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Improving Forecast Accuracy Using Combined Forecasts with Regard 
to Structural Breaks and ARCH Innovations
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Abstract
Accurate	forecasts	about	the	future	are	vital	in	time	series	analyses,	but	accurately	modeling	complex	structures	in	the	
data	is	always	challenging.	Two	major	sources	of	complexity	are	autoregressive	conditional		heteroskedasticity	(ARCH)	
effects	on	data	as	well	as	structural	breaks	 in	the	data,	as	these	affect	the	quality	of	data	and	hence	reduce	forecast	
accuracy.	In	this	regard,	combining	forecast	types	has	been	a	helpful	strategy	for	improving	forecast	accuracy	for	more	
than	 50	 years	 since	 Bates	 and	Granger’s	 (1969)	 original	 paper.	Hence,	 this	 paper	 aims	 to	 examine	 if	 the	 gains	 from	
combined	 forecasts	are	 sustained	 regarding	cases	with	 structural	breaks	and	ARCH	 innovations.	Moreover,	 the	 study	
explores	which	forecast	combination	schemes	are	optimal	for	those	cases	by	combining	the	exponential	smoothing	(ETS),	
autoregressive	integrated	moving	average	(ARIMA),	and	artificial	neural	network	(ANN)	forecast	models	using	simple	and	
regression-based	combination	procedures.	These	methods	are	implemented	in	both	simulated	series	and	over	empirical	
data	 from	two	popular	Turkish	 stock	exchanges	 (i.e.,	BIST-30	and	BIST-100	 Indexes).	The	 study	has	 found	 regression-
based	forecast	combination	methods	to	significantly	improve	forecast	accuracy	regarding	cases	with	structural	breaks	
and	conditional	heteroscedasticity.	Dynamically	weighted	combinations	show	greater	accuracy	improvement	compared	
to	their	static	counterparts	when	the	data	contain	a	trend.	Simple	combination	schemes,	including	simple	averages,	just	
perform	better	than	single	methods	for	ETS	and	ARIMA,	while	they	barely	outperform	ANN.	In	conclusion,	ANN	is	found	
to	be	the	best-performing	individual	forecasting	method	for	all	cases	and	designs.
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1. Introduction
Accurate forecasts about the future are vital in time series analyses, and accurately 

modeling complex structures in the data is always challenging for forecasters. This 
complexity involves determining the underlying data-generating processes, as these 
are not fully known in most cases. Because the observed processes are too complicated 
to be accurately modeled apart from in certain natural sciences (Weiss et al., 2019), 
models are used as approximations of real-world data-generating processes (Hansen, 
2005). The sources of the complexity in data structures include unexpected changes 
(breaks) experienced in the model parameters regarding financial time series data 
that are perhaps caused by policy changes, technological advancements, financial 
crises, and/or natural disasters. Events like the 2008 global economic crisis and the 
COVID-19 pandemic are good examples of structural break causes. Another issue 
often experienced in time series that this study also addresses is the problem of 
autoregressive conditional heteroskedasticity (ARCH) effects. Many researchers have 
testified to the presence of structural breaks in economic and financial time series, 
at the forefront of which are Stock and Watson (1996), who used several standard 
statistical tests to examine 76 monthly U.S. economic time series relationships for 
model instability, as well as Koop and Potter (2001) and Siliverstovs and van Dijk 
(2002). Structural breaks reduce forecasting accuracy, as shown by Clements and 
Hendry’s (1998, 1999) and Hansen’s (2001) studies, and consequently mislead policy 
recommendations and other prediction purposes.

The traditional approach to forecasting is based on the existence of one of the 
available methods being the best and identifiable, but choosing the best method 
depends upon the features of the time series. Aggregating inputs from several 
forecasting techniques using forecasts is an alternative to the conventional strategy. 
This solves the issue of having to choose and just rely on one method and its forecasts 
(Winkler & Makridakis, 1983). Numerous studies have demonstrated using several 
different methods over the same time series and averaging the resulting forecasts to 
be a simple way to improve forecast accuracy. More than five decades ago, Bates 
and Granger (1969) wrote their seminal paper showing combined forecasts to often 
improve forecast accuracy. Two decades later, Clemen (1989) wrote a review paper 
also arguing forecast accuracy to be improved by combining multiple forecasts. 
Moreover, Clemen’s findings showed one to be able to make impressive performance 
improvements in many cases by merely averaging forecasts. Although the idea of 
combining forecasts dates back to half a century, papers describing novel combination 
techniques are still published in prestigious journals, which encourages additional 
study (Weiss et al., 2019).

Several combining rules have been proposed when looking for an optimal 
combination of forecasts. The proposed techniques include a combination based on 
the variances and covariances of the forecast components (Bates & Granger, 1969), as 
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well as other equal weighting methods including simple average and median forecast 
combinations, the ordinary least squares (OLS) regression-based combination 
(Granger & Ramanathan, 1984), and the eigenvector-based combination methods 
developed by Hsiao and Wan (2014).

