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Abstract − Conformable space-time fractional linear telegraph equations are examined using a 

new method known as conformable fractional Elzaki decomposition method. The suggested 

method combines the Adomian decomposition method with the conformable fractional Elzaki 

transform. It is found that numerical simulations confirm the effectiveness and reliability of the 

proposed method.  

Subject Classification (2020): 65R10. 

1. Introduction 

The appearance of fractional calculus is based on a question that Leibniz asked L’Hospital on 30 

September, 1695. Since 1695, the mathematicians have developed in fractional derivatives and 

produced derivatives of various orders. Recently, we have observed that fractional analysis allows an 

elegant modelling of a lot of interdisciplinary problems [1-7]. Until recently, the fractional derivative 

definitions such as Grunwald–Letnikov, Riesz, Riemann–Liouville, Caputo [2-3, 8 ] have been widely 

used in the solution methods to obtain the approximate solutions of differential equations. Since these 

derivative definitions include integral operators, the calculations are extremely challenging. Besides, 

analytical solutions usually can not be obtained in the models using these derivative definitions and to 

solve these equations scientists sometimes benefit from numerical methods.  

Different fractional-order models are utilized in engineering and the applied sciences because these 

models provide a more accurate description of real-world scenarios. Various researchers have already 

utilized conformable fractional derivatives in numerous disciplines. [9]. The conformable fractional 

operator [3, 10-12] overcomes certain limitations of the existing fractional operators and provides 

traditional calculus with properties including the mean value theorem, the chain rule, the product of 

two functions, the derivative of the quotient of two functions, and Rolle's theorem. 
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The telegraph equation has been improved by Oliver Heaviside in the 1880s, which defines the distance 

and time on an electric transmission line with voltage and current. The telegraph equation is usually 

implemented in the investigation of electric signals, as well as wave propagations in the wave 

phenomena and cable transmission line. The telegraph equation has a lot of applications in areas such 

as radio frequency, wireless signals, telephone lines, and microwave transmission [13]. Many numerical 

and analytical methods have been utilised to solve fractional-order telegraph equations, such as Laplace 

transform (LT) [14], homotopy perturbation method (HPM) [15], variational iteration method (VIM) 

[16] . Recently, Keskin and Oturanc has extended FRDM for FDEs, where they showed that FRDTM can 

simply obtain the exact solution for both linear and nonlinear FDEs [17-18]. In the literature, there are 

a lot of numerical and analytical methods such as conformable variational iteration method (C-VIM) 

[19], conformable fractional reduced differential transform method (CFRDTM) [19], conformable 

homotopy analysis method (C-HAM) [19], conformable fractional differential transform method 

(CFDTM) [20], conformable fractional adomian decomposition method (CFADM) [21] , and conformable 

modified homotopy perturbation method (CMHPM) [21]. The main motivation of writing this paper is 

to suggest a new method which is called conformable fractional Elzaki decomposition method (CFEDM) 

to obtain numerical solutions for the conformable time-fractional linear telegraph equations. 

In this study, CFEDM is applied to solve the following types of the conformable time-fractional linear 

telegraph equations.  

In this study, CFEDM is applied to solve the following types of the conformable time-fractional linear 

telegraph equations.  

1) One-dimensional space-time conformable fractional telegraph equation is introduced by 

𝜕2𝜇𝑤(𝑥, 𝑡)

𝜕𝑡2𝜇
+ 2𝛼

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝛽2𝑤(𝑥, 𝑡) =

𝜕2𝜗𝑤(𝑥, 𝑡)

𝜕𝑡2𝜗
+ ℎ(𝑥, 𝑡), 0 < 𝜗, 𝜇 ≤ 1.                                               (1) 

with the initial and boundary conditions  

𝑤(𝑥, 0) = 𝛷1(𝑥), 𝑤𝑡(𝑥, 0) = 𝛷2(𝑥), 𝑤(0, 𝑡) = 𝛷3(𝑡), 𝑤𝑥(0, 𝑡) = 𝛷4(𝑡).                                                            (2) 

2) Two-dimensional conformable fractional-order telegraph equation is given by 

𝜕2𝜇𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2𝜇
+ 2𝛼

𝜕𝜇𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡𝜇
+ 𝛽2𝑤(𝑥, 𝑦, 𝑡) =

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑦2
+ ℎ(𝑥, 𝑦, 𝑡),  

0 < 𝜇 ≤ 1, 𝜗 = 1.                                                                                                                                                               (3) 

with the initial and boundary conditions  

𝑤(𝑥, 𝑦, 0) = 𝜉1(𝑥, 𝑦), 𝑤𝑡(𝑥, 𝑦, 0) = 𝜉2(𝑥, 𝑦).                                                                                                             (4) 

3) Three-dimensional conformable fractional-order telegraph equation is introduced by 

𝜕2𝜇𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡2𝜇
+ 2𝛼

𝜕𝜇𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡𝜇
+ 𝛽2𝑤(𝑥, 𝑦, 𝑧, 𝑡) =

𝜕2𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥2
+

𝜕2𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦2
 

+
𝜕2𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧2
+ ℎ(𝑥, 𝑦, 𝑧, 𝑡), 0 < 𝜇 ≤ 1, 𝜗 = 1.                                                                                                   (5) 

with the initial and boundary conditions  

𝑤(𝑥, 𝑦, 𝑧, 0) = 𝜅1(𝑥, 𝑦, 𝑧), 𝑤𝑡(𝑥, 𝑦, 0) = 𝜅2(𝑥, 𝑦, 𝑧).                                                                                                 (6) 

In this study, the symbol 𝐷𝜇 represents the conformable fractional derivative operator. 

