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Abstract 

Supply chain management provides customers with the right product or service at a reasonable price, in the right place, at the right time, 

and with the best quality possible, thus increasing customer satisfaction. The inventory is held at the multiple sites in a supply chain. 

Effective and efficient management of inventory in the supply chain process has a significant impact on improving the ultimate customer 

service provided to the customer. Reducing inventory cost, which is a major part of total supply chain costs, will help provide products or 

services at a better price. This study aims to compare (R, S) and (R, S, Qmin) inventory control policies in a serial supply chain.  We develop 

a simulation based genetic algorithm (GA) in order to find the optimal numerical "S" value that minimizes the total supply chain cost 

(TSCC) and compare our results between two methods.  

Keywords: Supply Chain Management, Inventory Management, Simulation-based Genetic Algorithm. 

Jel Code: M11 

SERİ TEDARİK ZİNCİRİNDE PERİYODİK STOK KONTROL 

POLİTİKALARININ KARŞILAŞTIRILMASI 
Özet 

Tedarik zinciri yönetimi, doğru ürün veya hizmetlerin mümkün olan en iyi kalitede, doğru zamanda, doğru yerde ve uygun fiyatlı olarak 

müşterilere sunulmasını sağlamakta ve bu sayede müşteri tatmininin arttırılmasına yardımcı olmaktadır. Tedarik zinciri içerisinde farklı 

kademelerde stok bulundurulmaktadır. Tedarik zinciri sürecinde etkili ve etkin bir stok yönetimi, müşterilere sunulan hizmetleri 

iyileştirilmesini sağlamaktadır. Tedarik zinciri maliyetlerinin içerisinde önemli bir paya sahip olan stok maliyetlerinin azaltılması ürün veya 

hizmetlerin daha uygun fiyatlarla müşterilere sunulmasına yardımcı olmaktadır. Bu çalışmada seri tedarik zincirinde, (R,S) ve (R, S, Qmin) 

stok kontrol politikalarının karşılaştırılması amaçlanmıştır. Bu stok kontrol yöntemleri uygulandığında, toplam tedarik zinciri maliyetlerinin 

minimize edilmesini sağlayan “S” değerinin optimal değerini bulabilmek için simülasyon temelli genetik algoritma (GA) kullanılmış ve iki 

stok kontrol politikasının uygulanmasının sonuçları karşılaştırılmıştır. 

Anahtar Kelimeler : Tedarik Zinciri Yönetimi, Stok Yönetimi, Simülasyon Temelli Genetik Algoritma 

Jel Kodu : M11  

1. INTRODUCTION 

In today's global economy, firms need to manage their 

supply chains effectively, in order to survive in the 
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markets and gain competitive advantage in the growing 

markets where customer expectations have been rising. 

Supply chain management aids companies reduce their 

costs, represent the products in right times, right amounts 

and right places by performing in better and faster 
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conditions, thus getting the advantage against their 

competitors.  

Supply chain management is very different than the 

management of one site. The inventory stockpiles at the 

multiple sites, including both incoming materials and 

finished products, have complex interrelationships. 

Effective and efficient management of inventory in the 

supply chain process has a significant impact on 

improving the ultimate customer service provided to the 

customer (Lee and Billington, 1992). 

In order to satisfy customer demand timely, firms need 

to hold the right amount of inventory. While inventory can 

protect firms against unpredictable market conditions, can 

be very costly in a supply chain. Given the primary goal 

of reducing system-wide cost in a typical supply chain; it 

is important to take a close look at interaction between 

different facilities and the impact it has on the inventory 

policy that should be employed by each facility (Simchi-

Levi et al., 2000). 

The main contribution of this paper is two-fold; first, to 

develop the simulation part of the solution methodology 

using the Microsoft Excel spreadsheet for the sake of 

implementation simplicity and second, to implement (R, 

S, Qmin) inventory policy developed by Keismüller et.al. 

(2011) in a serial supply chain and compare it with the 

classic (R, S) policy. We use simulation based GA to 

determine “S” numerical value which will minimize the 

TSCC. In this model, the TSCC consists of two cost 

components, which are holding and shortage costs. The 

remainder of the paper is organized as follows. Section 2 

considers inventory control in multi echelon systems and 

describes two corresponding inventory control policies, 

which are used in this study. In section 3, the solution 

methodologies are defined. In section 4, the numerical 

example is presented to test the performance of those 

policies. Lastly, conclusions are summarized in section 5. 

