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Abstract
This paper is to characterize L-concavities and L-convexities via some derived forms of
relations and operators. Specifically, notions of L-concave derived internal relation space
and L-concave derived hull space are introduced. It is proved that the category of L-
concave derived internal relation spaces and the category of L-concave derived hull spaces
are isomorphic to the category of L-concave spaces. Also, notions of L-convex derived
enclosed relation space and L-convex derived hull space are introduced. It is proved that
the category of L-convex derived enclosed relation spaces and the category of L-convex
derived hull spaces are isomorphic to the category of L-convex spaces.
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1. Introduction
In an abstract convex space, a convex structure on a nonempty set is a family of subsets

containing the empty set and the largest set, and is closed under arbitrary intersections
and nested unions. Its theory is called the abstract convex theory which involves many
mathematical structures such as lattice, graph, median algebra, metric space, poset and
vector space [21].

Convex structure has been extended into fuzzy settings by many ways. Rosa introduced
the notion of fuzzy convex structure [16] which was further extended by Maruyama who
introduced L-convex structure [7]. In the framework of L-convex spaces, Pang and Shi as
well as many other scholars investigated many properties of L-convex spaces [8,11,13,14,
31, 32, 36, 38]. Later, Shi and Xiu introduced M -fuzzifying convex structures [19]. Many
subsequent studies have been done [5, 9, 23, 30]. Further, Shi and Xiu introduced (L, M)-
fuzzy convex structure which is a unified form of L-convex structure and M -fuzzifying
convex structure [20]. Recently, Pang and Wu investigated many characterizations of
(L, M)-fuzzy convex spaces [10, 24, 25]. Now, these fuzzy forms of convex structures have
been being applied to many fuzzy mathematical structures such as fuzzy topology [6,22,25],
fuzzy convergence [31,37] and fuzzy matroid [23,33].
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The notion of derived sets was originally defined by Georg Cantor in 1872 [4]. In a
topological space, the derived set of a given set is composed by all of its adherent points.
In addition, the closure of the given set is exact the union of itself and its derived set.
In view of these properties, Shi presented an axiomatic concept of derived operators and
studied its induced fuzzy derived operators [18]. In the framework of L-fuzzy setting, Wu
et al introduced L-topologies derived internal relations, L-topological derived enclosed re-
lations and L-topological derived neighborhood relations in L-topological spaces [26, 27].
Also, in the framework of M -fuzzifying settings, scholars introduced some derived oper-
ators in M -fuzzifying convex structures and M -fuzzifying matroids [3, 17, 29, 39]. These
derived operators have a common feature which takes an axiom to show the relation be-
tween a set and its adherent points. In addition, they have being used to characterize
their corresponding mathematical structures such as L-topology, M -fuzzifying convexity
or M -fuzzifying matroid. From the perspective of the composition of derived sets, schol-
ars extended adherent points and discussed Moore-Smith convergence theories in fuzzy
topological spaces [1, 2, 15,34,35].

In view of the above statements, a natural question arises: can derived operator be
applied to L-convex enclosed relation or L-concave internal relation? Specifically, is there
any L-concave derived internal relation or L-convex derived enclosed relation such that
the following diagrams communicate?

L-concavity oo [28] // L-concave
internal relation

L-concave derived
hull operator?

��
?
OO

oo ? // L-concave derived
internal relation?

�� ?
OO

Figure 1. Problem 1.

L-convexity oo [6] // L-convex
enclosed relation

L-convex derived
hull operator?

��
?
OO

oo ? // L-convex derived
enclosed relation?

�� ?
OO

Figure 2. Problem 2.

Being motivated by the above problems, we present this paper. The arrangement of
this paper is as follows. In Section 2, we recall some basic concepts, denotations and
results of L-convex space and L-concave space. In Section 3, we introduce L-concave
derived internal relation space and L-concave derived hull space by which we characterize
L-concave space. In Section 4, we introduce L-convex derived enclosed relation space and
L-convex derived hull space by which we characterize L-convex space.

2. Preliminaries
In this paper, X and Y are nonempty sets. The power set of X is denoted by 2X . For

any A ∈ 2X , 2A
fin is the set of all finite subsets of A. (L, ∨, ∧) is a completely distributive

lattice with a partial order ≤ defined by x ≤ y iff x ∨ y = y (alternatively x ∧ y = x) for
all x, y ∈ L. The smallest element and the largest element in L are respectively denoted
by ⊥ and ⊤. An element a ∈ L is called a co-prime element, if for all b, c ∈ L, a ≤ b ∨ c
implies a ≤ b or a ≤ c. The set of all co-prime elements in L\{⊥} is denoted by J(L). For
any a ∈ L, there is L1 ⊆ J(L) such that a =

∨
b∈L1 b. A binary relation ≺ on L is defined

by a ≺ b iff for any L1 ⊆ L, b ≤
∨

L1 implies some d ∈ L1 such that a ≤ d. The mapping
β : L → 2L, defined by β(a) = {b : b ≺ a}, satisfies β(

∨
i∈I ai) =

∪
i∈I β(ai) for any

{ai}i∈I ⊆ L. For any a ∈ L, β(a) and β∗(a) = β(a) ∩ J(L) satisfy a =
∨

β(a) =
∨

β∗(a).
An L-fuzzy set on X is a mapping A : X → L. The set of all L-fuzzy sets on X is

denoted by LX . The smallest element and the largest element in LX are respectively
denoted by ⊥ and ⊤. A subset {Ai}i∈I ⊆ LX is said to be up-directed (or down-directed),
denoted by {Ai}dir

i∈I ⊆ LX (or {Ai}ddir
i∈I ⊆ LX), if for all i, j ∈ I, there is k ∈ I such that

Ai ∨ Aj ≤ Ak (or, Ak ≤ Ai ∧ Aj). In this case, we denote
∨

i∈I Ai (or
∧

i∈I Ai) by
∨dir

i∈I Ai

(or
∧ddir

i∈I Ai). For any A ∈ LX , we denote β∗(A) = {xλ ∈ LX : λ ∈ β∗(A(x))}.
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For a mapping f : X → Y , the L-fuzzy mapping f→L : LX → LY is defined by
f→L (A)(y) =

∨
{A(x) : f(x) = y} for A ∈ LX and y ∈ Y , and the mapping f←L : LY → LX

is defined by f←L (B)(x) = B(f(x)) for B ∈ LY and x ∈ X.

Definition 2.1 ([7]). A subset C ⊆ LX is called an L-convex structure on LX and the
pair (X,C) is called an L-convex space if

(LC1) ⊤, ⊥ ∈ C;
(LC2)

∧
i∈I Ai ∈ C for any subset {Ai}i∈I ⊆ C;

(LC3)
∨dir

i∈I Ai ∈ C for any {Ai}dir
i∈I ⊆ C.

Proposition 2.2 ([12]). The L-convex hull operator coC : LX → LX of an L-convex space
(X,C) is defined by coC(A) =

∧
{B ∈ C : A ≤ B} for any A ∈ LX . It satisfies

(LCO1) coC(⊥) = ⊥;
(LCO2) A ≤ coC(A);
(LCO3) coC(coC(A)) = coC(A);
(LCO4) coC(

∨dir
i∈I Ai) =

∨
i∈I coC(Ai) for any {Ai}dir

i∈I ⊆ LX .
Conversely, if an operator co : LX → LX satisfies (LCO1)–(LCO4), then the set Cco =

{A ∈ LX : co(A) = A} is an L-convex structure satisfying coCco = co.

Let (X,CX) and (Y,CY ) be L-convex spaces. A mapping f : X → Y is called an
L-convexity preserving mapping, if f←L (A) ∈ CX for any A ∈ CY . It is proved that a
mapping f : X → Y is an L-convexity preserving mapping if and only if f→L (coCX

(A)) ≤
coCY

(f→L (A)) for any A ∈ LX . The category of L-convex spaces and L-convex preserving
mappings is denoted by L-CS [12].

Definition 2.3 ([12]). A subset A ⊆ LX is called an L-concave structure on LX and the
pair (X,A) is called an L-concave space if

(LCA1) ⊤, ⊥ ∈ A;
(LCA2)

∨
i∈I Ai ∈ A for any {Ai}i∈I ⊆ A;

(LCA3)
∧ddir

i∈I Ai ∈ A for any {Ai}ddir
i∈I ⊆ A.

Proposition 2.4 ([12]). The L-concave hull operator caA : LX → LX of an L-concave
space (X,A) is defined by caA(A) =

∨
{B ∈ A : B ≤ A} for any A ∈ LX . It satisfies

(LCAH1) caA(⊤) = ⊤;
(LCAH2) caA(A) ≤ A;
(LCAH3) caA(caA(A)) = caA(A);
(LCAH4) caA(

∧ddir
i∈I Ai) =

∧
i∈I caA(Ai) for any {Ai}ddir

i∈I ⊆ LX .
Conversely, if an operator ca : LX → LX satisfies (LCAH1)–(LCAH4), then the set

Aca = {A ∈ LX : ca(A) = A} is an L-concave structure satisfying caAca = ca.

