654 0,09 65 65 0,9869 65 3,1791 65 0,0044 65 0,0646 65 1,8096 65 0,0552

fpsol2_i2 451 8691 0,09 30 30 0,5217 30 1,9960 30 0,0024 30 0,0442 30 1,1139 30 0,0409

fpsol2_i3 425 8688 0,10 30 30 0,5184 30 1,9752 30 0,0022 30 0,0427 30 1,0739 30 0,0407

mulsol_i1 197 3925 0,20 49 49 0,1299 49 0,6347 49 0,0021 49 0,0153 49 0,2924 49 0,0137

mulsol_i2 188 3885 0,22 31 31 0,1171 31 0,6423 31 0,0015 31 0,0145 31 0,2899 31 0,0133

mulsol_i3 184 3916 0,23 31 31 0,1164 31 0,6189 31 0,0015 31 0,0143 31 0,2805 31 0,0134

mulsol_i4 185 3946 0,23 31 31 0,1243 31 0,6328 31 0,0015 31 0,0145 31 0,2994 31 0,0130

mulsol_i5 186 3973 0,23 31 31 0,1253 31 0,6286 31 0,0015 31 0,0145 31 0,2900 31 0,0128

inithx_i1 864 18707 0,05 54 54 2,7427 54 6,7614 54 0,0066 54 0,1337 54 4,2802 54 0,1266

inithx_i2 645 13979 0,07 31 31 1,4014 31 4,2319 31 0,0037 31 0,0839 31 2,5214 31 0,0800

inithx_i3 621 13969 0,07 31 31 1,3034 31 4,1724 31 0,0035 31 0,0819 31 2,5577 31 0,0780

zeroin_i1 211 4100 0,18 49 49 0,1427 49 0,6636 49 0,0020 49 0,0157 49 0,3188 49 0,0139

zeroin_i2 211 3541 0,16 30 30 0,1062 30 0,5390 30 0,0014 30 0,0136 30 0,2504 30 0,0124

zeroin_i3 206 3540 0,17 30 30 0,1150 30 0,5439 30 0,0014 30 0,0134 30 0,2530 30 0,0123

R: Result of the algorithm, T: Computation time (in second)

In the Leighton graphs, each graph consists of 450 vertices. First

parameter of the Leighton graphs represents the number of the

vertices and the second parameter represents the chromatic

number [20]. Table 14 shows the results for Leighton graphs.

Experimental results show that RLF algorithm finds out quite

better results for Leighton graphs. Just for le450_25b graph, WP

algorithm finds out the χ(G) result the better computation time.

The other algorithms are generally deficient.

Table 14. The results and computation times for Leighton graphs

Graph V E Den. Eniyi/χ(G)
RLF DSATUR WP LDO IDO FF

R T R T R T R T R T R T

le450_15b 450 8169 0,08 15 17 0,3071 16 1,7589 18 0,0025 18 0,0348 18 0,9585 22 0,0337

le450_25a 450 8260 0,08 25 25 0,3502 25 1,7952 26 0,0029 26 0,0367 25 1,0172 28 0,0355

le450_25b 450 8263 0,08 25 25 0,3583 25 1,9924 25 0,0028 25 0,0371 25 1,0341 27 0,0355

le450_25c 450 17343 0,17 25 28 0,7839 29 5,9978 29 0,0034 29 0,0626 31 3,6658 37 0,0674

le450_5c 450 9803 0,10 5 5 0,2226 10 2,4336 12 0,0020 12 0,0352 12 1,3233 17 0,0375

le450_5d 450 9757 0,10 5 6 0,2315 12 2,4073 14 0,0025 14 0,0362 13 1,2504 18 0,0382

R: Result of the algorithm, T: Computation time (in second)

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(Special Issue), 1–7 | 7

5. Conclusion

Experimental results show that while RLF and DSATUR

algorithms are sufficient for the GCP, FF algorithm is generally

deficient. WP algorithm finds out the best solution in the shortest

time on Register Allocation, CAR, Mycielski, Stanford Miles,

Book and Game graphs. On the other hand, RLF algorithm is

quite better than the other algorithms on Leighton, Flat, Random

(DSJC) and Stanford Queen graphs. As shown in the study, firstly

it should be decided that the problems which we want solve with

graph coloring algorithms is similar to what benchmark graphs.

After that, the optimum graph coloring algorithms must be

applied to the problem for finds out the the best solution. Thus, it

can be avoided to waste of times and it can be reached the best

results a quite short time.

Acknowledge

This study was supported by "Scientific Research Projects of

Selcuk University". This paper has been presented as an oral

presentation at the International Conference on Advanced

Technology&Sciences (ICAT'16) held in KONYA (Turkey),

September 01-03, 2016 and selected for the International Journal

of Intelligent Systems and Applications in Engineering (IJISAE).

References

[1] D. B. West, Introduction to Graph Theory, Prentice Hall, U. S.