2. INVENTORY CONTROL IN MULTI ECHELON 

SYSTEMS 

Inventory has a significant role in a supply chain’s 

ability to support a firm’s competitive strategy. If a very 

high level of responsiveness is required by the firm’s 

competitive strategy, this can be achieved by locating 

large amounts of inventory close to the customer. On the 

other hand, a company can use inventory to become more 

efficient by reducing inventory through centralized 

stocking. The responsiveness that results from more 

inventory and the efficiency that results from less 

inventory is the main trade-off implicit in the inventory 

driver (Chopra and Meindl, 2010).  

Finding the best balance between such goals is often 

trivial, and that is why we need inventory models. In most 

situations some stock is required. The two main factors are 

economies of scale and uncertainties. “Economies of 

scale” means we need to order in batches. Uncertainties in 

supply and demand together with lead- times in production 

and transportation inevitably create a need for safety 

stocks. Organizations can reduce their inventories without 

increasing other costs by using more efficient inventory 

control tools (Axsater, 2006). 

Multi-echelon inventory models are central to supply 

chain management. The multi-echelon inventory theory 

began when Clark and Scarf (1960) published their 

seminal paper (Chen, 1999). Clark and Scarf (1960) 

consider multi-echelon inventory systems for the first time 

in their study and they also use simulation to evaluate 

corresponding dynamic inventory model. Their study is a 

starting point for an enormous amount of publications on 

multi-echelon systems.  

There are two different decision systems used in multi 

echelon inventory systems and those are centralized 

decision system (echelon stock) and decentralized 

decision system (installation stock). Decentralized 

decision systems only require local inventory information, 

while centralized systems require centralized demand 

information (Chen, 1999). The centralized decision 

system, in which an optimal decision to send a batch from 

one site to another, may depend on the inventory status at 

all sites and has several disadvantages. In order to use that 

kind of a decision system, the firm needs to spend an 

additional cost for data movement despite the advanced 

information technology. In addition to this, it is difficult to 

derive complete general centralized policies. As a result of 

this, it is more suitable to limit the degree of centralization 

(Axsater, 2006). On the other hand, relatively independent 

organizations often control their inventory systems and 

make their own replenishment decisions, since different 

facilities are normally situated at locations far from each 

other in a supply chain (Petrovic et al., 1998; Axsater, 

2006).  Decentralized decision system does not require any 

information about the inventory situation at other sites and 

it is not necessary to explicitly keep track of the stocks at 

the downstream installations. These are the obvious 

advantages of this type of decision systems. (Axsater and 

Rosling, 1993). 

It is natural to think of the physical stock on hand when 

talking about the stock situation. However, stock on hand 

cannot be the sole determinant in ordering decision. The 

outstanding orders that have not yet been delivered should 

also be included in the equation. Therefore, the stock 

situation is characterized by the inventory position in 

inventory control. 

Inventory position= stock on hand + outstanding 

orders – backorders 

Inventory control models that are subject to uncertainty 

have two types: periodic review and continuous review. In 

periodic review, the inventory level is known only at 

discrete points in time, whereas, in continuous review, the 
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inventory level is known at all times (Nahmias, 2009). In 

this study, periodic review inventory control policies are 

considered.  

2.1. Periodic review, (R,S) Inventory control policy 

This system is commonly seen when companies order 

from the same supplier, or have shared resources.  The 

control procedure is that every “R” units of time (that is, 

at each review instant), enough inventory is ordered to 

raise the inventory position to the level “S”, which is a 

desirable property when the demand pattern is changing 

with time. The disadvantage of (R, S) system is that it has 

higher carrying costs than continuous review systems. A 

typical behavior of this type of system is shown in Figure 

1 (Silver et al., 1998). 

 

Figure 1. The (R,S) system 

Most of the time, “R” and “S”, two decision variables, 

are not independent, that is, the best value of “R” depends 

on the “S” value, and vice versa. Assuming that “R” has 

been predetermined without knowledge of the “S” value is 

still quite reasonable for practical purposes when dealing 

with B items (Silver et al., 1998).  In this study, we assume 

that the value of “R” is predetermined. 

2.2. (R, S, Qmin) Inventory control policy  

This simple periodic review policy, called (R, S, Qmin) 

is proposed by Keismüller et al. ( 2011). In this policy, the 

inventory position is monitored every “R” units of time 

and if the inventory position is above the level “S”, then 

no order is placed. In case the inventory position is below 

the level “S", an amount of order is placed which equals 

or exceeds Qmin (minimum order size). An amount larger 

than Qmin is ordered if the minimal order size Qmin is not 

sufficient to raise the inventory position up to level S. This 

policy is a special case of (R, s, t, Qmin) policy which is 

developed by Zhou et al. (2007) where s=S−Qmin and 

t=S−1 (Keismüller et al., 2011). 