Given the prominence of the forecast combination topic in both theoretical and 
empirical studies, if the gains of combined forecasts are sustained in specific cases 
such as for structural breaks and ARCH effects, then these methods should be applied 
more generically and have need of further study. The studies concerning this area 
in the literature are very limited. This current paper will examine how forecasting 
accuracy can be improved in the presence of structural break(s) and ARCH and 
generalized ARCH (GARCH) innovations, as well as which combination schemes 
are optimal in the considered cases. This will be done by combining the component 
forecasts from single models using either simple weighting techniques or regression-
based weighting strategies. In the latter, we consider both time combination weights 
(i.e., varying combination weights [dynamic version] and time) and non-varying 
combination weights (i.e., static version). Before implementing the combined 
forecasts, component forecasts are generated from three popular single models: 
autoregressive integrated moving average (ARIMA), exponential smoothing (ETS), 
and artificial neural network (ANN). These models are implemented over simulated 
and empirical data while using the root mean squared forecast error (RMSE) to assess 
the accuracy and predictive performance of the models under study.

2. Methods
This study employs three individual methods and five forecast combination 

methods, which are explained in the next subsections.

2.1. Methods for Testing Structural Breaks and ARCH Effects
Before applying forecasting methods, the study tests whether the data under 

consideration contain structural breaks and ARCH effects. The presence of structural 
breaks is tested using Bai & Perron’s (1998, 2003) tests, which has the nice feature 
of being appropriate for multiple structural breaks as well as for estimating break 
locations and dates. Meanwhile, ARCH effects will be checked using the Lagrange 
multiplier test, as proposed by Engle (1982). This test fits a linear regression model 
for the squared residuals and then examines the significance of the fitted model.

2.2. Forecasting Models
To forecast beyond the sample observations in both simulated and empirical data, 

the following individual and combined models are used:
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2.2.1. Individual Models
The individual methods employed in this study involve two linear (ARIMA and 

exponential smoothing) models and one non-linear (artificial neural network) model. 
These methods are described concisely below.

2.2.1.1. Exponential Smoothing (ETS) Model
The exponential smoothing class of models was introduced in the 1950s (Winters, 

1960; Holt, 2004) and are capable of producing time series forecasts by employing 
a weighted average of the historical values and allocating more weight to recent 
observations. These models consist of observation/ measurement equations that 
describe the observed data and state equations that describe how states (i.e., levels, 
trends, seasonal conditions) change over time, which is why these are called state-
space models. The ETS in exponential smoothing (ETS) models stands for error, 
trend, and seasonal. ETS models have many variations because of number of different 
available trends and seasonal combinations. The trend component may be none (N), 
additive (A), or additive damped (Ad), while the seasonal component may be none 
(N), additive (A), or multiplicative (M), thus yielding nine variants for exponential 
smoothing methods (Hyndman & Athanasopoulos, 2018).

The component form of the ETS(A,N,N) model with additive errors is as follows:

     (1)

    (2)

By re-arranging the smoothing equation, one gets:

     (3)

where  is the estimated level and  is the one step-ahead prediction for time 
, t + 1 which results from the weighted average of all historical data, while 0≤α≤1 is 
the smoothing parameter, and  is the error at time  
t. Other ETS models can be written in similar fashion for each of the exponential 
smoothing methods.

An automated selection procedure is utilized to identify the exponential smoothing 
models by using the ets function from the forecast package in R environment, 
developed by Hyndman and Khandakar (2008). This function automatically identifies 
which model best suits the given time series, estimates the model parameters, and 
returns information about the fitted model. It can use all information criteria, but 
the bias-corrected Akaike criterion (AICc) is the default information criterion for 
selecting an appropriate model.
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2.2.1.2. Autoregressive Integrated Moving Average (ARIMA) Model 
One of the most extensively used models for time series forecasts is the ARIMA 

model, which was first suggested by Box and Jenkins (1970). The ARIMA model is a 
generalization of an ARMA model. ARIMA(p,d,q) is a non-seasonal ARIMA model 
with non-negative parameters p, d, and q, where p is the number of time lags (referred 
to as the order of the autoregressive model), d is the degree of differencing, and q is 
the order of the moving-average model.

ARIMA models transform a non-stationary series to a stationary series through 
a sequence of differencing steps. A time series yt is integrated of order d if  is 
stationary and 

        (4)

where y is the time series and t is the time index.

After transforming the time series into a stationary one, the estimation is done as 
follows:

     (5)

where ϕi represents the coefficients of the AR terms of order p, θi  denotes the 
coefficients of the MA terms of order q, ε is a random term simulating white noise, 
and μ is a constant. The model parameters are estimated using maximum likelihood 
estimation (MLE).

For the best ARIMA model selection, this study relies on the auto.arima function 
from the forecast package in R, developed by Hyndman and Khandakar (2008). This 
function identifies the best ARIMA model based on either the Akaike information 
criterion (AIC), the bias-corrected AIC (AICc), or the Bayesian information criterion 
(BIC) value. This function searches among the possible models within the provided 
order constraints.