 



44 

 

Halil Anaç / IKJM/ 4(2) (2022) 42-55 

2. Preliminaries 

In this section, the definitions of conformable fractional calculus and Elzaki transform that should be 

utilized in the current study are presented. 

 

Definition 1 [11-12, 22 ]. Given a function 𝑓: [0, ∞) → ℝ. Then, the conformable fractional derivative of 

𝑓 order 𝛼 is defined by  

𝑇𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓(𝑥 + 𝜀𝑥1−𝛼) − 𝑓(𝑥)

𝜀
,                                                                                                                        (7) 

for all 𝑥 > 0, 𝛼 ∈ (0, 1]. 

 

Theorem 1 [11, 23]. Let 𝛼 ∈ (0, 1] and 𝑓, 𝑔 be 𝛼 −differentiable at a point 𝑥 > 0. Then it is obtained as  

(𝑖) 𝑇𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝛼(𝑓) + 𝑏𝑇𝛼(𝑔), for all 𝑎, 𝑏 ∈ ℝ,                                                                                             (8) 

(𝑖𝑖)𝑇𝛼(𝑥𝑝) = 𝑝𝑥𝑝−1, for all 𝑝 ∈ ℝ,                                                                                                                                (9) 

 (𝑖𝑖𝑖) 𝑇𝛼(𝜆) = 0, for all constant functions 𝑓(𝑡) = 𝜆,                                                                                            (10) 

(𝑖𝑣) 𝑇𝛼(𝑓𝑔) = 𝑓𝑇𝛼(𝑔) + 𝑔𝑇𝛼(𝑓),                                                                                                                               (11) 

(𝑣) 𝑇𝛼 (
𝑓

𝑔
) =

𝑔𝑇𝛼(𝑓) − 𝑓𝑇𝛼(𝑔)

𝑔2
.                                                                                                                                 (12) 

(vi) If 𝑓 is differentiable, then 𝑇𝛼(𝑓)(𝑡) = 𝑡1−𝛼 𝑑

𝑑𝑡
𝑓(𝑡).                                                                                      (13) 

 

Definition 2 [12]. Let 𝑓 be an 𝑛 −times differentiable at 𝑥. Then, the conformable fractional derivative of 

𝑓 order 𝛼 is defined by: 

𝑇𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓([𝛼]−1)(𝑥 + 𝜀𝑥([𝛼]−𝛼)) − 𝑓([𝛼]−1)(𝑥)

𝜀
,                                                                                       (14) 

for all 𝑥 > 0, 𝛼 ∈ (𝑛, 𝑛 + 1], [𝛼] is the smallest integer greater than or equal to 𝛼. 

 

Theorem 2 [12]. Let 𝑓 be an 𝑛 −times differentiable at 𝑥. Then 

𝑇𝛼(𝑓(𝑥)) = 𝑥[𝛼]−𝛼𝑓[𝛼](𝑥),                                                                                                                                           (15) 

for all 𝑥 > 0, 𝛼 ∈ (𝑛, 𝑛 + 1]. 

 

Definition 3 [23]. The Mittag-Leffler function 𝐸𝑎 is given as follows:  

𝐸𝑎(𝑧) = ∑
𝑧𝑎

Г(𝑛𝑎 + 1)

∞

𝑛=0

.                                                                                                                                                (16) 

 

Definition 4 [12]. The conformable fractional exponential function is defined for every 𝑡 ≥ 0 by  
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𝐸𝑎(𝑐, 𝑡) = 𝑒𝑥𝑝 (𝑐
𝑡𝛼

𝛼
),                                                                                                                                                   (17) 

where 𝑐 ∈ ℝ and 0 < 𝛼 ≤ 1. 