Let (X,AX) and (Y,AY ) be L-concave spaces. A mapping f : X → Y is called an
L-concavity preserving mapping, if f←L (A) ∈ AX for any A ∈ AY . It is proved that a
mapping f : X → Y is an L-concavity preserving mapping if and only if f←L (caAY

(B)) ≤
caAX

(f←L (B)) for any B ∈ LY . The category of L-concave spaces and L-concavity pre-
serving mappings is denoted by L-CAS [12, 28].

Definition 2.5 ([6]). A binary relation ⪕ on LX is called an L-convex enclosed relation
and the pair (X,⪕) is called an L-convex enclosed relation space, if ⪕ satisfies

(LCER1) ⊥ ⪕ ⊥;
(LCER2) A ⪕ B implies A ≤ B;
(LCER3) A ⪕ ∧

i∈I Bi iff A ⪕ Bi for all i ∈ I;
(LCER4) A ⪕ B implies some C ∈ LX with A ⪕ C ⪕ B;
(LCER5)

∨dir
i∈I Ai ⪕ B iff Ai ⪕ B for any i ∈ I.
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Let (X,⪕X) and (Y,⪕Y ) be L-convex enclosed relation spaces. A mapping f : X → Y
is called an L-convex enclosed relation preserving mapping, if f←L (A) ⪕X f←L (B) for all
A, B ∈ LX with A ⪕Y B [6].

The category of L-convex enclosed relation spaces and L-convex enclosed relation pre-
serving mappings is denoted by L-CERS [6].

Proposition 2.6 ([6]). (1) Let (X,⪕) be an L-convex enclosed relation space. Define an
operator co⪕ : LX → LX by

∀A ∈ LX , co⪕(A) =
∧

{B ∈ LX : A ⪕ B}.

Then co⪕ is the L-convex hull operator of an L-convex structure C⪕.
(2) Let (X,C) be an L-convex space. Define a binary relation ⪕C by

∀A, B ∈ LX , A ⪕C B ⇐⇒ coC(A) ≤ B.

Then ⪕C is an L-convex enclosed relation.
(3) ⪕C⪕=⪕ for any L-convex enclosed relation space (X,⪕) and C⪕C

= C for any L-
convex space (X,C).

Theorem 2.7 ([6]). L-CS is isomorphic to L-CERS.

Definition 2.8 ([28]). A binary relation ⩽ on LX is called an L-concave internal relation
and the pair (X,⩽) is called an L-concave internal relation space, if ⩽ satisfies

(LCIR1) ⊤ ⩽ ⊤;
(LCIR2) A ⩽ B implies A ≤ B;
(LCIR3)

∨
i∈I Ai ⩽ B iff Ai ⩽ B for all i ∈ I;

(LCIR4) A ⩽ B implies C ∈ LX with A ⩽ C ⩽ B;
(LCIR5) A ⩽ ∧ddir

i∈I Bi iff A ⩽ Bi for any i ∈ I.

Let (X,⩽X) and (Y,⩽Y ) be L-concave internal relation spaces. A mapping f : X → Y
is called an L-concave internal relation preserving mapping, if f←L (A) ⩽X f←L (B) for all
A, B ∈ LX with A ⩽Y B.

The category of L-concave internal relation spaces and L-concave internal relation pre-
serving mappings is denoted by L-CIRS [28].

Proposition 2.9 ([28]). (1) Let (X,A) be an L-concave space. Define a binary relation
⩽A on LX by

∀A, B ∈ LX , A ⩽A B ⇐⇒ A ≤ caA(B).

Then ⩽A is an L-concave internal relation.
(2) Let (X,⩽) be an L-concave internal relation space. Define an operator ca⩽ : LX →

LX by

∀A ∈ LX , ca⩽(A) =
∨

{B ∈ LX : B ⩽ A}.

Then ca⩽ is an L-concave hull operator of an L-concave structure A⩽.
(3) ⩽A⩽=⩽ for any L-concave internal relation space (X,⩽) and A⩽A

= A for any
L-concave space (X,A).

Theorem 2.10 ([28]). L-CAS is isomorphic to L-CIRS.

3. L-concave derived internal relation spaces
In this section, we introduce the notion of L-concave derived internal relation space

which can be used to characterize L-concave internal relation space and L-concave space.
Also, we introduce the notion of L-concave derived hull operator by which we can obtain
a simple characterization of L-concave derived internal relation space.
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Definition 3.1. A binary relation ≼ on LX is called an L-concave derived internal rela-
tion and the pair (X,≼) is called an L-concave derived internal relation space, if for all
A, B, C ∈ LX and xλ ∈ β∗(⊤),

(LCDIR1) ⊤ ≼ ⊤;
(LCDIR2) A ≼ B iff xλ ≼ B ∨ xλ for any xλ ∈ β∗(A);
(LCDIR3)

∨
i∈I Ai ≼ B iff Ai ≼ B for any i ∈ I;

(LCDIR4) A ≼ B implies C ∈ LX such that A ∧ B ≼ C ≼ B and A ∧ B ≤ C ≤ B;
(LCDIR5) A ≼ ∧ddir

i∈I Bi iff A ≼ Bi for any i ∈ I.

Let (X,≼X) and (Y,≼Y ) be L-concave derived internal relation spaces. A mapping
f : X → Y is called an L-concave derived internal relation preserving mapping, if for all
f←L (A ∧ B) ≼X f←L (B) for all A, B ∈ LY with A ≼Y B.

The category of L-concave derived internal relation spaces and L-concave derived in-
ternal relation preserving mappings is denoted by L-CDIRS.

Now, we study relations between L-CDIRS and L-CIRS.

Proposition 3.2. Let (X,≼) be an L-concave derived internal relation space. Define a
binary relation ⩽≼ on LX by for all A, B ∈ LX ,

A ⩽≼ B ⇐⇒ ∃C ∈ LX s.t. C ≼ B and A = B ∧ C.

Then ⩽≼ is an L-concave internal relation.

Proof. (LCIR1). ⊤ ≼ ⊤ and ⊤ ∧ ⊤ = ⊤ by (LCDIR1). Thus ⊤ ⩽≼ ⊤.
(LCIR2). It follows from the definition.
(LCIR3). Let

∨
i∈I Ai ⩽≼ B. Then there is C ∈ LX such that C ≼ B and

∨
i∈I Ai =

B ∧ C. For any i ∈ I, Ai ≤
∨

i∈I Ai ≼ B. Thus Ai ≼ B and Ai = B ∧ Ai. Hence Ai ⩽≼ B.
Conversely, assume that Ai ⩽≼ B for any i ∈ I. For any i ∈ I, there is Ci ∈ LX such

that Ci ≼ B and Ai = B ∧ Ci. Thus
∨

i∈I Ci ≼ B by (LCDIR3). Further,∨
i∈I

Ai =
∨
i∈I

(B ∧ Ci) = B ∧
∨
i∈I

Ci.

Hence
∨

i∈I Ai ⩽≼ B.
(LCIR4). Let A ⩽≼ B. There is D ∈ LX such that D ≼ B and A = B ∧ D. By D ≼ B

and (LCDIR4), there is C ∈ LX such that A = D ∧ B ≼ C ≼ B and A ≤ C ≤ B. Thus
A ⩽≼ C ⩽≼ B.

(LCIR5). If A ⩽≼
∧ddir

i∈I Bi then there is D ∈ LX such that D ≼ ∧ddir
i∈I Bi and A =∧ddir

i∈I (Bi ∧ D). For any j ∈ I, A ≤ D ≼ ∧ddir
i∈I Bi ≤ Bj . Thus A ≼ Bj and A ≤ Bj . Hence

A ⩽≼ Bj .
Conversely, assume that {Bi}ddir

i∈I ⊆ LX with A ⩽≼ Bi for any i ∈ I. Then there is
Di ∈ LX such that Di ≼ Bi and A = Di ∧ Bi. Let D =

∧
i∈I Di. Then D ≤ Di ≼ Bi for

any i ∈ I. Thus D ≼ Bi for any i ∈ I. Hence D ≼ ∧ddir
i∈I Bi by (LCDIR5). Since

A =
∧
i∈I

(Di ∧ Bi) = D ∧
ddir∧
i∈I

Bi,

we conclude that A ⩽≼
∧ddir

i∈I Bi. □

Proposition 3.3. Let (X,≼X) and (Y,≼Y ) be L-concave derived internal relation spaces.
If f : X → Y is an L-concave derived internal relation preserving mapping, then f :
(X,⩽≼X ) → (Y,⩽≼Y ) is an L-concave internal relation preserving mapping.

Proof. If A ⩽≼Y B then there is C ∈ LY such that C ≼Y B and A = B ∧ C. Thus
f←L (C ∧ B) ≼X f←L (B) and f←L (A) = f←L (C ∧ B) ∧ f←L (B). Hence f←L (A) ⩽≼X f←L (B).
Therefore f is an L-concave internal relation preserving mapping. □
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Proposition 3.4. Let (X,⩽) be an L-concave internal relation space. Define a binary
relation ≼⩽ on LX by for all A, B ∈ LX ,

A ≼⩽ B ⇐⇒ ∀xλ ∈ β∗(A), xλ ⩽ B ∨ xλ.

Then ≼⩽ is an L-concave derived internal relation.