2.2.1.3. Artificial Neural Network (ANN) Model
Artificial neural networks (ANNs) provide a further extension of regression by 

establishing the sequence of layers as derived variables. The structure of ANN is 
characterized by three layers: 1) the input layer receives the input values of the 
predictors (lagged terms in this case); 2) the hidden layer(s) receives inputs from the 
input layer and then the sigmoid transfer function is applied to produce an output; and 
3) an output layer accepts the inputs from the hidden layer and produces forecasted 
values. An ANN’s predicted value is: 
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       (6)

       (7)

where ̂ is the forecasted value, t is the time instant, k is the number of nodes in the 
hidden layer, p is the number of lagged inputs, bj and wji are the respective linear and 
nonlinear weights of the ANN connections learned from the data, Zi represents the ith 
lagged term, and f(x) is the sigmoid transfer function denoted by:

        (8)

In forecasting time series, the relationship is between the output (yt) and the inputs 
(yt-1, yt-2,…,yt-p). Hence, the ANN model performs a nonlinear functional mapping 
from

the past observations (yt-1,yt-2,…,yt-p) to the future yt, such as:

     (9)

Using lagged values of the time series as inputs in a neural network just as 
lagged values are used in a linear autoregression model is called a neural network 
autoregression (NNAR) model. This paper only considers feed-forward networks 
based on NNAR(p,k), where p indicates the lagged inputs and k indicates the nodes in 
the hidden layer (Hyndman & Athanasopoulos, 2018).

Neural network autoregression models are identified using the nnetar function 
from the forecast package in R as produced by Hyndman (2012). This function 
automatically fits a neural network model to the given time series with lagged values 
of the series as inputs, so it is a nonlinear autoregressive model.

2.2.2. Forecast Combinations
Forecast combinations have been a well-established strategy for improving 

forecasting accuracy since Bates and Granger’s (1969) seminal paper. Numerous 
combination procedures have been proposed in theoretical and empirical studies, 
but so far no theoretical foundations exist regarding an ideal technique to use for 
combining diverse forecasts; instead, much depends on the features of the available 
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data. Frequently used approaches for forecast combinations include simple 
combinations that ignore forecast error correlations and some more sophisticated 
combination schemes that estimate optimal combination weights such as regression-
based and eigenvector weighting approaches. Even Andrawis et al. (2011) proposed 
combining the combined forecasts, called that strategy the hierarchical forecast 
combination.

To illustrate notations, this study denotes FT×P as the matrix of forecasts with 
dimension T×P, where T stands for the number of rows and P the number of columns, 
and  fi as the forecast obtained from the model i, where i ϵ {1 ...P}. The weight 
associated with that forecast in the overall combined forecast is represented as wi , 
and the combined forecast as fc.

2.2.2.1. Simple Forecasts Combination Methods
This study starts with some simple ways of combining forecasts, simple in that 

they ignore correlations between forecast errors and have no need to estimate the 
weight of each forecast to be assigned in the overall contribution.

2.2.2.1.1. Simple Average-Based Combination
This is the most intuitive approach for forecast combinations, perhaps due to its 

simplicity (Weiss et al., 2019). This is just the arithmetic average of single forecasts 
and is given as: 

        (10)

where fc is the combined forecast, P is the number of single models to be combined, 
and fi is the forecast obtained from model i.

This equal weighting strategy is also called the forecast combination puzzle, a 
term coined by Stock & Watson (2004), and may in some situations may reveal better 
forecasts than the sophisticated forecast combination approaches for which Clemen 
(1989) argued. Smith and Wallis (2009) and Claeskens et al. (2016) have provided 
a rigorous empirical and theoretical explanation as to why this innocent approach 
outperforms more sophisticated techniques . 

2.2.2.1.2. Median-Based Combination
This technique is another simple location-measure combination method that is 

robust against outliers by using the median of the component forecasts, which can 
be relevant for certain applications. The simple average may not be an appropriate 
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combination strategy when bias occurs in some of the component forecasts, as Palm 
and Zellner (1992) suggested, and the median combination becomes handy in such 
cases. The combined forecast using the median method is given as follows:

· For odd p: 

        (11)

· For even p:

       (12)

2.2.2.1.3. Bates-Granger Combination
Bates and Granger’s (1969) influential paper proposed the idea of combining 

forecasts. Their technique uses the diagonal elements of the estimated mean squared 
prediction error matrix to compute combination weights. Therefore, the combined 
forecast is calculated as: 

       (13)

where is the estimated mean squared prediction error of model i.

Despite this method being derived under the assumption of uncorrelated forecasts, 
it is able to work well in practice.

2.2.2.2. Regression-Based Forecasts Combination Methods
This study implements two regression-based combination methods, the ordinary 

least squares (OLS) regression-based combination method and the least absolute 
deviation-based (LAD-based) combination method. These two regression-based 
combinations consider both the time-invariant combination weighting (static version) 
and time-varying combination weighting (dynamic version) strategies. This makes 
the regression-based methods considered here a total of four methods.