 

Definition 5 [24]. Let 0 <  𝛼 ≤ 1, 𝑓: [0,∞) → ℝ  be real valued function. The conformable fractional Elzaki 

transform of order 𝛼 of 𝑓  is defined by 

𝐸𝛼[𝑓(𝑡)](𝑣) = ∫ 𝑣

∞

0

𝐸𝛼 [−
1

𝑣
, 𝑡] 𝑓(𝑡)𝑑𝛼𝑡, 𝑣 > 0.                                                                                                      (18) 

The Elzaki transform for the conformable fractional-order derivative is described by 

𝐸𝛼[𝑇𝛼𝑓(𝑡)](𝑣) =
1

𝑣
𝐸𝛼[𝑓(𝑡)](𝑣) − 𝑣𝑓(0).                                                                                                                (19) 

 

Theorem 3. Let 𝐹𝛼[𝑣] = 𝐸𝛼[𝑓(𝑡)](v) exists for 𝑣 > 0. Then, it is obtained as  

1. If 𝑐 is a constant, then 

𝐸𝛼[𝑐] = 𝑣2,                                                                                                                                                                       (20) 

2. If w is a constant, then 

𝐸𝛼[𝑡𝑤] = 𝛼
𝑤
𝛼 Г (1 +

𝑤

𝛼
) 𝑣2+

𝑤
𝛼 .                                                                                                                                      (21) 

 

3. Conformable Fractional Elzaki Decomposition Method (CFEDM) 

Now to present the fundamental idea of CFEDM, we consider the conformable fractional order nonlinear 

partial differential equation: 

𝜕𝜇𝑢(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝜇 ≤ 𝑛,                                                                     (22) 

where 𝑅 indicates the linear operator, 𝑁 denotes the nonlinear operator, 𝑓(𝑥, 𝑡) symbolizes source term, and 
𝜕𝜇𝑢(𝑥,𝑡)

𝜕𝑡𝜇  is the conformable fractional derivative operator 𝜇. 

 

Now, by performing conformable Elzaki transform on Eq. (22) and using initial condition, we have  

1

𝑣
𝐸𝜇[𝑢(𝑥, 𝑡)] − 𝑣𝑢(𝑥, 0) + 𝐸𝜇[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)] = 𝐸𝜇[𝑓(𝑥, 𝑡)].                                                                   (23) 

If we simplify the Eq. (23), we get 

𝐸𝜇[𝑢(𝑥, 𝑡)] = 𝑣2𝑢(𝑥, 0) + 𝑣𝐸𝜇[𝑓(𝑥, 𝑡)] − 𝑣𝐸𝜇[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)].                                                               (24)  

On applying inverse conformable Elzaki transform to Eq. (24), we get 

𝑢(𝑥, 𝑡) = 𝐻(𝑥, 𝑡) − 𝐸𝜇
−1{𝑣𝐸𝜇[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)]},                                                                                          (25) 
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where 𝐻(𝑥, 𝑡) is obtained from initial condition and non-homogeneous term. Now, assume that, the infinite 

series solution is of the form: 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡).

∞

𝑚=0

                                                                                                                                                (26) 

By employing Eqs. (25)-(26), we have 

∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

= 𝐻(𝑥, 𝑡) − 𝐸𝜇
−1 (𝑣𝐸𝜇 [𝑅 ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

+ ∑ 𝐴𝑚

∞

𝑚=0

]).                                                                (27) 

where 𝐴𝑚 is the Adomian polynomial and which denotes the nonlinear term 𝑁𝑢(𝑥, 𝑡). By comparing both 

sides of Eq. (27), we get  

𝑢0(𝑥, 𝑡) = 𝐻(𝑥, 𝑡),                                                                                                                                                           (28) 

𝑢1(𝑥, 𝑡) = −𝐸𝜇
−1(𝑣𝐸𝜇[𝑅𝑢0(𝑥, 𝑡) + 𝐴0]),                                                                                                                 (29) 

𝑢2(𝑥, 𝑡) = −𝐸𝜇
−1(𝑣𝐸𝜇[𝑅𝑢1(𝑥, 𝑡) + 𝐴1]),                                                                                                                 (30) 

⋮ 

 

Similarly, we obtain the general recursive relation by  

𝑢𝑚+1(𝑥, 𝑡) = −𝐸𝜇
−1(𝑣𝐸𝜇[𝑅𝑢𝑚(𝑥, 𝑡) + 𝐴𝑚]), 𝑚 ≥ 1.                                                                                           (31) 

Finally, the approximate solution 𝑢(𝑥, 𝑡) is given by 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

.                                                                                                                                                 (32) 

4. Convergence Analysis  

Theorem 4.1. Let's assume that A is a Banach space. Then, the expansion result of 𝑢(𝑥, 𝑡) converges 

uncertainty; there becomes 𝜌, 0 <  𝜌 <  1, so that  ‖𝑢𝑖(𝑥, 𝑡)‖ ≤ 𝜌‖𝑢𝑖−1(𝑥, 𝑡)‖, for all i ∈ Ν. 