Proof. It is clear that A ≼⩽ B for any A, B, C, D ∈ LX with A ≤ C ≼⩽ D ≤ B.
(LCDIR1). If xλ ∈ β∗(⊤), then xλ ≤ ⊤ ⩽ ⊤ = ⊤ ∨ xλ. Thus xλ ⩽ ⊤. Hence ⊤ ≼⩽ ⊤.
(LCDIR2). Let A ≼⩽ B and let xλ ∈ β∗(A). To prove that xλ ≼⩽ B ∨ xλ, let

xη ∈ β∗(xλ). Then xη ∈ β∗(A). By A ≼⩽ B, we have xη ⩽ B ∨ xη ≤ (B ∨ xλ) ∨ xη. Thus
xη ⩽ (B ∨ xλ) ∨ xη. Hence xλ ≼⩽ B ∨ xλ.

Conversely, assume that xλ ≼⩽ B ∨ xλ for any xλ ∈ β∗(A). To prove that A ≼⩽ B, let
xλ ∈ β∗(A). By xλ ≼⩽ B ∨ xλ, we have xη ⩽ B ∨ xλ ∨ xη = B ∨ xλ for any xη ∈ β∗(xλ).
Thus xλ =

∨
xη∈β∗(xλ) ⩽ B ∨ xλ by (LCIR3). Hence A ≼⩽ B.

(LCDIR3). If
∨

i∈I Ai ≼⩽ B, then it is clear that Ai ≼⩽ B for any i ∈ I. Conversely,
assume that Ai ≼⩽ B for any i ∈ I. To prove that

∨
i∈I Ai ≼⩽ B, let xλ ∈ β∗(

∨
i∈I Ai).

Then there is i ∈ I such that xλ ∈ β∗(Ai). By Ai ≼⩽ B, we have xλ ⩽ B ∨ xλ. Therefore∨
i∈I Ai ≼⩽ B.
(LCDIR4). Let A ≼⩽ B. Let

D =
∨

{F ∈ LX : F ≤ B, F ≼⩽ B}.

We have A∧B ≤ D ≤ B. In addition, D ≼⩽ B by (LCDIR3). To prove that A∧B ≼⩽ D,
we check that yη ⩽ D ∨ yη for any yη ∈ β∗(A ∧ B).

Let yη ∈ β∗(A ∧ B). From A ≼⩽ B, it is clear that yη ⩽ B ∨ yη = B. By (LCIR4),
there is C ∈ LX such that yη ⩽ C ⩽ B. Thus yη ≤ C ≤ B by (LCIR2). For any
zθ ∈ β∗(C), zθ ≤ C ⩽ B ≤ B ∨ zθ which implies that zθ ⩽ B ∨ zθ. Hence C ≼⩽ B and
then C ≤ D. Further, yη ⩽ D ∨ yη by yη ⩽ C ≤ D ∨ yη. Therefore A ∧ B ≼⩽ D ≼⩽ B
and A ∧ B ≤ D ≤ B as desired.

(LCDIR5). If A ≼⩽
∧ddir

i∈I Bi, then A ≼⩽ Bi for any i ∈ I. Conversely, assume that
{Bi}ddir

i∈I ⊆ LX with A ≼⩽ Bi for any i ∈ I. Then xλ ⩽ Bi ∨ xλ for any xλ ∈ β∗(A) and
any i ∈ I. Thus, by (LCIR5),

xλ ⩽
ddir∧
i∈I

(Bi ∨ xλ) = (
ddir∧
i∈I

Bi) ∨ xλ.

Therefore A ≼⩽
∧ddir

i∈I Bi. □
Proposition 3.5. Let (X,⩽X) and (Y,⩽Y ) be L-concave internal relation spaces. If
f : X → Y is an L-concave internal relation preserving mapping, then f : (X,≼⩽X ) →
(Y,≼⩽Y ) is an L-concave derived internal relation preserving mapping.

Proof. Let A ≼⩽Y B. If f←L (A ∧ B) = ⊥ then f←L (A ∧ B) ≼⩽X f←L (B) is trivial. Let
f←L (A ∧ B) ̸= ⊥. If xλ ∈ β∗(f←L (A ∧ B)) then f→L (xλ) ∈ β∗(A ∧ B). Thus f→L (xλ) ⩽Y

B ∨ f→L (xλ) and
f←L (f→L (xλ)) ⩽X f←L (B) ∨ f←L (f→L (xλ)) = f←L (B).

Since xλ ≤ f←L (f→L (xλ)) it follows that xλ ⩽X f←L (B). Hence xλ ⩽X f←L (B) ∨ xλ which
implies that f←L (A∧B) ≼⩽X f←L (B). Therefore f is an L-concave derived internal relation
preserving mapping. □
Proposition 3.6. If (X,⩽) is an L-concave interval relation space then ⩽≼⩽=⩽; if (X,≼)
is an L-concave derived internal relation space then ≼⩽≼=≼.

Proof. Let (X,⩽) be an L-concave internal relation space. If A ⩽≼⩽ B, then A ≤ B by
(LCIR2). In addition, there is C ∈ LX such that C ≼⩽ B and A = B ∧ C. Thus A ≼⩽ B
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which implies that xλ ⩽ B ∨ xλ = B for any xλ ∈ β∗(A). Hence A =
∨

xλ∈β∗(A) xλ ⩽ B

by (LCIR3).
Conversely, if A ⩽ B then A ≤ B by (LCIR2). For any xλ ∈ β∗(A), xλ ≤ A ⩽ B and

so xλ ⩽ B = B ∨ xλ. Hence A ≼⩽ B. Since A ∧ B = A it follows that A ⩽≼⩽ B.
In conclusion, for all A, B ∈ LX , A ⩽≼⩽ B iff A ⩽ B. That is, ⩽≼⩽=⩽.
Let (X,≼) be an L-concave derived internal relation space.
If A ≼⩽≼ B and xλ ∈ β∗(A), then xλ ⩽≼ B ∨ xλ. Thus there is C ∈ LX such that

C ≼ B and xλ = (B ∨ xλ) ∧ C. Hence xλ ≤ C ≼ B ∨ xλ and so xλ ≼ B ∨ xλ. Therefore
A ≼ B by (LCDIR2).

Conversely, assume that A ≼ B. If xλ ∈ β∗(A) then xλ ≤ A ≼ B ≤ B ∨ xλ. Thus
xλ ≼ B ∨ xλ. By this result and xλ = xλ ∧ (B ∨ xλ), we have xλ ⩽≼ B ∨ xλ. Hence
A ≼⩽≼ B.

In conclusion, for all A, B ∈ LX , we have A ≼⩽≼ B iff A ≼ B. That is, ≼⩽≼=≼. □
Based on Propositions 3.2 and 3.3, we define a functor U : L-CDIRS → L-CIRS by

U((X,≼)) = (X,⩽≼), U(f) = f.

Based on Propositions 3.2–3.6, U is an isomorphic functor.

Theorem 3.7. L-CDIRS is isomorphic to L-CIRS.

Based on Propositions 2.9, 3.2–3.6 and Theorem 3.7, relationships between L-concave
space and L-concave derived internal relation space can be presented as follows.

Corollary 3.8. (1) Let (X,≼) be an L-concave derived internal relation space. Define an
operator ca≼ : LX → LX by

∀A ∈ LX , ca≼(A) = A ∧
∨

{B ∈ LX : B ≼ A}.

Then ca≼ is an L-concave hull operator which induces an L-concave structure denoted by
A≼.

(2) Let (X,A) be an L-concave space. Define a binary relation ≼A on LX by

∀A, B ∈ LX , A ≼A B ⇐⇒ ∀xλ ∈ β∗(A), xλ ≤ caA(B ∨ xλ).
Then ≼A is an L-concave derived internal relation.

(3) If (X,≼) is an L-concave derived internal relation space then ≼A≼=≼. If (X,A) is
an L-concave space then A≼A

= A.

Proof. (1). Let A, B ∈ LX . Then

B ⩽≼ A ⇐⇒ ∃C ∈ LX , B = A ∧ C ≤ C ≼ A

⇐⇒ A ∧ B = B ≼ A.

Thus, by Proposition 2.9,

ca≼(A) = A ∧
∨

{B ∈ LX : B ≼ A}

=
∨

{A ∧ B : ∃B ∈ LX , B ≼ A}

=
∨

{B ∈ LX : B ⩽≼ A}
= ca⩽≼(A).

Hence ca≼ = ca⩽≼ . Therefore ca≼ is an L-concave hull operator.
(2). Let A, B ∈ LX . By Proposition 2.9(1), we have

A ≼⩽A
B ⇐⇒ ∀xλ ∈ β∗(A), xλ ⩽A B ∨ xλ

⇐⇒ ∀xλ ∈ β∗(A), xλ ≤ caA(B ∨ xλ)
⇐⇒ A ≼A B.
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Thus ≼A=≼⩽A
. Hence, by Proposition 3.4, ≼A is an L-concave derived internal relation.

(3). Let (X,≼) be an L-concave derived internal relation space. Let A, B ∈ LX . By
Propositions 2.9 and 3.6,

A ≼A≼ B ⇐⇒ A ≼⩽A⩽≼
B ⇐⇒ A ≼⩽≼ B ⇐⇒ A ≼ B.