2.2.2.2.1. Ordinary Least Squares (OLS) Regression Combination
One of the sophisticated rules regarding combining forecasts involves OLS. The 

idea of regression-based combinations had been developed by Crane and Crotty 
(1967), with Granger and Ramanathan (1984) later expanding its usage more 
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successfully. This approach assumes the combined forecast to be a linear function of 
the individual forecasts, with the weights being determined by regressing the actual 
values of the individual forecasts.

       (14)

The combined forecast is calculated as:

        (15)

One good feature of OLS forecast combinations is that the combined forecast is 
unbiased due to the intercept in the equation, even when one of the individual forecasts 
is biased. One drawback, however, is that it does not restrict the combination weights. 
Hence, they do not add up to 1 and can be negative, which complicates interpretation.

2.2.2.2.2. Least Absolute Deviation (LAD) Regression-Based Combination 
Instead of minimizing the sum of squared errors when estimating the coefficient in 

Equation 15, one may prefer to estimate the coefficients by minimizing the absolute sum 
of squares. The LAD method is less sensitive to outliers and can retain its stability when 
the component forecasts are highly correlated in contrast to OLS. The LAD combination 
strategy should be preferred over OLS in the above situations (Nowotarski et al., 2014).

2.3. Implementing Combined Forecasts
Table 1 shows the combination schemes used in this paper, as implemented with 

the help of R functions from the package program ForecastComb developed by Weiss 
et al. (2019). 

Table 1
R Functions for Descriptions of the Forecast Combinations Used in This Paper
Function Description
Simple Forecast Combination Functions
comb_SA simple average forecast combination
comb_MED median forecast combination
comb_BG Bates/Granger (1969) forecast combination
Regression-Based Forecast Combination Functions
comb_OLS ordinary least squares (OLS) forecast combination
comb_LAD least absolute deviation (LAD) forecast combination
rolling_combine Computes the dynamic version of the combined forecasts 

(time-varying combination weights). The inside of this 
function needs to specify the combination method that 
should be used (OLS or LAD here).
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2.4. Forecasting Accuracy Metrics
The RMSE is used to compare the forecast methods and assess the accuracy of 

the out-of-sample forecasts against the reserved observed values in the evaluation 
sample (i.e., the test set) and is computed as follows:

      (16)

where  states the forecast error and training data given by {y1,...,yt}, 
and the test data is given by {yt+1,yt+2,...}.

RMSE is widely used to compare forecast methods applied to an individual time 
series or to numerous time series with the same units (Hyndman & Athanasopoulos, 
2018). Because this study’s time series data simulations are replicated based on the 
same data generation process, RMSE is an appropriate measure for comparing the 
predictive performances of the considered forecast methods.

2.5. Simulation Procedures

2.5.1. Simulation Designs
The simulation considers two different designs regarding data-generating 

processes: 

1.  Design 1 is based on the AR (3) process with ARCH (2) effects as shown below,

    (17)

         (18)

      (19)

where at is the white noise ω, and α1 and α2 are the parameters of the variance 
model. Substituting for σt

2 gives:

      (20)

2. Design 2 is based on the ARIMA(3,1,0) process with ARCH (2) effects The 
formulation of Design 2 is same as in Design 1 except the second design process 
generates time series data with trend effects in addition to ARCH effects.

The simulations from both designs are conducted by specifying fixed stationary and 
invertible parameters. For Design 1, the parameters for the AR segment are specified 
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as μ = 5,ϕ1 = 0.65,ϕ2 = -0.55, and ϕ3 = 0.3, while the parameters for the ARCH 
segment are ω = 0.2,α1 = 0.45, and α2=0.3. Similarly for Design 2, the stationary 
and invertible parameters for the ARIMA segment are specified as μ=5,ϕ1= 0.45,ϕ2 
= 0.3, and ϕ3 = -0.75, while the parameters for the ARCH segment are the same as 
those from Design 1. That these values Are chosen arbitrarily is worth noting. Figure 
1 shows the graphical visualization of the simulated data. 

Figure 1. Graphical illustration of the simulated data

The forecasting models under study are applied to the simulated data before the 
structural break is placed to forecast out-of-sample observations. A single permanent 
structural break is allowed in the mean of the generated time series in both designs. 
The structural break is positioned in the 75th-percentile observation of the total 
sample. The break took a multiplicative form, and so the pre-structural break mean of 
μ becomes δ μ after the break, with δ having a break size of 10 in this case. Figure 2 
below illustrates the data after the structural break.
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Figure 2. Simulated data after the structural break

Table 2
Summary of the Simulated Data Procedures and Train/Test Sets

 Design Case Break Size Break Location Sample Size Training Set(size) Test set (size)

Design 1
Stable - - 500 480, 490, 495 20, 10, 5

Break 10 75th% Observation 500 480, 490, 495 20, 10, 5

Design 2
Stable - - 500 480, 490, 495 20, 10, 5

Break 10 75th% Observation 500 480, 490, 495 20, 10, 5

As shown in Table 2, the total sample size in each case (T=n+h) is 500,, where T 
is the total sample size, n is the training sample size, and h is the prediction sample 
size. To examine if the horizon size has an impact on forecasting accuracy, the first 
480, 490, and 495 (n = 480, n = 490, and n = 495) observations are reserved for the 
training sample, leaving the rest as the prediction sample (h = 20, h = 10 and h = 5) 
in three separate experiments per case. The simulation is then repeated 3,000 times 
per case.