Proof. Consider the subsequent succession 

𝐻𝑖(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯ + 𝑢𝑖(𝑥, 𝑡).                                                                                     (33) 

It is vital to verify that successions of 𝑖-th partial sums 𝐻𝑖 (𝑥, 𝑡) are a Cauchy series in Banach space. In this 

regard, we consider the following: 

‖𝐻𝑖+1(𝑥, 𝑡) − 𝐻𝑖(𝑥, 𝑡)‖ ≤ ‖𝑢𝑖+1(𝑥, 𝑡)‖ ≤ 𝜌‖𝑢𝑖(𝑥, 𝑡)‖ ≤ 𝜌2‖𝑢𝑖−1(𝑥, 𝑡)‖ ≤ ⋯ ≤ 𝜌𝑖+1‖𝑢0(𝑥, 𝑡)‖.           (34) 

For every 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≤ 𝑗, it is obtained as 

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ ‖𝐻𝑗+1(𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ + ‖𝐻𝑗+2(𝑥, 𝑡) − 𝐻𝑗+1(𝑥, 𝑡)‖ + ⋯ 

+‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑖+1(𝑥, 𝑡)‖.                                                                                                                                              (35) 

Using the triangle inequality, then the inequality (35) transforms into the inequality (36): 

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ ‖𝐻𝑗+1(𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ + ‖𝐻𝑗+2(𝑥, 𝑡) − 𝐻𝑗+1(𝑥, 𝑡)‖ 

+ ⋯ + ‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑖+1(𝑥, 𝑡)‖.                                                                                                                                 (36) 
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The inequality (36) can be represented as follows: 

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ 𝜌𝑗+1‖𝑢0(𝑥, 𝑡)‖ + 𝜌𝑗+2‖𝑢0(𝑥, 𝑡)‖ + ⋯ + 𝜌𝑖‖𝑢0(𝑥, 𝑡)‖.                                            (37) 

The simple calculation enables us to write the inequality (37) as 

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ 𝜌𝑗+1(1 + 𝜌 + 𝜌2 + ⋯ + 𝜌𝑖−𝑗−1)‖𝑢0(𝑥, 𝑡)‖,                                                                (38) 

where (
1−𝜌𝑖−𝑗

1−𝜌
) = 1 + 𝜌 + 𝜌2 + ⋯ + 𝜌𝑖−𝑗−1.  

Thus, inequality (38) is obtained as  

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ 𝜌𝑗+1 (
1 − 𝜌𝑖−𝑗

1 − 𝜌
) ‖𝑢0(𝑥, 𝑡)‖.                                                                                            (39) 

Hence it is acquired as 0 < 𝜌 < 1, and  1 − 𝜌𝑖−𝑗 ≤ 1. 

Using inequality (39), we have  

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤
𝜌𝑖+1

1 − 𝜌
‖𝑢0(𝑥, 𝑡)‖.                                                                                                                 (40) 

Since 𝑢0(𝑥, 𝑡) is bounded, it is obtained as 

lim
𝑖,𝑗→∞

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ = 0.                                                                                                                                   (41) 

Thus, {𝐻𝑖} is a Cauchy series in Banach space. Hence, Eq. (32) converges.  

5. Applications  

Example 5.1 Consider the conformable time-fractional linear telegraph equation (CTFLTE) [25]  

𝜕2𝜇𝑤(𝑥, 𝑡)

𝜕𝑡2𝜇
+ 2

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤(𝑥, 𝑡) =

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
, 0 < 𝜇 ≤ 1, 𝑡 ≥ 0,                                                                (42) 

with the initial condition  

𝑤(𝑥, 0) = 𝑒𝑥 , 𝑤𝑡(𝑥, 0) = −2𝑒𝑥 .                                                                                                                                  (43)  

Now, by performing conformable Elzaki transform on Eq. (42), then we get 

1

𝑣2
𝐸𝜇{𝑤(𝑥, 𝑡)} − 𝑤(𝑥, 0) − 𝑣𝑤𝑡(𝑥, 0) + 𝐸𝜇 [2

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤(𝑥, 𝑡) −

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
] = 0.                               (44) 

If we simplify the Eq. (44), then we have 

𝐸𝜇{𝑤(𝑥, 𝑡)} = 𝑣2 𝑤(𝑥, 0) + 𝑣3𝑤𝑡(𝑥, 0) − 𝑣2𝐸𝜇 [2
𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤(𝑥, 𝑡) −

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
] .                               (45) 

Applying the inverse conformable Elzaki transform,  

𝑤(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2 𝑤(𝑥, 0) + 𝑣3𝑤𝑡(𝑥, 0) − 𝑣2𝐸𝜇 [2

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤(𝑥, 𝑡) −

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
]].                          (46) 

Using the ADM procedure, we obtain 

𝑤0(𝑥, 𝑡) = 𝐸𝜇
−1[𝑣2 𝑤(𝑥, 0) + 𝑣3𝑤𝑡(𝑥, 0)] = 𝐸𝜇

−1[𝑣2 𝑒𝑥 − 2𝑒𝑥𝑣3] =  𝑒𝑥 − 2𝑒𝑥
𝑡𝜇

𝜇
,                                 (47) 
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 𝑤𝑠+1(𝑥, 𝑡) = −𝐸𝜇
−1 [𝑣2𝐸𝜇 [2

𝜕𝜇𝑤𝑠(𝑥,𝑡)

𝜕𝑡𝜇 + 𝑤𝑠(𝑥, 𝑡) −
𝜕2𝑤𝑠(𝑥,𝑡)

𝜕𝑥2
]] ,              𝑠 = 0,1,2, …                                 (48) 