Thus ≼A≼=≼.
Let (X,A) be an L-concave space. Let A ∈ LX . By Propositions 2.9 and 3.6,

ca≼A
(A) = ca⩽≼⩽A

(A) = ca⩽A
(A) = caA(A).

Therefore A≼A
= Aca≼A

= AcaA
= A. □

Theorem 3.9. L-CDIRS is isomorphic to L-CAS.

To simply characterize L-CDIRS, we introduce L-concave derived hull space as follows.

Definition 3.10. An operator I : LX → LX is called an L-concave derived hull operator
on LX and the pair (X, I) is called an L-concave derived hull space if for all A, B ∈ LX ,

(LCADH1) I(⊤) = ⊤;
(LCADH2) A ≤ I(B) iff xλ ≤ I(B ∨ xλ) for any xλ ∈ β∗(A);
(LCADH3) A ∧ I(A) ≤ I(A ∧ I(A));
(LCADH4) I(

∧ddir
i∈I Ai) =

∧
i∈I I(Ai).

Let (X, IX) and (Y, IY ) be L-concave derived hull spaces. A mapping f : X → Y is
called an L-concave derived hull preserving mapping, if f←L (IY (B) ∧ B) ≤ IX(f←L (B)) for
all B ∈ LY . The category of L-concave derived hull spaces and L-concave derived hull
preserving mappings is denoted by L-CADHS.

To characterize L-CADHS, we first show that an L-concave derived hull operator
induces an L-concave derived internal relation.

Proposition 3.11. Let (X, I) be an L-concave derived hull space. Define a binary relation
≼I on LX by

∀A, B ∈ LX , A ≼I B ⇐⇒ A ≤ I(B).
Then (X,≼I) is an L-concave derived internal relation space.

Proof. We check that ≼I satisfies (LCDIR1)–(LCDIR5).
(LCDIR1). I(⊤) = ⊤ by (LCADH1). Thus ⊤ ≼I ⊤.
(LCDIR2). It follows from (LCADH2).
(LCDIR3). If

∨
i∈I Ai ≼I B then Aj ≤

∨
i∈I Ai ≤ I(B) for any j ∈ I. Thus Aj ≼I B for

any j ∈ I. Conversely, assume that Ai ≼I B for any i ∈ I. Then Ai ≤ I(B) for any i ∈ I.
Hence

∨
i∈I Ai ≤ I(B). Therefore

∨
i∈I Ai ≼I B.

(LCDIR4). Let A ≼I B and let E = B ∧ I(B). By A ≼I B, A ≤ I(B). Thus
A ∧ B ≤ E ≤ B. Since E ≤ I(B), E ≼I B. In addition, by (LCADH3),

A ∧ B ≤ E = B ∧ I(B) ≤ I(B ∧ I(B)) = I(E).
Thus A ∧ B ≼I E. Therefore A ∧ B ≼I E ≼I B and A ∧ B ≤ E ≤ B as desired.

(LCDIR5). By (LCADH4), I is monotonic. So the desired result is direct. □
Proposition 3.12. Let (X, IX) and (Y, IY ) be L-concave derived hull spaces. If f : X →
Y is an L-concave derived hull preserving mapping, then f : (X,≼IX

) → (Y,≼IY
) is an

L-concave derived internal relation preserving mapping.

Proof. If A ≼IY
B then A ≤ IY (B). Thus f←L (A) ≤ f←L (IY (B)) and
f←L (A ∧ B) ≤ f←L (IY (B)) ∧ f←L (B) ≤ IX(f←L (B)).

Hence f←L (A ∧ B) ≼IX
f←L (B). Therefore f is an L-concave derived internal relation

preserving mapping. □
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Also, we can obtain an L-concave derived hull operator from an L-concave internal
relation.
Proposition 3.13. Let (X,≼) be an L-concave derived internal relation space. Define an
operator I≼ : LX → LX by

∀A ∈ LX , I≼(A) =
∨

{B ∈ LX : B ≼ A}.

Then (X, I≼) is an L-concave derived hull space.
Proof. (LCADH1). ⊤ ≤ I≼(⊤) by (LCDIR1). Thus I≼(⊤) = ⊤.

(LCADH2). Let A ≤ I≼(B). If xλ ∈ β∗(A), then xλ ≺ I≼(B). Thus there is D ∈ LX

such that xλ ≤ D and D ≼ B. Hence xλ ≤ D ≼ B ≤ B ∨ xλ and then xλ ≼ B ∨ xλ.
Therefore xλ ≤ I≼(B ∨ xλ).

Conversely, assume that xλ ≤ I≼(B∨xλ) for any xλ ∈ β∗(A). To prove that A ≤ I≼(B),
let xλ ∈ β∗(A). Then xλ ≤ I≼(B ∨ xλ). For any xη ∈ β∗(xλ), xη ≺ I≼(B ∨ xλ). Thus
there is a D ∈ LX such that xη ≤ D ≼ B ∨ xλ. Hence xη ≼ B ∨ xλ. So xλ ≼ B ∨ xλ by
(LCDIR3). Thus A ≼ B by (LCDIR2). Therefore A ≤ I≼(B).

(LCADH3). By (LCDIR3), I≼(A) ≼ A. For any xλ ∈ β∗(A ∧ I≼(A)), there is D ∈ LX

such that xλ ≤ D ≼ A. By D ≼ A and (LCDIR4), there is C ∈ LX such that D ∧ A ≼
C ≼ A and xλ ≤ D ∧ A ≤ C ≤ A. Thus C ≤ I≼(A) ∧ A. Hence D ∧ A ≼ I≼(A) ∧ A which
implies that

xλ ≤ D ∧ A ≤ I≼(I≼(A) ∧ A).
Therefore A ∧ I≼(A) ≤ I≼(I≼(A) ∧ A).

(LCADH4). If {Ai}ddir
i∈I ⊆ LX , then it is cleat that I≼(

∧ddir
i∈I Ai) ≤

∧
i∈I I≼(Ai). Con-

versely, let xλ ∈ β∗(
∧

i∈I I≼(Ai)). Since xλ ∈ β∗(I≼(Ai)) for any i ∈ I, there is Ci ∈ LX

such that xλ ≤ Ci ≼ Ai. Let C =
∧

i∈I Ci. Then xλ ≤ C ≼ Ai for any i ∈ I. Thus
xλ ≤ C ≼ ∧ddir

i∈I Ai which implies that xλ ≤ I≼(
∧ddir

i∈I Ai). Therefore
∧

i∈I I≼(Ai) ≤
I≼(

∧ddir
i∈I Ai). □

Proposition 3.14. Let (X,≼X) and (Y,≼Y ) be L-concave derived internal relation spaces.
If f : X → Y is an L-concave derived internal relation preserving mapping, then f :
(X, I≼X ) → (Y, I≼Y ) is an L-concave derived hull preserving mapping.
Proof. Let B ∈ LY . In order to prove that f←L (I≼Y (B) ∧ B) ≤ I≼X (f←L (B)), let xλ ∈
β∗(f←L (I≼Y (B)∧B)). Then f→L (xλ) ≺ I≼Y (B)∧B. By f→L (xλ) ≺ I≼Y (B), there is D ∈ LY

such that f→L (xλ) ≤ D ≼Y B. Thus
xλ ≤ f←L (D) ∧ f←L (B) = f←L (D ∧ B) ≼X f←L (B).

Hence xλ ≤ I≼X (f←L (B)) and then f←L (I≼Y (B) ∧ B) ≤ I≼X (f←L (B)). Therefore f is an
L-concave derived hull preserving mapping. □
Proposition 3.15. If (X, I) is an L-concave derived hull space, then I≼I

= I; if (X,≼)
is an L-concave derived internal relation space, then ≼I≼=≼.

Proof. Let (X, I) be an L-concave derived hull space and A ∈ LX . It is clear that

I≼I
(A) =

∨
{D ∈ LX : D ≼I A} ≤ I(A).

Conversely, I(A) ≼I A by I(A) ≤ I(A). Thus I(A) ≤ I≼I
(A). Therefore I≼I

= I.
Let (X,≼) be an L-concave derived internal relation space. If A ≼ B then

A ≤
∨

{E ∈ LX : E ≼ B} = I≼(B).

Thus A ≼I≼ B. Conversely, if A ≼I≼ B, then A ≤ I≼(B). For any xλ ∈ β∗(A), xλ ≺ I≼(B).
Thus there is a set E ∈ LX such that xλ ≤ E ≼ B. Hence xλ ≼ B ∨ xλ. By (LCDIR2), it
follows that A ≼ B.

In conclusion, for any A, B ∈ LX , A ≼ B iff A ≼I≼ B. That is, ≼I≼=≼. □
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Based on Propositions 3.13 and 3.14, we get a functor W : L-CDIRS→ L-CADHS by

W((X,≼)) = (X, I≼), W(f) = f.

Based on Propositions 3.11–3.15, W is isomorphic. So we obtain the following result.

Theorem 3.16. L-CDIRS is isomorphic to L-CADHS.

Based on Corollary 3.8 and Propositions 3.11–3.15, relationships between L-concave
derived hull spaces and L-concave spaces can be presented as follows.