Each case generates forecasts using three single methods: ARIMA, ETS, and ANN. 
The study sought to improve forecasting accuracy by combining the component 
forecasts from single models into simple forecast combination and regression-based 
combination models. The simple forecast combination models considered in this 
study are the simple average forecast combination, median forecast combination, 
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and Bates–Granger forecast combination. The regression-based combination models 
used here are the OLS forecast combination (both statistic and dynamic versions) and 
the least absolute deviation forecast combination (both static and dynamic versions), 
with RMSE being used to assess their predictive performance.

2.5.2. Simulation Results
The following tables present the RMSE values used to measure forecasting 

accuracy. An RMSE value being less than the others indicates that the method under 
consideration outperforms the other competing methods. The smaller the RMSE, the 
better the forecasting performance is for that given sample.

Table 3
Design I Stable Case Results
Model h = 20 h = 10 h = 5

Individual Models
ETS 0.03464 0.02664 0.02516
ARIMA 0.03150 0.02310 0.01503
ANN 0.03038 0.02159 0.01013

Simple Forecast Combination
Comb_SA 0.03200 0.02320 0.01586
Comb_MED 0.03125 0.02311 0.01551
Comb_BG 0.03145 0.02278 0.01437

Regression-Based Forecast Combination
Comb_OLS_static 0.02912 0.02106 0.01031
Comb_OLS_dynamic 0.02907 0.02109 0.01033
Comb_LAD_static 0.02909 0.02117 0.00966
Comb_LAD_dynamic 0.02906 0.02123 0.00963

1Table 3 presents the simulation results for AR (3) with ARCH error design before 
the structural break is placed. The accuracy evaluation shows ANN to outperform the 
other stand-alone models used here for all considered horizons. Regression-based 
combination models (in their static and dynamic versions) exhibit improved accuracy 
compared to single models and simple combinations. When compared to the static 
versions of the models, allowing for time-varying combination weights (dynamic 
version) does not appear to significantly change accuracy.

1 Comb_SA: Simple average forecast combination,
 MED: Median forecast Combination,
 Comb_BG: Bates-Granger forecast combination
 Comb_OLS_static: Ordinary Least Squares forecast combination (statistic version)
 Comb_OLS_dynamic: Ordinary Least Squares forecast combination (dynamic version)
 Comb_LAD_static: Least Absolute Deviation forecast combination (statistic version)
 Comb_LAD_dynamic: Least Absolute Deviation forecast combination (dynamic version)
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Table 4
Design 1 with Structural Break
Model h = 20 h = 10 h = 5

Individual Models
ETS 0.6977 0.4308 0.2059
ARIMA 0.6676 0.2698 0.1788
ANN 0.4962 0.2299 0.1405

Simple Forecast Combination
Comb_SA 0.6057 0.2696 0.1549
Comb_MED 0.6256 0.2529 0.1405
Comb_BG 0.5928 0.2646 0.1531

Regression-Based Forecast Combination
Comb_OLS_static 0.4320 0.1676 0.1395
Comb_OLS_dynamic 0.4339 0.1683 0.1399
Comb_LAD_static 0.4428 0.1971 0.1345
Comb_LAD_dynamic 0.4451 0.1988 0.1354

Table 4 reports the simulation results for AR (3) with ARCH error design using 
the structural break. Again, ANN performs better than its single-model ARIMA and 
ETS counterparts for all considered horizons. The results also suggest that all the 
simple combination models perform better than the single models except for ANN. 
Moreover, regression-based forecast combination models perform better than any 
other model considered here, with the two versions of the OLS method performing 
the best. As in the previous case, dynamic combination weights do not change, 
with even the static version performing better, suggesting that the combined weight 
estimates do not change much over time.

Table 5
Design 2 Stable Case Results
Model h = 20 h = 10 h = 5

Individual Models
ETS 1.8587 1.2474 0.9491
ARIMA 1.7695 1.2573 0.4621
ANN 1.7107 1.1923 0.4426

Simple Forecast Combination
Comb_SA 1.7429 1.0797 0.5097
Comb_MED 1.8063 1.1909 0.4440
Comb_BG 1.7504 1.0989 0.4904

Regression-Based Forecast Combination
Comb_OLS_static 1.6734 1.2092 0.4141
Comb_OLS_dynamic 1.6162 1.2031 0.4150
Comb_LAD_static 1.7027 1.1716 0.4295
Comb_LAD_dynamic 1.6825 1.1682 0.4300

Table 5 reports the simulation results for the Design 2 stable case, where data are 
generated from AR (3) with trend and ARCH (2) errors. The results suggest ANN to 
exhibit the greatest accuracy compared to the non-combined models. Moreover, all 
simple forecast combination models perform well compared to the non-combined 
methods with moderate forecasting horizons (h = 10) and even better than ANN, but 
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they lose their dominance for the long and short horizons. Although all regression-
based models show significant improvement in forecasting accuracy, the OLS model 
performs the best. In contrast to Design 1, the dynamic combination weights show 
improvement regarding the results for both the OLS and LAD forecast combinations, 
suggesting that the combined weight estimates change considerably over time. 