For 𝑠 = 0 in Eq. (48), we obtain  

 𝑤1(𝑥, 𝑡) = −𝐸𝜇
−1 [𝑣2𝐸𝜇 [2

𝜕𝜇𝑤0(𝑥,𝑡)

𝜕𝑡𝜇 + 𝑤0(𝑥, 𝑡) −
𝜕2𝑤0(𝑥,𝑡)

𝜕𝑥2
]],                                                                          (49) 

𝑤1(𝑥, 𝑡) = −𝐸𝜇
−1 [4𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1

𝜇
) 𝑣

2+
𝜇−1

𝜇
+2

] =
4𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) 𝑡3𝜇−1

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
)

.                           (50) 

We get the subsequent terms, recursively 

𝑤2(𝑥, 𝑡) = −𝐸𝜇
−1 [𝑣2𝐸𝜇 [2

𝜕𝜇𝑤1(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤1(𝑥, 𝑡) −

𝜕2𝑤1(𝑥, 𝑡)

𝜕𝑥2
]] 

=
−8𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) (3𝜇 − 1)𝜇
3𝜇−2

𝜇 Г (1 +
3𝜇 − 2

𝜇
) 𝑡5𝜇−2

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
) 𝜇

5𝜇−2
𝜇 Г (1 +

5𝜇 − 2
𝜇

)

,                                                                               (51) 

 

𝑤3(𝑥, 𝑡) = −𝐸𝜇
−1 [𝑣2𝐸𝜇 [2

𝜕𝜇𝑤2(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤2(𝑥, 𝑡) −

𝜕2𝑤2(𝑥, 𝑡)

𝜕𝑥2
]] 

=
16𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) (3𝜇 − 1)(5𝜇 − 2)𝜇
3𝜇−2

𝜇 Г (1 +
3𝜇 − 2

𝜇
)

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
) 𝜇

5𝜇−2
𝜇 Г (1 +

5𝜇 − 2
𝜇

)

,  

×
𝜇

5𝜇−3
𝜇 Г (1 +

5𝜇 − 3
𝜇

) 𝑡7𝜇−3

𝜇
7𝜇−3

𝜇 Г (1 +
7𝜇 − 3

𝜇
)

.                                                                                                                                               (52) 

⋮ 

Proceeding in a similar way, we obtain  

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯ = 𝑒𝑥 − 2𝑒𝑥
𝑡𝜇

𝜇
                   

+
4𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) 𝑡3𝜇−1

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
)

−
8𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) (3𝜇 − 1)𝜇
3𝜇−2

𝜇 Г (1 +
3𝜇 − 2

𝜇
) 𝑡5𝜇−2

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
) 𝜇

5𝜇−2
𝜇 Г (1 +

5𝜇 − 2
𝜇

)

 

+
16𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) (3𝜇 − 1)(5𝜇 − 2)𝜇
3𝜇−2

𝜇 Г (1 +
3𝜇 − 2

𝜇
) 𝜇

5𝜇−3
𝜇 Г (1 +

5𝜇 − 3
𝜇

) 𝑡7𝜇−3

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
) 𝜇

5𝜇−2
𝜇 Г (1 +

5𝜇 − 2
𝜇

) 𝜇
7𝜇−3

𝜇 Г (1 +
7𝜇 − 3

𝜇
)

+ ⋯                                                                                                                                                       (53) 
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Subsituting 𝜇 = 1 in Eq. (53), then CFEDM solution is reduced as 

𝑤(𝑥, 𝑡) = 𝑒𝑥 [1 − 2𝑡 +
(2𝑡)2

2!
−

(2𝑡)3

3!
+

(2𝑡)4

4!
− ⋯ ].                                                                                         (54) 

 This result is evaluated to the exact solution in a closed form: 

𝑤(𝑥, 𝑡) = 𝑒𝑥−2𝑡 .                                                                                                                                                              (55) 

The CFEDM solutions of  𝑤(𝑥, 𝑡) is found to be in excellent agreement  with the exact solution of problem. 

For more understanding the results for the variable 𝑤(𝑥, 𝑡) of Example 4.1 are plotted in Figure 1. In Figure 

1, we observe that this solution is higher accuracy.  

 

 

Fig. 1. (a) Nature of CFEDM solution for 𝑤(𝑥, 𝑡) (b) Nature of exact solution for 𝑤(𝑥, 𝑡) 

(c) Nature of absolute error=|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐶𝐹𝐸𝐷𝑀| in Ex. 5.1 at 𝜇 = 1. 

 

 

Fig. 2. Nature of CFEDM solution for 𝑤(𝑥, 𝑡) in Ex. 5.1 at 𝑥 = 0.5 with distinct 𝜇. 