Corollary 3.17. (1) Let (X, I) be an L-concave derived hull space. Define an operator
caI : LX → LX by

∀A ∈ LX , caI(A) = A ∧ I(A).

Then caI is the L-concave hull operator of an L-concave space (X,AI);
(2) Let (X,A) be an L-concave space. Define an operator IA : LX → LX by

∀A ∈ LX , IA(A) =
∨

{B ∈ LX : ∀xλ ∈ β∗(B), xλ ≤ caA(A ∨ xλ)}.

Then IA is an L-concave derived hull operator;
(3) IAI

= I for any L-concave derived hull space (X, I) and AIA = A for any L-concave
space (X,A).

Proof. (1). Let A ∈ LX . By Corollary 3.8(2),

I≼A
(A) =

∨
{B ∈ LX : B ≼A A}

=
∨

{B ∈ LX : ∀xλ ∈ β∗(B), xλ ≤ caA(A ∨ xλ)}
= IA(A).

Thus IA = I≼A
. Hence, by Proposition 3.13, IA is an L-concave derived hull operator.

(2). Let A ∈ LX . By Corollary 3.8(1) and Proposition 3.11,

ca≼I
(A) = A ∧

∨
{B ∈ LX : B ≼I A}

= A ∧
∨

{B ∈ LX : B ≤ I(A)}
= A ∧ I(A)
= caI(A).

Thus caI = ca≼I
. Hence ca≼I

is an L-concave derived interior operator. In addition,
AI = A≼I

. Therefore AI is an L-concave structure.
(3). Let (X, I) be an L-concave derived hull space. Let A ∈ LX . By Corollary 3.8(3)

and Proposition 3.15,

IAI
(A) = I≼A≼I

(A) = I≼I
(A) = I(A).

Thus IAI
= I.

Let (X,A) be an L-concave space. By Corollary 3.8(3) and Proposition 3.15,

caIA(A) = ca≼I≼A

(A) = ca≼A
(A) = caA(A)

for any A ∈ LX . Thus AIA = AcaIA
= AcaA

= A. □

Theorem 3.18. L-CADHS is isomorphic to L-CAS.

Relations among categories mentioned in this section is showed by the following diagram.
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L-CIRS oo Th.3.7// L-CDIRS ooTh.3.16// L-CADHS

L-CAS
��
Th.3.9

OO

''[28]

ggOOOOOOOOOOO vv Th.3.18

66nnnnnnnnnnnn

Figure 3. Relations 1.

4. L-convex derived enclosed relation spaces
In this section, we introduce the notion of L-convex derived enclosed relations by which

we characterize L-convex enclosed relation spaces and L-convex spaces. Further, we intro-
duce the notion of L-convex derived hull space and get a brief characterization of L-convex
derived enclosed relation space. For these purposes, we introduce the following notions.

For A ∈ LX and xλ ∈ β∗(⊤), we denote β∗λ(L) = {µ ∈ β∗(⊤) : λ ∈ β∗(µ)} and

Axλ
=

∨
{yµ ∈ β∗(A) : xλ ̸≤ yµ}.

For convenience, we also denote yη ̸≤∗ A for yη ∈ β∗(⊤) and yη ̸≤ A.

Proposition 4.1 ([27]). For all xλ, yη ∈ β∗(⊤), A ∈ LX and {Ai}i∈I ⊆ LX ,
(1) xλ ̸≤∗ A implies Axλ

= A;
(2) A ≤ B implies Axλ

≤ Bxλ
;

(3) (Axλ
)xλ

= Axλ
;

(4) µ ∈ β∗λ(L) implies Axλ
≤ Axµ and (Axµ)xλ

= (Axλ
)xµ = Axλ

;
(5) yη ̸≤ ⊤xλ

iff x = y and η ∈ β∗λ(L);
(6) A =

∧
xλ ̸≤∗A ⊤xλ

;
(7) (

∨
i∈I Ai)xλ

=
∨

i∈I(Ai)xλ
.

Definition 4.2. A binary relation ⋞ on LX is called an L-convex derived enclosed relation
and the pair (X,⋞) is called an L-convex derived enclosed relation space, if for all A, B, C ∈
LX and xλ ∈ β∗(⊤),

(LCDER1) ⊥ ⋞ ⊥;
(LCDER2) A ⋞ B iff Axµ ⋞ ⊤xλ

and Axµ ≤ ⊤xλ
for any xλ ̸≤∗ B and any µ ∈ β∗λ(L);

(LCDER3) A ⋞ ∧
i∈I Bi iff A ⋞ Bi for any i ∈ I;

(LCDER4) A ⋞ B implies C ∈ LX such that A ⋞ C ⋞ A ∨ B and A ≤ C ≤ A ∨ B;
(LCDER5)

∨dir
i∈I Ai ⋞ B iff Ai ⋞ B for any i ∈ I.

It directly follows from (LCDER3) and (LCDER5) that C ⋞ D for all A, B, C, D ∈ LX

with C ≤ A ⋞ B ≤ D.
Let (X,⋞X) and (Y,⋞Y ) be L-convex derived enclosed relation spaces. A mapping f :

X → Y is called an L-convex derived enclosed relation preserving mapping if f←L (A) ⋞X

f←L (B) ∨ f←L (A) for all A, B ∈ LY with A ⋞Y B.
The category of L-convex derived enclosed relation spaces and L-convex derived enclosed

relation preserving mappings is denoted by L-CDERS.

Proposition 4.3. Let (X,⋞) be an L-convex derived enclosed relation space. Define a
binary relation ⪕⋞ on LX by for all A, B ∈ LX ,

A ⪕⋞ B ⇐⇒ ∃C ∈ LX s.t. A ⋞ C and A ∨ C = B.

Then ⪕⋞ is an L-convex enclosed relation space.

Proof. (LCER1). We have ⊥ ⋞ ⊥ by (LCDER1). In addition, it follows from ⊥ = ⊥ ∨ ⊥
that ⊥ ⪕⋞ ⊥.

(LCER2). It directly follows from the definition.
(LCER3). If A ⪕⋞

∧
i∈I Bi, then there is C ∈ LX such that A ⋞ C and A∨C =

∧
i∈I Bi.

Then A ∨ C ≤ Bi for any i ∈ I. Thus A ⋞ Bi and A ∨ Bi = Bi. That is, A ⪕⋞ Bi for any
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i ∈ I. Conversely, assume that A ⪕⋞ Bi for any i ∈ I. Then there is Ci ∈ LX such that
A ⋞ Ci and A ∨ Ci = Bi for any i ∈ I. Thus A ⋞ ∧

i∈I Bi by (LCDER3) and

A ∨
∧
i∈I

Ci =
∧
i∈I

(A ∨ Ci) =
∧
i∈I

Bi.

Thus A ⪕⋞
∧

i∈I Bi.
(LCER4). Let A ⪕⋞ B. Then there is D ∈ LX such that A ⋞ D and A ∨ D = B. By

(LCDER4), there is C ∈ LX such that A ⋞ C ⋞ B and A ≤ C ≤ B. Hence A ⪕⋞ C ⪕⋞ B.
Therefore C satisfies the requirement.

(LCER5). Let
∨dir

i∈I Ai ⪕⋞ B. Then there is D ∈ LX such that
∨dir

i∈I Ai ⋞ D and∨dir
i∈I Ai ∨ D = B. Thus Ai ⋞ B and Ai ∨ B = B for any i ∈ I. That is Ai ⪕⋞ B for

any i ∈ I. Conversely, assume that Ai ⪕⋞ B for any i ∈ I. Then there is Di ∈ LX

such that Ai ⋞ Di and Ai ∨ Di = B for any i ∈ I. Let D =
∨

i∈I Di. Then Ai ⋞ D

for any i ∈ I. Thus
∨dir

i∈I Ai ⋞ D by (LCDER5). Since
∨dir

i∈I Ai ∨ D = B, it follows that∨dir
i∈I Ai ⪕⋞ B. □

Proposition 4.4. Let (X,⋞X) and (Y,⋞Y ) be L-convex derived enclosed relation spaces.
If f : X → Y is an L-convex derived enclosed relation preserving mapping, then f :
(X,⪕⋞X ) → (Y,⪕⋞Y ) is an L-convex enclosed relation preserving mapping.

Proof. If A ⪕⋞Y B then there is C ∈ LY such that A ⋞Y C and A ∨ C = B. Thus
f←L (A) ⋞X f←L (A ∨ C) and

f←L (A) ∨ f←L (A ∨ C) = f←L (A ∨ C) = f←L (B).

Hence f←L (A) ⪕⋞X f←L (B). So f is an L-convex enclosed relation preserving mapping. □

Proposition 4.5. Let (X,⪕) be an L-convex enclosed relation space. Define a binary
relation ⋞⪕ on LX by

∀A, B ∈ LX , A ⋞⪕ B ⇐⇒ ∀xλ ̸≤∗ B, ∀µ ∈ β∗λ(L), Axµ ⪕ ⊤xλ
.

Then (X,⋞⪕) is an L-convex derived enclosed relation space.