Table 6 reports the simulation results for Design 2 where the data are generated 
from AR (3) with trend and ARCH (2) errors after the structural break is positioned 
in the data. As in the previous cases, ANN is the best single model for all considered 
horizons. Simple combinations show some improvement with respect to ARIMA 
and ETS, with the simple average combination model worth mentioning as the most 
superior for the short horizon (h = 5).

Table 6
Design 2 with Structural Break
Model h = 20 h = 10 h = 5

Individual Models
ETS 11.1834 8.6215 5.4916
ARIMA 11.1829 8.6216 5.4857
ANN 11.0805 8.5229 5.3504

Simple Forecast Combination
Comb_SA 11.1034 7.2160 2.3155
Comb_MED 11.1831 8.6215 5.4857
Comb_BG 11.1058 7.2384 5.4886

Regression-Based Forecast Combination
Comb_OLS_static 10.9607 7.5337 4.5216
Comb_OLS_dynamic 10.7620 7.4997 4.4685
Comb_LAD_static 10.1257 7.5863 2.8762
Comb_LAD_dynamic 9.9617 7.5088 2.8344

The regression-based forecast combination methods again improve the forecasting 
accuracy, with dynamic combination weighting showing particularly significant 
improvement compared to the static counterparts.

2.6 Summary of Simulation Results
1. ANN performs better than its non-combined counterparts across all considered 

horizons for all examined cases and data-generating designs.

2. Simple forecast combinations (simple average, median, and Bates-Granger) 
perform better than ETS and ARIMA in most cases.

3. Regression-based forecast combination methods outperform all other competing 
models for all cases regardless of which design data is the basis or if the structural 
break is present or not.
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4. Allowing for time-varying combination weights (dynamic version) shows a 
significant improvement in accuracy compared to the static counterparts with 
regard to trends; this suggests that the estimated combination weights fluctuate 
much over time. In contrast, dynamic combination weights do not change much 
with regard to the absence of trends.

5. Other studies, including Hsiao & Wan (2014), have shown regression-based 
approaches to be favorable if one of the component forecasts outperforms the 
rest. This also being the case in the current study, the results here agree with this 
conclusion.

6. Series that contain both the trend and structural break error show the simple average 
and Bates-Granger combinations to perform better than ANN for h = 10, with 
regression-based forecast combinations (both static and dynamic) also performing 
better than ANN for all horizons. This shows the simultaneous presence of trend 
and structural break errors to adversely affect ANN’s performance.

7. The presence of trend errors in the series with an additional break in the trend 
similarly increases the RMSEs for all designs and across all horizons and methods. 
Even removing the trend error by taking the difference is unable to prevent an 
increase in RMSEs.

8. RMSEs are smaller for short horizons (h = 5) than longer horizons (h = 10 and h 
= 20) under all conditions. This also shows working with short-term periods to 
always be safer for forecasting.

3. Empirical Applications
In line with the simulation evidence, all considered models in the simulation have 

been applied to forecast daily closing prices of two popular Turkish financial stocks 
data (i.e., BIST-30 and BIST-100 Indexes). The study has taken Borsa Istanbul (BIST) 
data into consideration because it has the features that interest this study. As shown in 
Tables 7 and 8, both considered stock data indexes contain multiple structural breaks 
and ARCH effects.

Several studies in the literature have used various methods to forecast BIST-100 
and BIST-30 Indexes. For instance, Aygören et al. (2012) studied BIST-100 Index 
forecasting using classical time series models such as ARIMA, numerical search 
models, and ANN models, arguing ANN to have outperformed the Newton numerical 
search models and conventional time series models. Telli and Coşkun (2016) also 
forecasted the BIST-100 Index using ANN models with daily data between July-
November 2015 and showed the structured multilayer perceptron (MLP) model to 
be the best among the several tested models. Ünvan and Ergenç (2022) additionally 
compared the predictive ability of ANN and regression models applied to the BIST-
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100 Index’s closing prices between 2010-2020 and found ANN to perform better than 
the considered regression models.

Raşo and Demirci (2019) used deep learning methods to forecast the Turkish 
Stock Market on the BIST-30 Index from January 2016-April 2018, with their 
study’s findings revealing the deep learning model to outperform other techniques 
such as support vector regression (SVR). Furthermore, Alp et al. (2020) conducted 
a comparative study on BIST Index price prediction, comparing the performance of 
ARIMA against two deep learning methods (i.e., long short-term memory [LSTM] 
and gated-recurrent unit [GRU]) for predicting the BIST-30, BIST-50, and BIST-100 
price indexes. Their study found the ARIMA models to outperform the deep learning 
models with regard to predicting the considered price indexes.