Table 1. Numerical solution of 𝑤(𝑥, 𝑡) for CTFLTE by CFEDM in Ex. 5.1 at with distinct values of 𝑥 and 

𝑡 for diverse 𝜇.  
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𝒙 𝒕 𝝁 = 𝟎. 𝟕𝟓 𝝁 = 𝟎. 𝟖 𝝁 = 𝟎. 𝟖𝟓 𝝁 = 𝟎. 𝟗 𝝁 = 𝟏 

0.1 0.001 1.3 × 10−2 8.4 × 10−3 5.0 × 10−3 2.6 × 10−3 2.9 × 10−16 

 0.002 2.0 × 10−2 1.3 × 10−2 8.5 × 10−3 4.6 × 10−3 9.4 × 10−15 

 0.003 2.6 × 10−2 1.8 × 10−2 1.1 × 10−2 6.3 × 10−3 7.1 × 10−14 

 0.004 3.1 × 10−2 2.2 × 10−2 1.4 × 10−2 7.9 × 10−3 3.0 × 10−13 

 0.005 3.5 × 10−2 2.5 × 10−2 1.6 × 10−2 9.4 × 10−3 9.1 × 10−13 

0.2 0.001 1.4 × 10−2 9.3 × 10−2 5.5 × 10−3 2.9 × 10−3 3.2 × 10−16 

 0.002 2.2 × 10−2 1.5 × 10−2 9.4 × 10−3 5.1 × 10−3 1.0 × 10−14 

 0.003 2.9 × 10−2 2.0 × 10−2 1.2 × 10−2 7.0 × 10−3 7.9 × 10−14 

 0.004 3.4 × 10−2 2.4 × 10−2 1.5 × 10−2 8.8 × 10−3 3.3 × 10−13 

 0.005 3.9 × 10−2 2.8 × 10−2 1.8 × 10−2 1.0 × 10−2 1.0 × 10−12 

0.3 0.001 1.6 × 10−2 1.0 × 10−2 0.6 × 10−3 3.2 × 10−3 3.5 × 10−16 

 0.002 2.5 × 10−2 1.6 × 10−2 1.0 × 10−2 5.6 × 10−3 1.1 × 10−14 

 0.003 3.2 × 10−2 2.2 × 10−2 1.4 × 10−2 7.8 × 10−3 8.7 × 10−14 

 0.004 3.8 × 10−2 2.7 × 10−2 1.7 × 10−2 9.7 × 10−3 3.6 × 10−13 

 0.005 4.3 × 10−2 3.1 × 10−2 2.0 × 10−2 1.1 × 10−2 1.1 × 10−12 

0.4 0.001 1.7 × 10−2 1.1 × 10−2 6.7 × 10−3 3.5 × 10−3 3.9 × 10−16 

 0.002 2.7 × 10−2 1.8 × 10−2 1.1 × 10−2 6.2 × 10−3 1.2 × 10−14 

 0.003 3.5 × 10−2 2.4 × 10−2 1.5 × 10−2 8.6 × 10−3 9.6 × 10−14 

 0.004 4.2 × 10−2 3.0 × 10−2 1.9 × 10−2 1.0 × 10−2 4.0 × 10−13 

 0.005 4.8 × 10−2 3.4 × 10−2 2.2 × 10−2 1.2 × 10−2 1.2 × 10−12 

0.5 0.001 1.9 × 10−2 1.2 × 10−2 7.5 × 10−3 3.9 × 10−3 4.3 × 10−16 

 0.002 3.0 × 10−2 2.0 × 10−2 1.2 × 10−2 6.9 × 10−3 1.4 × 10−14 

 0.003 3.9 × 10−2 2.7 × 10−2 1.7 × 10−2 9.5 × 10−3 1.0 × 10−13 

 0.004 4.7 × 10−2 3.3 × 10−2 2.1 × 10−2 1.1 × 10−2 4.4 × 10−13 

 0.005 5.3 × 10−2 3.8 × 10−2 2.4 × 10−2 1.4 × 10−2 1.3 × 10−12 
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Example 5.2 Consider the conformable space-fractional linear telegraph equation (CSFLTE) [26-27] 

𝜕2𝜇𝑤(𝑥, 𝑡)

𝜕𝑥2𝜇
=

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑤(𝑥, 𝑡), 1 < 𝜇 ≤ 2, 𝑡 ≥ 0,                                                                       (56) 

with the initial condition  

𝑤(0, 𝑡) = 𝑒−𝑡 , 𝑤𝑥(0, 𝑡) = 𝑒−𝑡 .                                                                                                                                     (57)  

Now, by performing conformable Elzaki transform on Eq. (56), then we get 

1

𝑣2
𝐸𝜇{𝑤(𝑥, 𝑡)} − 𝑤(0, 𝑡) − 𝑣𝑤𝑥(0, 𝑡) = 𝐸𝜇 [

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑤(𝑥, 𝑡)] .                                             (58) 

If we simplify the Eq. (58), then we have 

𝐸𝜇{𝑤(𝑥, 𝑡)} = 𝑣2𝑤(0, 𝑡) + 𝑣3𝑤𝑥(0, 𝑡) + 𝑣2𝐸𝜇 [
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑤(𝑥, 𝑡)] .                                       (59) 