Proof. Clearly, A ⋞⪕ B for any A, B, C, D ∈ LX with A ≤ C ⋞⪕ D ≤ B.
(LCDER1). It directly follows from (LCER1) of ⪕.
(LCDER2). Let A ⋞⪕ B. Let xλ ̸≤∗ B and µ ∈ β∗λ(L). Then B ≤ ⊤xλ

by xλ ̸≤ B.
Thus Axµ ≤ A ⋞⪕ B ≤ ⊤xλ

which implies that Axµ ⋞⪕ ⊤xλ
. Further, by A ⋞⪕ B,

Axµ ⪕ ⊤xλ
. Hence Axµ ≤ ⊤xλ

by (LCER2).
Conversely, assume that Axµ ⋞⪕ ⊤xλ

and Axµ ≤ ⊤xλ
for any xλ ̸≤∗ B and any µ ∈

β∗λ(L). Suppose that A ̸⋞⪕ B. Then there are xλ ̸≤∗ B and µ ∈ β∗λ(L) such that
Axµ ̸⪕ ⊤xλ

. Since µ ∈ β∗λ(L), xµ ̸≤ ⊤xλ
. Further, by Axµ ⋞⪕ ⊤xλ

,

Axµ = (Axµ)xµ ⪕ (⊤xλ
)xµ = ⊤xλ

.

It is a contradiction. Therefore A ⋞⪕ B.
(LCDER3). If A ⋞⪕

∧
i∈I Bi, then it is clear that A ⋞⪕ Bi for any i ∈ I. Conversely,

assume that A ⋞⪕ Bi for any i ∈ I. For any xλ ̸≤∗
∧

i∈I Bi, there is i ∈ I such that
xλ ̸≤∗ Bi. By A ⋞⪕ Bi, it follows that Axµ ⪕ ⊤xλ

for any µ ∈ β∗λ(L). Therefore
A ⋞⪕

∧
i∈I Bi.

(LCDER4). Let A ⋞⪕ B and let

D =
∧

{F ∈ LX : A ⋞⪕ F}.

Then A ≤ A∨D ≤ A∨B. Next, we verify that E = A∨D satisfies that A ⋞⪕ E ⋞⪕ A∨B.
Indeed, we have A ⋞⪕ D by (LCDER3). Thus A ⋞⪕ E. To prove that E ⋞⪕ A ∨ B,

let xλ ̸≤∗ A ∨ B. We prove that Exµ ⪕ ⊤xλ
for any µ ∈ β∗λ(L).
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By A ⋞⪕ B, A = Axµ ⪕ ⊤xλ
. By (LCER4), there is C ∈ LX such that A ⪕ C ⪕ ⊤xλ

.
Thus A ≤ C ≤ ⊤xλ

by (LCER2). For any zη ̸≤∗ C and any θ ∈ β∗η(L),

Azθ
= A ⪕ C = Czη ≤ ⊤zη

.

Hence A ⋞⪕ C which implies that D ≤ C ⪕ ⊤xλ
. So E ≤ C ⪕ ⊤xλ

and then Exµ ⪕ ⊤xλ
.

Therefore E ⋞⪕ A ∨ B. In conclusion, E satisfies the requirement.

(LCDER5). If
∨dir

i∈I Ai ⋞⪕ B, then Ai ⋞⪕ B for any i ∈ I. Conversely, let {Ai}i∈I

dir
⊆ LX

with Ai ⋞⪕ B for any i ∈ I. Let xλ ̸≤∗ B and µ ∈ β∗(L). Then (Ai)xµ ⪕ ⊤xλ
and

(Ai)xµ ≤ ⊤xλ
for any i ∈ I. Thus (

∨dir
i∈I Ai)xµ =

∨dir
i∈I(Ai)xµ by (7) of Proposition 4.1.

Hence (
∨dir

i∈I Ai)xµ ⪕ ⊤xλ
by (LCER5). Therefore

∨dir
i∈I Ai ⋞⪕ B. □

Proposition 4.6. Let (X,⪕X) and (Y,⪕Y ) be L-convex enclosed relation spaces. If f :
X → Y is an L-convex enclosed relation preserving mapping, then f : (X,⋞⪕X ) → (Y,⋞⪕Y

) is an L-convex derived enclosed relation preserving mapping.

Proof. Let A ⋞⪕Y B. To prove that f←L (A) ⋞⪕X f←L (A ∨ B), let xλ ̸≤∗ f←L (A ∨ B) and
µ ∈ β∗λ(L). Then f(x)µ ̸≤∗ A ∨ B. By A ⋞⪕Y B, A = Af(x)µ

⪕Y ⊤f(x)λ
and A ≤ ⊤f(x)λ

.
Thus

f←L (A)xµ = f←L (A) ⪕X f←L (⊤f(x)λ
) ≤ ⊤xλ

.

Hence f←L (A) ⋞⪕X f←L (A ∨ B). Therefore f is an L-convex derived enclosed relation
preserving mapping. □

Proposition 4.7. If (X,⋞) is an L-convex derived enclosed relation space then ⋞⪕⋞=⋞;
if (X,⪕) is an L-convex enclosed relation space then ⪕⋞⪕=⪕.

Proof. Let (X,⪕) be an L-convex enclosed relation space. If A ⪕⋞⪕ B, then there is
C ∈ LX such that A ⋞⪕ C and A ∨ C = B. Thus A ⋞⪕ B and A ≤ B. By A ⋞⪕ B,
A = Axµ ⪕ ⊤xλ

for any xλ ̸≤∗ B and µ ∈ β∗λ(L). Hence A ⪕ ∧
xλ ̸≤∗B ⊤xλ

= B by
(LCER3). That is, A ⪕ B.

Conversely, if A ⪕ B then A ≤ B by (LCER2). For any xλ ̸≤∗ B and µ ∈ β∗λ(L),
Axµ = A ⪕ B ≤ ⊤xλ

. Thus Axµ ⪕ ⊤xλ
. Hence A ⋞⪕ B. Further, by A ⋞⪕ B and

A ∨ B = B, it follows that A ⪕⋞⪕ B.
In conclusion, A ⪕⋞⪕ B iff A ⪕ B for all A, B ∈ LX . That is, ⪕⋞⪕=⪕.
Let (X,⋞) be an L-convex derived enclosed relation space. Let A ⋞⪕⋞ B. If xλ ̸≤∗ B

and µ ∈ β∗λ(L), we have Axµ ⪕⋞ ⊤xλ
. Thus there is C ∈ LX such that Axµ ⋞ C and

Axµ ∨ C = ⊤xλ
. Hence Axµ ⋞ ⊤xλ

and Axµ ≤ ⊤xλ
. Therefore A ⋞ B by (LCDER2).

Conversely, let A ⋞ B. To prove that A ⋞⪕⋞ B, let xλ ̸≤∗ B and µ ∈ β∗λ(L). We need
to prove that Axµ ⪕⋞ ⊤xλ

.
Actually, by A ⋞ B ≤ ⊤xλ

, it is clear that Axµ ⋞ ⊤xλ
and Axµ ≤ ⊤xλ

by (LCDER2).
In addition, by Axµ ∨ ⊤xλ

= ⊤xλ
, Axµ ⪕⋞ ⊤xλ

. Therefore A ⋞⪕⋞ B

In conclusion, for all A, B ∈ LX , A ⋞⪕⋞ B iff A ⋞ B. That is, ⋞⪕⋞=⋞. □

Based on Propositions 4.3 and 4.4, we obtain a functor F : L-CDERS→ L-CERS
defined by

F((X,⋞)) = (X,⪕⋞), F(f) = f.

Based on Propositions 4.3–4.7, F is an isomorphic functor. So we get the following result.

Theorem 4.8. L-CDERS is isomorphic to L-CERS.

Based on Propositions 2.6, 4.3–4.7 and Theorem 4.8, relationships between L-convex
derived enclosed relation spaces and L-convex spaces are presented as follows.
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Corollary 4.9. (1) Let (X,⋞) be an L-convex derived enclosed relation space. Define an
operator co⋞ : LX → LX by

∀A ∈ LX , co⋞(A) = A ∨
∧

{B ∈ LX : A ⋞ B}.

Then co⋞ is an L-convex hull operator which induces an L-convex structure denoted by
C⋞.

(2) Let (X,C) be an L-convex space. Define a binary operator ⋞C on LX by

∀A, B ∈ LX , A ⋞C BŁ∀xλ ̸≤∗ B, ∀µ ∈ β∗λ(L), coC(Axµ) ≤ ⊤xλ
.

Then (X,⋞C) is an L-convex derived enclosed relation space.
(3) ⋞C⋞=⋞ for any L-convex derived enclosed relation space (X,⋞) and C⋞C

= C for
any L-convex space (X,C).

Proof. (1). Let A, B ∈ LX . Then

A ⪕⋞ B ⇐⇒ ∃C ∈ LX , A ⋞ C ≤ A ∨ C = B

⇐⇒ A ⋞ A ∨ B = B.

Thus, by Proposition 2.6(2),

co⋞(A) = A ∨
∧

{B ∈ LX : A ⋞ B}

=
∧

{A ∨ B : ∃B ∈ LX , A ⋞ B}

=
∧

{B ∈ LX : A ⪕⋞ B}
= co⪕⋞(A).