Aker (2022) likewise examined price volatility of the BIST-100 Index by comparing 
LSTM and Facebook Prophet (Fbprophet) methods and suggested the LSTM model 
to have outperformed the Fbprophet model based on the RMSE, mean absolute error 
(MAE), and mean squared error (MSE) evaluation metrics. Pakel and Özen (2021) 
also investigated a volatility analysis of the BIST-100 Index using GARCH models 
and identified two significant shocks in the BIST-100 (i.e., currency shock and 
COVID-19 pandemic shock) in 2018 and 2020, respectively. Their research revealed 
stock market volatility to have increased significantly during the 2018-2020 period 
and the increase to have been more persistent during the COVID-19 pandemic. 
Yılmaz and Kale (2022) also analyzed the short- and long-term asymmetrical effects 
of companies’ financial risk ratios, with their findings showing no asymmetrical 
relationship to be present between risk and financial ratios in the short term.

All these recent studies have indicated producing predictions based on the BIST-
30 and BIST-100 Index data to still be important, as these indexes are influenced by 
the undesirable conditions the Turkish economy experiences in the short and long 
term. Some of these articles compared classical and modern forecasting methods, 
while others tried to model variances. Unlike the articles cited above, this study 
compares classical time series models and ANN models with regard to structural 
break and ARCH errors over BIST-30 and BIST-100 Index data, where producing 
high-frequency, volatile, low-error predictions is difficult.

Figure 3 shows the plot for the BIST-30 and BIST-100 Index data. For example, 
both considered stock datasets contain multiple structural breaks and ARCH effects, 
as shown in Figure 4 and Tables 7, 8, and 9. Stocks data for the Jan 4, 2010-Jun 20, 
2022 period were extracted from this website (www.investing.com).
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Figure 3. BIST-30 and BIST-100 Index data

3.1. Testing ARCH Effects
The Lagrange multiplier (LM) test has been used to test for the presence of ARCH 

effect in the series. This test is conducted using the archTest function in R from the 
FinTS package developed by Tsay (2005). The LM test uses the null hypothesis of no 
ARCH effects against the alternative hypothesis of ARCH effects presence.

Table 7
Lagrange Multiplier Test Results
Data LM Test Statistic p_value
BIST-100 771.6928 0.000
BIST-30 933.8855 0.000

Since the p values in Table 7 are zero or close to zero, the null hypothesis regarding 
residuals exhibiting no ARCH effects is rejected. Therefore, ARCH effects are 
concluded to be present in both the series under study here.
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3.2. Structural Break(s) Testing
Before running a forecast with the models under consideration, the presence of 

structural breaks in the data must be checked first. This is done using Bai-Perron 
(2003) multiple breakpoint test with the R function breakpoints from the strucchange 
package.

Figure 4. Break Locations and Segments.

Figure 4 suggests the data from both stock indexes to contain at least four significant 
structural breaks. Tables 8 and 9 show these breakpoints, the estimated break dates, 
and optimal segmentation accompanied by the estimated intercepts for each segment. 
Both the BIST-100 and BIST-30 Indexes have the same number of structural breaks 
and similar locations for the break dates. This study’s empirical data now clearly 
contain structural breaks and ARCH effects, thus the time has come to proceed with 
the forecasting process and measure its accuracy.



Ekoist: Journal of Econometrics and Statistics

20

Table 8
BIST100 Break Locations and Segmentation
Breakpoint Break Date Segment Intercept
672 Aug. 29, 2012 Jan. 4, 2010 – Aug. 29, 2012 600.233
1,141 Jul. 14, 2014 Aug. 30, 2012 – Jul. 14, 2014 748.157
1,839 Apr. 19, 2017 Jul. 15, 2014 – Apr. 19, 2017 800.134
2,663 Aug. 7, 2020 Apr. 20, 2017 – Aug. 7, 2020 1,028.809

Aug. 8, 2020 – Jun. 20, 2022 1,628.825

Table 9
BIST30 Breakpoints and Segmentation
Breakpoint Break Date Segment Intercept
672 Aug. 29, 2012 Jan. 4, 2010 – Aug. 29, 2012 738.596
1,141 Jul. 14, 2014 Aug. 30, 2012 – Jul. 14, 2014 919.286
1,839 Apr. 19, 2017 Jul. 15, 2014 – Apr. 19, 2017 981.905
2,663 Aug. 7, 2020 Apr. 20, 2017 – Aug. 7, 2020 1,260.563

Aug. 8, 2020 – Jun. 20, 2022 1,777.168

Table 10
Train-Test Sets Plan of the Empirical Data
Stock Index Sample Size Training Set(size) Test set (size)
BIST-100 3,132 3,112, 3,122, 3,127 20, 10, 5
BIST-30 3,132 3,112, 3,122, 3,127 20, 10, 5

As Table 10 shows, the total sample size for each case (T=n+h) is 3,132 , where 
T is the total sample size, n is the training sample size, and h is the prediction sample 
size. Although the total sample size of the empirical data is much more than that of 
the simulated data, the study examined the same prediction sample sizes (horizon 
size) as in the simulation. In each case, the study reserves the first 3,112, 3,122 and 
3,127 (i.e., n1 = 3112, n2 = 3122 and n3 = 3127) observations as the training sample 
sizes and the remainder as the prediction sample size (h = 20, h = 10, and h = 5) in the 
three separate experiments for each case.