Applying the inverse conformable Elzaki transform,  

𝑤(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2 𝑤(0, 𝑡) + 𝑣3𝑤𝑡(0, 𝑡) + 𝑣2𝐸𝜇 [

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑤(𝑥, 𝑡)]].                                 (60) 

Using the ADM procedure, we obtain 

𝑤0(𝑥, 𝑡) = 𝐸𝜇
−1[𝑣2 𝑤(0, 𝑡) + 𝑣3𝑤𝑡(0, 𝑡)] = 𝐸𝜇

−1[𝑣2 𝑒−𝑡 + 𝑣3𝑒−𝑡] = 𝑒−𝑡 + 𝑒−𝑡
𝑥𝜇

𝜇
.                                (61) 

 𝑤𝑠+1(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2𝐸𝜇 [

𝜕2𝑤𝑠(𝑥,𝑡)

𝜕𝑡2 +
𝜕𝑤𝑠(𝑥,𝑡)

𝜕𝑡
+ 𝑤𝑠(𝑥, 𝑡)]] ,              𝑠 = 0,1,2, …                                           (62) 

For 𝑠 = 0 in Eq. (62), we obtain  

𝑤1(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2𝐸𝜇 [

𝜕2𝑤0(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤0(𝑥, 𝑡)

𝜕𝑡
+ 𝑤0(𝑥, 𝑡)]],                                                                           (63) 

𝑤1(𝑥, 𝑡) = 𝐸𝜇
−1[𝑣4 𝑒−𝑡 + 𝑒−𝑡𝑣5] =  𝑒−𝑡

𝑥2𝛼

2! 𝛼2
+ 𝑒−𝑡

𝑥3𝛼

3! 𝛼3
.                                                                              (64) 

We get the subsequent terms, recursively 

𝑤2(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2𝐸𝜇 [

𝜕2𝑤1(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤1(𝑥, 𝑡)

𝜕𝑡
+ 𝑤1(𝑥, 𝑡)]] = 𝑒−𝑡

𝑥4𝛼

4! 𝛼4
+ 𝑒−𝑡

𝑥5𝛼

5! 𝛼5
,                             (65) 

𝑤3(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2𝐸𝜇 [

𝜕2𝑤2(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤2(𝑥, 𝑡)

𝜕𝑡
+ 𝑤2(𝑥, 𝑡)]] = 𝑒−𝑡

𝑥6𝛼

6! 𝛼6
+ 𝑒−𝑡

𝑥7𝛼

7! 𝛼7
.                            (66) 

⋮ 

Proceeding in a similar way, we obtain  

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯ = 𝑒−𝑡 + 𝑒−𝑡
𝑥𝜇

𝜇
+ 𝑒−𝑡

𝑥2𝛼

2! 𝛼2
                   

+𝑒−𝑡
𝑥3𝜇

3! 𝜇3
+ 𝑒−𝑡

𝑥4𝜇

4! 𝜇4
+ 𝑒−𝑡

𝑥5𝜇

5! 𝜇5
+ 𝑒−𝑡

𝑥6𝜇

6! 𝜇6
+ 𝑒−𝑡

𝑥7𝜇

7! 𝜇7
+ ⋯                                                                      (67) 

Subsituting 𝜇 = 1 in Eq. (67), then CFEDM solution is reduced as 
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𝑤(𝑥, 𝑡) = 𝑒−𝑡 [1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+ ⋯ ].                                                                            (68) 

 This result is evaluated to the exact solution in a closed form: 

𝑤(𝑥, 𝑡) = 𝑒𝑥−𝑡 .                                                                                                                                                                (69) 

The CFEDM solutions of  𝑤(𝑥, 𝑡) is found to be in excellent agreement  with the exact solution of problem. 

For more understanding the results for the variable 𝑤(𝑥, 𝑡) of Example 5.2 are plotted in Figure 3. In Figure 

3, we conclude that this solution is higher accuracy.  

 

 

Fig. 3. (a) Nature of CFEDM solution for 𝑤(𝑥, 𝑡) (b) Nature of exact solution for 𝑤(𝑥, 𝑡)  

(c) Nature of absolute error=|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐶𝐹𝐸𝐷𝑀| in Ex. 5.2 at 𝜇 = 1. 

 

Fig. 4. Nature of CFEDM solution for 𝑤(𝑥, 𝑡) in Ex. 5.2 at 𝑥 = 0.5 with distinct 𝜇. 