Hence co⋞ = co⪕⋞ . Therefore co⋞ is an L-convex hull operator.
(2). Let A, B ∈ LX . By Proposition 2.6(1), it follows that

A ⋞⪕C
B ⇐⇒ ∀xλ ̸≤∗ B, ∀µ ∈ β∗λ(L), Axµ ⪕C ⊤xλ

⇐⇒ ∀xλ ̸≤∗ B, ∀µ ∈ β∗λ(L), coC(Axµ) ≤ ⊤xλ

⇐⇒ A ⋞C B.

Thus ⋞C=⋞⪕C
. Hence, by Proposition 4.5, ⋞C is an L-convex derived enclosed relation.

(3). Let (X,⋞) be an L-convex derived enclosed relation space. Let A, B ∈ LX . By
Propositions 2.6 and 4.7,

A ⋞C⋞ B ⇐⇒ A ⋞⪕C⪕⋞
B ⇐⇒ A ⋞⪕⋞ B ⇐⇒ A ⋞ B.

Thus ⋞C⋞=⋞.
Let (X,C) be an L-convex space. Let A ∈ LX . By Propositions 2.6 and 4.7,

co⋞C
(A) = co⪕⋞⪕C

(A) = co⪕C
(A) = coC(A).

Therefore C⋞C
= Cco⋞C

= CcoC = C. □

Theorem 4.10. L-CDERS is isomorphic to L-CS.

To simply characterize L-CDERS, we introduce L-convex derived hull operator.

Definition 4.11. An operator D : LX → LX is called an L-convex derived hull operator
on LX and the pair (X,D) is called an L-convex derived hull space if for all A, B ∈ LX

and any xλ ∈ β∗(⊤),
(LCDH1) D(⊥) = ⊥;
(LCDH2) D(A) ≤ B iff

∨
µ∈β∗

λ
(L) D(Axµ) ∨ Axµ ≤ ⊤xλ

for any xλ ̸≤∗ B;
(LCDH3) D(D(A) ∨ A) ≤ D(A) ∨ A;
(LCDH4) D(

∨dir
i∈I Ai) =

∨
i∈I D(Ai).
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Let (X,DX) and (Y,DY ) be L-convex derived hull spaces. A mapping f : X → Y is
called an L-convex derived hull preserving mapping, if for any A ∈ LX ,

f→L (DX(A)) ≤ DY (f→L (A)) ∨ f→L (A).

The category of L-convex derived hull spaces and L-convex derived hull preserving
mappings is denoted by L-CDHS.

Proposition 4.12. Let (X,D) be an L-convex derived hull space. Define a binary relation
⋞D on LX by

∀A, B ∈ LX , A ⋞D B ⇐⇒ D(A) ≤ B.

Then ⋞D is an L-convex derived enclosed relation space.

Proof. (LCDER1). D(⊥) = ⊥ by (LCDH1). Thus ⊥ ⋞D ⊥.
(LCDER2). It follows from (LCDH2).
(LCDER3). If A ⋞D

∧
i∈I Bi then D(A) ≤

∧
i∈I Bi ≤ Bj for any j ∈ I. Thus A ⋞D Bj

for any j ∈ I. Conversely, if A ⋞D Bi for any i ∈ I, then D(A) ≤ Bi. Thus D(A) ≤
∧

i∈I Bi

which implies that A ⋞D

∧
i∈I Bi.

(LCDER4). Let A ⋞D B and let E = D(A) ∨ A. Then E ⋞D E ≤ B by (LCDH3).
Thus E ⋞D B. In addition, A ⋞D E by D(A) ≤ E. Therefore A ⋞D E ⋞D A ∨ B and
A ≤ E ≤ A ∨ B as desired.

(LCDER5). It directly follows from (LCDH4). □

Proposition 4.13. Let (X,DX) and (Y,DY ) be L-convex derived hull spaces. If f : X →
Y is an L-convex derived hull preserving mapping, then f : (X,⋞DX

) → (Y,⋞DY
) is an

L-convex derived enclosed relation preserving mapping.

Proof. If A ⋞DY
B then DY (A) ≤ B. Thus

f→L (DX(f←L (A))) ≤ DY (f→L (f←L (A))) ∨ f→L (f←L (A))
≤ A ∨ DY (A)
≤ A ∨ B.

Hence f←L (A) ⋞DX
f←L (A) ∨ f←L (B) and

DX(f←L (A)) ≤ f←L (A ∨ B) = f←L (A) ∨ f←L (B).

Therefore f is an L-convex derived enclosed relation preserving mapping. □

Proposition 4.14. Let (X,⋞) be an L-convex derived enclosed relation space. Define an
operator D⋞ : LX → LX by

∀A ∈ LX , D⋞(A) =
∧

{B ∈ LX : A ⋞ B}.

Then (X,D⋞) is an L-convex derived hull space.

Proof. (LCDH1). We have D⋞(⊥) ≤ ⊥ by (LCDER1). Thus D⋞(⊥) = ⊥.
(LCDH2). If D⋞(A) ≤ B then A ⋞ D⋞(A) ≤ B which implies A ⋞ B. By (LCDER2),

it is clear that Axµ ≤ ⊤xλ
and Axµ ⋞ ⊤xλ

for all xλ ̸≤∗ B and µ ∈ β∗λ(L). Thus∨
µ∈β∗(L)(D⋞(Axµ) ∨ Axµ) ≤ ⊤xλ

.
Conversely, assume that

∨
µ∈β∗

λ
(L)(D⋞(Axµ) ∨ Axµ) ≤ ⊤xλ

for any xλ ̸≤∗ B. By
(LCDER3), it follows that Axµ ⋞ D⋞(Axµ) for all xλ ̸≤∗ B and µ ∈ β∗λ(L). Thus Axµ ⋞
⊤xλ

and Axµ ≤ ⊤xλ
. Hence A ⋞ ⊤xλ

by (LCDER2). Therefore D⋞(A) ≤
∧

xλ ̸≤∗B ⊤xλ
= B

by Proposition 4.1(6).
(LCDH3). Let xλ ∈ β∗(⊤) with xλ ̸≤ D⋞(A) ∨ A. Then xλ ̸≤ A and xλ ̸≤ D⋞(A).

By xλ ̸≤ D⋞(A), there is B ∈ LX such that xλ ̸≤ B and A ⋞ B. By (LCDER4), there
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is E ∈ LX such that A ⋞ E ⋞ B ∨ A and A ≤ E ≤ B ∨ A. By A ⋞ E, it is clear that
D⋞(A) ∨ A ≤ E ⋞ A ∨ B. Thus

D⋞(D⋞(A) ∨ A) ≤ (A ∨ B) ̸≥ xλ.

Hence xλ ̸≤ D⋞(D⋞(A) ∨ A). Therefore we conclude that D⋞(D⋞(A) ∨ A) ≤ D⋞(A) ∨ A.
(LCDH4). Clearly, we have

∨
i∈I D⋞(Ai) ≤ D⋞(

∨dir
i∈I Ai). Conversely, let xλ ∈ J(LX)

with xλ ̸≤
∨

i∈I D⋞(Ai). Thus there is µ ∈ β∗(λ) such that xµ ̸≤
∨

i∈I D⋞(Ai). For any
i ∈ I, by xµ ̸≤ D⋞(Ai), there is Ci ∈ LX such that xµ ̸≤ Ci and Ai ⋞ Ci. Let C =

∨
i∈I Ci.

Then Ai ⋞ C for any i ∈ I. So
∨dir

i∈I Ai ⋞ C ̸≥ xλ. Hence xλ ̸≤ D⋞(
∨dir

i∈I Ai). Therefore
D⋞(

∨dir
i∈I Ai) ≤

∨
i∈I D⋞(Ai). □

Proposition 4.15. Let (X,⋞X) and (Y,⋞Y ) be L-convex derived enclosed relation spaces.
If f : X → Y is an L-convex derived enclosed relation preserving mapping, then f :
(X,D⋞X ) → (Y,D⋞Y ) is an L-convex derived hull preserving mapping.

Proof. Let A ∈ LX and xλ ∈ J(LX) with xλ ̸≤ f←L (D⋞Y (f→L (A))) ∨ f←L (f→L (A)). Then
f→L (xλ) ̸≤ D⋞Y (f→L (A)) ∨ f→L (A).

By f→L (xλ) ̸≤ D⋞Y (f→L (A)), there is B ∈ LX such that f→L (xλ) ̸≤ B and f→L (A) ⋞Y B.
Thus xλ ̸≤ f←L (B) and A ≤ f←L (f→L (A)) ⋞X f←L (B). Hence A ⋞X f←L (B) and xλ ̸≤
D⋞X (A). So

f→L (D⋞X (A)) ≤ f→L (f←L (D⋞Y (f→L (A))) ∨ f←L (f→L (A)))
≤ D⋞Y (f→L (A)) ∨ f→L (A).

Therefore f is an L-convex derived hull preserving mapping. □
Proposition 4.16. If (X,⋞) is an L-convex derived enclosed relation space then ⋞D⋞=⋞;
if (X,D) is an L-convex derived hull space then D⋞D

= D.