Tables 11 and 12 present the empirical results for the two popular Turkish financial 
stocks data indexes (i.e., BIST-30 & BIST-100). The results from the empirical data 
are similar to those from Design 2’s simulated data. The possible explanation for this 
similarity is that they have similar components in the sense that both data contain 
ARCH effects, trends, and structural breaks.
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Table 11
BIST-30 Results
Model h = 20 h = 10 h = 5

Individual Models
ETS 167.9629 160.405 23.49172
ARIMA 172.8163 156.102 23.48209
ANN 158.327 127.077 23.13754

Simple Forecast Combination
Comb_SA 166.3248 147.7268 23.28021
Comb_MED 167.9673 156.0968 23.54386
Comb_BG 166.3106 147.2373 23.27600

Regression-Based Forecast Combination
Comb_OLS_static 156.9727 101.259 23.05612
Comb_OLS_dynamic 135.9082 86.07532 23.15337
Comb_LAD_static 158.0176 121.7372 23.08587
Comb_LAD_dynamic 150.6015 114.8549 23.10114

Table 12
BIST-100 Results
Model h = 20 h = 10 h = 5

Individual Models
ETS 164.6264 117.8719 22.70763
ARIMA 165.9428 120.8585 22.85353
ANN 154.2198 89.08681 22.38252

Simple Forecast Combination
Comb_SA 161.5748 109.0967 22.62900
Comb_MED 164.6226 117.7284 22.67512
Comb_BG 161.4729 108.7855 22.62865

Regression-Based Forecast Combination
Comb_OLS_static 150.7041 69.4551 22.0219
Comb_OLS_dynamic 138.3404 55.8600 22.0339
Comb_LAD_static 153.8752 99.2405 20.8992
Comb_LAD_dynamic 150.4317 88.8441 20.8992

1. Among the non-combined models, ANN performs much better than its counterparts 
for all considered horizons. Unlike the simulated data, a large difference occurs 
between ANN and its counterparts regarding the medium (h = 10) and long (h = 
20) horizons, while the difference is smaller regarding the short horizon (h = 5).

2. For simple combination models, Comb_SA and Comb_BG perform better than 
the non-combined models apart from ANN for all horizons. 

3. The regression-based forecast combination models significantly improve 
forecasting accuracy. Dynamic versions of combined weights provide the best 
results, with the OLS combined weighting being the best performing model in 
both the BIST-30 and BIST-100 data sets for all horizons.
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Figure 4. BIST-30 and BIST-100 means and variations

4. Both the BIST-30 and BIST-100 time series graphs show similar behaviors and 
structural breaks; however, the BIST-100 RMSEs are smaller for all cases. This 
could be explained by BIST-100 including more companies, so its average and 
standard deviation are lower than in the BIST-30 Index, as shown in Figure 4. 
The statistical significance of the difference between the variances of the two 
series (BIST-30 & BIST-100) was tested using the F test and Levene test, which 
show a statistically significant difference to exist between the two variances. The 
significance of the statistical difference between the means of the two series was 
tested using the Mann-Whitney test, which also showed a statistically significant 
difference to be present between the two averages. Therefore, this study’s models 
perform better over the BIST-100 dataset because it has less variation compared 
to the BIST-30 Index.

5. Although the results obtained in the study regarding individual models partially 
parallel the results found in the reviewed studies, the current study’s application 
forecast combination models and comparison of combined forecast performances 
under different conditions offer a contribution to the literature.

4. Conclusion
This study has aimed to examine if the generally accepted concepts regarding 

prominence of forecast combinations in forecasting accuracy is sustained with 
respect to specific cases of structural breaks and conditional heteroscedasticity, which 
are well known phenomena in financial time series. This paper has also explored 
which combination schemes are optimal with regard to these cases by combining the 
ETS, ARIMA, and ANN models, using simple and regression-based combination 
techniques to combine the individual components of the forecasts. These methods 
have been implemented using simulated and empirical-based data.

3 The study found regression-based forecast combination methods to be the 
best forecast combination schemes for cases with structural breaks and conditional 
heteroscedasticity. Allowing for time-varying combined weights (dynamic version) 
revealed a significant improvement in accuracy compared to the static counterparts for 
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the considered time series containing trends. This suggests the estimated combination 
of weights fluctuate greatly over time. In contrast, the dynamic combined weights 
did not change much for the case no trends when compared to its static counterpart. 
Although simple combination schemes that include the simple average model have 
exhibited wonderful performance in the literature on forecasting, they only perform 
better than ETS and ARIMA, while hardly outperforming ANN. This is an indication 
that structural breaks affect the performance of simple combination strategies. 
Furthermore, ANN was the best individual model for all cases regarding the simulated 
and empirical data compared to its single counterparts, even outperforming the simple 
forecast combination methods in most cases.
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