Table 2. Numerical solution of 𝑤(𝑥, 𝑡) for CSFLTE by CFEDM in Ex. 4.2 at with distinct values of 𝑥 and 

𝑡 for diverse 𝜇.  
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𝒙 𝒕 𝝁 = 𝟎. 𝟕𝟓 𝝁 = 𝟎. 𝟖 𝝁 = 𝟎. 𝟖𝟓 𝝁 = 𝟎. 𝟗 𝝁 = 𝟏 

0.1 0.001 1.3 × 10−2 8.4 × 10−3 5.0 × 10−3 2.6 × 10−3 2.9 × 10−16 

 0.002 2.0 × 10−2 1.3 × 10−2 8.5 × 10−3 4.6 × 10−3 9.4 × 10−15 

 0.003 2.6 × 10−2 1.8 × 10−2 1.1 × 10−2 6.3 × 10−3 7.1 × 10−14 

 0.004 3.1 × 10−2 2.2 × 10−2 1.4 × 10−2 7.9 × 10−3 3.0 × 10−13 

 0.005 3.5 × 10−2 2.5 × 10−2 1.6 × 10−2 9.4 × 10−3 9.1 × 10−13 

0.2 0.001 1.4 × 10−2 9.3 × 10−2 5.5 × 10−3 2.9 × 10−3 3.2 × 10−16 

 0.002 2.2 × 10−2 1.5 × 10−2 9.4 × 10−3 5.1 × 10−3 1.0 × 10−14 

 0.003 2.9 × 10−2 2.0 × 10−2 1.2 × 10−2 7.0 × 10−3 7.9 × 10−14 

 0.004 3.4 × 10−2 2.4 × 10−2 1.5 × 10−2 8.8 × 10−3 3.3 × 10−13 

 0.005 3.9 × 10−2 2.8 × 10−2 1.8 × 10−2 1.0 × 10−2 1.0 × 10−12 

0.3 0.001 1.6 × 10−2 1.0 × 10−2 0.6 × 10−3 3.2 × 10−3 3.5 × 10−16 

 0.002 2.5 × 10−2 1.6 × 10−2 1.0 × 10−2 5.6 × 10−3 1.1 × 10−14 

 0.003 3.2 × 10−2 2.2 × 10−2 1.4 × 10−2 7.8 × 10−3 8.7 × 10−14 

 0.004 3.8 × 10−2 2.7 × 10−2 1.7 × 10−2 9.7 × 10−3 3.6 × 10−13 

 0.005 4.3 × 10−2 3.1 × 10−2 2.0 × 10−2 1.1 × 10−2 1.1 × 10−12 

0.4 0.001 1.7 × 10−2 1.1 × 10−2 6.7 × 10−3 3.5 × 10−3 3.9 × 10−16 

 0.002 2.7 × 10−2 1.8 × 10−2 1.1 × 10−2 6.2 × 10−3 1.2 × 10−14 

 0.003 3.5 × 10−2 2.4 × 10−2 1.5 × 10−2 8.6 × 10−3 9.6 × 10−14 

 0.004 4.2 × 10−2 3.0 × 10−2 1.9 × 10−2 1.0 × 10−2 4.0 × 10−13 

 0.005 4.8 × 10−2 3.4 × 10−2 2.2 × 10−2 1.2 × 10−2 1.2 × 10−12 

0.5 0.001 1.9 × 10−2 1.2 × 10−2 7.5 × 10−3 3.9 × 10−3 4.3 × 10−16 

 0.002 3.0 × 10−2 2.0 × 10−2 1.2 × 10−2 6.9 × 10−3 1.4 × 10−14 

 0.003 3.9 × 10−2 2.7 × 10−2 1.7 × 10−2 9.5 × 10−3 1.0 × 10−13 

 0.004 4.7 × 10−2 3.3 × 10−2 2.1 × 10−2 1.1 × 10−2 4.4 × 10−13 

 0.005 5.3 × 10−2 3.8 × 10−2 2.4 × 10−2 1.4 × 10−2 1.3 × 10−12 
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6. Discussion 

In Figure 1, the behaviours of the exact solution, CFEDM solution and absolute error for Ex. 5.1 are plotted. 

Therefore, we observe that CFEDM solution is close to the exact solution. The numerical solutions for different 

𝜇 values are evaluated in Table 1. From Table 1, it has been observed that the solutions get closer to the exact 

solution, when 𝜇 gets closer to 1. Also, especially for 𝜇 = 1, it is concluded that the absolute error is extremely 

small in Table1. Similarly, the behaviours of the exact solution, CFEDM solution and absolute error for Ex. 

5.2 are plotted in Figure 3. Therefore, we observe that CFEDM solution is close to the exact solution. The 

numerical solutions for different 𝜇 values are evaluated in Table 2. From Table 2, it has been observed that the 

solutions get closer to the exact solution, when 𝜇 gets closer to 1. Also, especially for 𝜇 = 1, it is concluded 

that the absolute error is extremely small in Table 2. Additionally, 2D graphs of solutions of Ex. 5.1 and Ex. 

5.2 for distinct 𝜇 values illustrate the behavior of CFEDM in Figures 2 and 5. 

  

7. uld be given briefly. Besides, forward-looking suggestions and opinions related to the 

study results can be stated. 

In the present framework, we profitably applied a new hybrid method, namely CFEDM to solve the 

conformable time-fractional linear telegraph equations. During the investigation, the obtained solutions are 

illustrated in terms of plots and tables with diverse values of space and time variables. We have observed that 

CFEDM is powerful, fast and efficient method to solve the conformable time-fractional linear telegraph 

equations.  
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