A., 588 pp, 2001.

[2] J. L. Gross And J. Yellen, Graph Theory and Its Applications,

CRC Press, Mathematics, 600 pages, 1998.

[3] R. Fritsch, and G. Fritsch, The Four-Color Theorem: History,

Topological Foundations and Idea of Proof, Newyork: Springer,

pages 260, 1998.

[4] F. Ge, Z. Wei, Y. Tian, Z. Huang, Chaotic Ant Swarm for

Graph Coloring , Intelligent Computing and Intelligent Systems

(ICIS), IEEE International Conference, 512-516 p., 2010.

[5] D. J. Welsh, and M. B. Powell, An upper bound for the chromatic

number of a graph and its application to timetabling

problems, The Computer Journal 10 (1): 85–86, 1967.

[6] I. M. Díaz and P. Zabala, A Generalization of the Graph Coloring

Problem, Departamento de Computacion, Universidad de Buenes

Aires, 1999.

[7] B. H. Gwee, M. H. Limand and J. S. Ho, Solving fourcolouring

map problem using genetic algorithm. In Proceedings of First

New Zealand International Two-Stream Conference on Artificial

Neural Networks and Expert Systems, 332-333, 1993.

[8] N. Chmait, and K. Challita, Using Simulated Annealing and Ant-

Colony Optimization Algorithms to Solve the Scheduling

Problem, Computer Science and Information Technology 1(3),

208-224, 2013.

[9] K. Dowsland, J. Thompson, Ant colony optimization for the

examination scheduling problem, J. Oper. Res. Soc. 56, 426–438,

2005.

[10] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, , M.E.

Hopkins and P.W. Mark-stein, Register allocation via coloring,

Comput. Lang. 6 47–57, 1981.

[11] F.C. Chow, J.L. Hennessy, The priority based coloring approach

to register allocation, ACM Trans. Program. Lang. Syst, 501–

536, 1990.

[12] S. Ono, R. Miyamoto, S. Nakayama, and K. Mizuno, "Difficulty

estimation of number place puzzle and its problem generation

support." ICCAS-SICE, 2009. IEEE, 2009.

[13] W. K. Hale, Frequency assignment: Theory and applications.

Proceedings of the IEEE 12: 1497-1514, 1980.

[14] M.R. Garey and D.S. Johnson, Computers and intractability, in:

A Guide to the Theoryof NP-Completeness, W.H. Freeman &

Co., New York, NY, U.S.A., 1979.

[15] S. Mahmoudi and S. Lotfi, Modified cuckoo optimization

algorithm (MCOA) to solve graph coloring problem, Applied soft

computing Volume 33, 48–64, 2015.

[16] A. Hertz and D. de Werra, Using tabu search techniques for

graph coloring, Computing 39, 345–351, 1987.

[17] M. Chams, A. Hertz and D. de Werra, Some experiments with

simulated annealing for coloring graphs, European Journal of

Operational Research, 32(2):260-266, 1987.

[18] S. Ahn, S. Lee, T. Chung, Modified Ant Colony System for

Coloring Graphs, Information, Communications and Signal

Processing, 2003 and Fourth Pacific Rim Conference on

Multimedia. Proceedings of the Joint Conference of the Fourth

International Conference on, IEEE, 1849 – 1853, 2003.

[19] H. Al-Omari and K.E. Sabri, New Graph Coloring Algorithms,

American Journal of Mathematics and Statistics 2 (4): 739-741,

2006.

[20] F.T. Leighton, A graph coloring algorithm for large scheduling

problems, J. Res.Nat. Bur. Stand. 84 489–506, 1979.

[21] D. Brélaz, New methods to color the vertices of a graph,

Commun. ACM 22 251–256, 1979.

[22] DIMACS graph coloring instances. (2016) instances homepage

on CMU. [online]. Available:

http:mat.gsia.cmu.edu/COLOR/instances.html.

[23] I. C. R. Ruiz, “Gravitational Swarm for Graph Coloring”, PHD

thesis, The University of the Basque Country Donostia - San

Sebastian, 2012.

[24] D. S. Johnson and M. A. Trick, Cliques, Coloring, and

Satisfiability: Second DIMACS Implementation Challenge,

1993, vol. 26 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, American Mathematical Society.

1996.

[25] M. Caramia and P. Dell'Olmo. A lower bound on the chromatic

number of mycielski graphs. Discrete Mathematics, 235(1-

3):79_86, 2001.

[26] B. Yılmaz, A novel meta-heuristic for graph coloring problem:

simulated annealing with backtracking, Yeditepe University

Graduate School Of Natural Scıences, Istanbul, 2011.

https://www.google.com.tr/search?hl=tr&tbo=p&tbm=bks&q=inauthor:%22Jay+Yellen%22
http://www.sciencedirect.com/science/journal/15684946/33/supp/C