Proof. Let (X,D) be an L-convex derived hull space and A ∈ LX . We have

D(A) ≤
∧

{B ∈ LX : A ⋞D B} = D⋞D
(A).

Conversely, D(A) ≤ ⊤xλ
for any xλ ̸≤∗ D(A). Thus A ⋞D ⊤xλ

and D⋞D
(A) ≤ ⊤xλ

. So

D⋞D
(A) ≤

∧
xλ ̸≤D(A)

⊤xλ
= D(A).

Therefore D⋞D
(A) = D(A). So D⋞D

= D.
Let (X,⋞) be an L-convex derived enclosed relation space. If A ⋞ B then D⋞(A) ≤ B

and so A ⋞D⋞ B. Conversely, if A ⋞D⋞ B, then D⋞(A) ≤ B and A ⋞ D⋞(A) by
(LCDER3). Thus A ⋞ B. In conclusion, A ⋞ B iff A ⋞D⋞ B. That is, ⋞D⋞=⋞. □

Based on Propositions 4.14 and 4.15, we get a functor G : L-CDERS→ L-CDHS by
G((X,⋞)) = (X,D⋞), G(f) = f.

Based on Propositions 4.12–4.16, G is isomorphic. So we obtain the following result.

Theorem 4.17. L-CDERS is isomorphic to L-CDHS.

Based on Corollary 4.9 and Propositions 4.12–4.16, and Theorem 4.17, relationships
between L-convex derived hull relation spaces and L-convex spaces are presented as follows.

Corollary 4.18. (1) Let (X,D) be an L-convex derived hull space. Define an operator
coD : LX → LX by

∀A ∈ LX , coD(A) = D(A) ∨ A.

Then coD is the L-convex hull operator of an L-convex structure denoted by CD.
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(2) Let (X,C) be an L-convex space. Define an operator DC : LX → LX by

∀A ∈ LX , DC(A) =
∧

{B ∈ LX : ∀xλ ̸≤∗ B, ∀µ ∈ β∗λ(L), coC(Axµ) ≤ ⊤xλ
}.

Then DC is an L-convex derived hull operator.
(3) DCD

= D for any L-convex derived hull space (X,D) and CDC
= C for any L-convex

space (X,C).

Proof. (1). Let A ∈ LX . By Corollary 4.9(2),

D⋞C
(A) =

∧
{B ∈ LX : A ⋞C B}

=
∧

{B ∈ LX : ∀xλ ̸≤∗ B, ∀µ ∈ β∗λ(L), coC(Axµ) ≤ ⊤xλ
}

= DC(A).
Thus DC = D⋞C

. Hence, by Proposition 4.14, DC is an L-convex derived hull operator.
(2). Let A ∈ LX . By Corollary 4.9(1) and Proposition 4.12, we have

co⋞D
(A) = A ∨

∧
{B ∈ LX : A ⋞D B}

= A ∨
∧

{B ∈ LX : D(A) ≤ B}
= A ∨ D(A)
= coD(A).

Thus coD = co⋞D
. Hence co⋞D

is an L-convex derived hull operator. In addition, CD =
C⋞D

. Therefore CD is an L-convex structure.
(3). Let (X,D) be an L-convex derived hull space. For any A ∈ LX . it follows from

Corollary 4.9(3) and Proposition 4.16 that
DCD

(A) = D⋞C⋞D

(A) = D⋞D
(A) = D(A).

Thus DCD
= D.

Let (X,C) be an L-convex space. For any A ∈ LX , it follows from Corollary 4.9(3) and
Proposition 4.16 that

coDC
(A) = co⋞D⋞C

(A) = co⋞C
(A) = coC(A).

Thus CDC
= CcoDC

= CcoC = C. □

Theorem 4.19. L-CDHS is isomorphic to L-CS.

The following diagram shows the relations among categories mentioned in this section.

L-CERS oo Th.4.8//
gg

[6] ''PP
PPP

PPP
PPP

P L-CDERS ooTh.4.17// L-CDHS

L-CS
��
Th.4.10

OO

ww Th.4.19

77nnnnnnnnnnnn

Figure 4. Relations 2.

5. Conclusions
(1) In this paper, we introduce notions of L-concave derived internal relation space

and L-concave derived internal space by which we characterize L-concave internal relation
space and L-concave space. Also, we introduce L-convex derived enclosed relation space
and L-convex derived hull space by which we characterize L-convex enclosed relation space
and L-convex space.

(2) Solutions of Problems 1 and 2 in the introduction section are presented as follows.
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L-concavity oo [28] //__

Th.3.9 ��?
??

??
?

L-concave
internal relation

L-concave derived
hull operator

(Definition 3.10)

��
Th.3.18

OO

ooTh.3.16//
L-convex derived
internal relation

(Definition 3.1)

�� Th.3.7
OO

Figure 5. Solution 1.

L-convexity oo [6] //__

Th.4.10 ��?
??

??
?

L-convex
enclosed relation

L-convex derived
hull operator

(Definition 4.11)

��
Th.4.19

OO

ooTh.4.17//
L-convex derived
enclosed relation

(Definition 4.2)

�� Th.4.8
OO

Figure 6. Solution 2.

(3) If L has an inverse involution ′ then a subset A ⊆ LX is an L-concave structure iff
the set A′ = {A′ : A ∈ A} is an L-convex structure. Similarly, a binary relation ⩽ on LX

is an L-concave internal relation iff the binary relation ⩽′ is an L-convex enclosed relation,
where ⩽′ is defined by A ⩽′ B iff B′ ⩽ A′ for all A, B ∈ LX . By this consideration, we
usually say that L-concave space and L-convex space are dual concepts. Similarly, L-
concave internal relation and L-convex enclosed relation are dual concepts too. However,
L-concave derived internal relation and L-convex derived enclosed relation can not to be
regarded as dual concepts in this sense. We have the following example.

Let X = {x} and L = {⊥, c, a, b, d, ⊤} be a lattice defined by Figure 7 as follows. The
inverse involution ′ is defined by ⊥′ = ⊤, a′ = b and c′ = d. Let C = {x⊥, xc, xa, x⊤}.
Then the L-convex derived enclosed relation ⋞C is presented by Table 1.

�������� ⊥��������c

��������a �������� b��������d

��������
⊤��������oooooooooooo OOOOOOOOOOOO��������OOOOOOOOOOOO ��������oooooooooooo
��������
��������

Figure 7

x⊥ xc xa xb xd x⊤

x⊥ ⋞C ⋞C ⋞C ⋞C ⋞C ⋞C

xc ⋞C ⋞C ⋞C ⋞C ⋞C ⋞C

xa ⋞C ⋞C ⋞C ⋞C ⋞C ⋞C

xb ⋞C ⋞C ⋞C ⋞C ⋞C ⋞C

xd ⋞C ⋞C ⋞C

x⊤ ⋞C ⋞C ⋞C

Table 1

Let ⋞′C be defined by A ⋞′C B iff B′ ⋞C A′ for all A, B ∈ LX . Clearly, β∗(xd) =
{xc, xa, xb}. Suppose that ⋞′C is an L-concave derived internal relation. We have xc ⋞′C
xc ∨ xc, xa ⋞′C xc ∨ xa and xb ⋞′C xc ∨ xb since xd ⋞C xd, xb ⋞C xb and xa ⋞C xa. Thus
xd ⋞′C xc by (LCDIR2). So xd ⋞C xc. But this is a contradiction. Therefore ⋞′C is not an
L-concave derived internal relation.

Actually, A = C′ = {x⊥, xb, xd, x⊤} is an L-concave space. From Table 2 and Table 3,
we find that ≼A is quite different from ⋞′C.

x⊥ xc xa xb xd x⊤

x⊥ ≼A ≼A ≼A ≼A ≼A ≼A

xc ≼A ≼A ≼A

xa ≼A ≼A ≼A

xb ≼A ≼A ≼A

xd ≼A ≼A ≼A

x⊤ ≼A ≼A ≼A

Table 2

x⊥ xc xa xb xd x⊤

x⊥ ⋞′C ⋞′C ⋞′C ⋞′C ⋞′C ⋞′C
xc ⋞′C ⋞′C ⋞′C ⋞′C ⋞′C ⋞′C
xa ⋞′C ⋞′C ⋞′C ⋞′C
xb ⋞′C ⋞′C ⋞′C ⋞′C ⋞′C ⋞′C
xd ⋞′C ⋞′C ⋞′C ⋞′C
x⊤ ⋞′C ⋞′C ⋞′C ⋞′C

Table 3

(4) In abstract convex structures, algebraic property of convex hulls is an essential
feature of convex structure which is different from many other mathematic structures
such as topological structures, convergence structure and matroid. With the development
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of fuzzy extensions of convex theory, such property has been accordingly extended by
many means [3,12,17,19,24]. Thus it could be worth to discuss presentations of algebraic
property in L-convex enclosed relation space, L-convex derived enclosed relation space
and L-convex derived hull space.

(5) The notions L-concave derived internal relation, L-concave derived hull operator,
L-convex derived enclosed relation and L-convex derived hull operator may provide some
alternative ways in discussing separation axioms of L-convex spaces and relations among
L-convex spaces, L-matroids and L-convergence spaces.
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