Figure 2. The (R,S,Qmin) policy (lead time equal to zero) 

If the demand is always larger than the minimum order 

quantity, which may happen in case of small values of 

Qmin, then the order constraint is not restrictive anymore 

and in that case, the (R, S, Qmin) policy is similar to a base-

stock level policy (R,S) with base-stock level S. For large 

values of Qmin the parameter S functions as a reorder level 

only, the policy is equal to an (R, s, Qmin) policy with a re-

order level s.  

Kiesmüller et al. (2011) prove that the proposed policy 

is simple to compute and it has an efficient cost 

performance, which is close to the more sophisticated two-

parameter policy developed by Zhou et al. (2007). 

Although the proposed policy cannot derive better 

solutions than (R, s, t, Qmin ) policy in terms of the cost ( 

since it is a special case of that policy ), it is still practical 

with its computational simplicity. 

3. SOLUTION METHODOLOGY 

3.1. Genetic Algorithm 

Genetic algorithm (GA) is a mathematical search 

technique based on the principles of natural selection and 

genetic recombination, which is firstly proposed by 

Holland (1975) (Chambers, 1995). The original 

motivation for the GA approach was a biological analogy. 

In the selective breeding of plants or animals, for example, 

offspring that have certain desirable characteristics are 

sought characteristics that are determined at the genetic 

level by the way the parents’ chromosomes are combined. 

In the case of GAs, a population of strings is used, and 

these strings are often referred to in the GA literature as 

chromosomes, while the decision variables within a 

solution (chromosome) are genes. The recombination of 

strings is carried out using simple analogies of genetic 
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crossover and mutation, and the search is guided by the 

results of evaluating the objective function (f) for each 

string in the population. Based on this evaluation, strings 

that have higher fitness (i.e., represent better solutions) can 

be identified, and these are given more opportunity to 

breed (Glover and Kochenberger, 2003).  

The GA search starts with the creation of a random 

initial population of N individuals that might be potential 

solutions to the problem. Then, these individuals are 

evaluated for their so-called fitnesses, i.e. of their 

corresponding objective function values. A mating pool of 

size N is created by selecting individuals with higher 

fitness scores. This created population is allowed to evolve 

in successive generations through the following steps 

(Marseguerra et al., 2002): 

1. Selection of a pair of individuals as parents; 

2. Crossover of the parents, with generation of two 

children; 

3. Replacement in the population, so as to maintain 

the population number N constant; 

4. Genetic mutation. 

The genetic operators of crossover and mutation are 

applied at this stage in a probabilistic manner which results 

in some individuals from the mating pool to reproduce 

(Chambers, 1995). In general, the parent selection is 

fitness proportional and the survivor selection is a 

generational replacement. The crossover operator is based 

on exchange of sub trees and the mutation is based on 

random change in the tree (Talbi, 2009). Setting values for 

various parameters, such as crossover rate, population 

size, and mutation rate is a critical process in 

implementing a GA (Mitchell, 1998). 

GAs are stochastic search methods that could in 

principle run for ever, unlike simple neighborhood search 

methods that terminate when a local optimum is reached. 

In practice, a termination criterion is needed; common 

methods are to set a limit on the number of fitness 

evaluations or the computer clock time, or to track the 

population’s diversity and stop when this falls below a 

certain threshold (Glover and Kochenberger, 2003). 

3.2. Simulation Based Genetic Algorithm 

Simulation is proved to be one of the best means to 

analyze and deal with stochastic facets existing in supply 

chain. Its capability of capturing uncertainty, complex 

system dynamics and large-scale systems makes it very 

well suited for supply chain studies. It can help the 

optimization process by evaluating the impact of 

alternative policies (Ding et al., 2006). 

Figure 3. The simulation based optimization framework 

Simulation is preferred to compute numbers for real 

world situations. Simulation successfully handles certain 

flexibility that decision makers would prefer. A validated 

simulation has a better chance of being accepted by end 

users compared to complicated models (Kapuscinski and 

Tayur, 1999).  

The objective function and constraints are replaced by 

one or more discrete event simulation models in 

simulation optimization. Decision variables are the 

conditions the simulation is run under, and the 

performance measure becomes one (or a function of 

several) of the responses derived by a simulation model. 

Simulation optimization techniques have generally been 

applied to systems where the decision variables are 

quantitative and associated with the amount of some 

resources available in the model (Azadivar and Tompkins, 

1999). 

A general simulation-based optimization method 

includes two essential components: an optimization 

module that guides the search direction and a simulation 

module that is used to evaluate performances of candidate 

solutions (network configuration + operational rules and 

parameters). In comparison with MP techniques, 

simulation-based optimization methods employ one or 

more simulation models as a replacement to the analytical 

objective function and constraints. The decision variables 

are the conditions under which the simulation is run. 

Iterative output of the simulation is used by the 

optimization module to provide feedback on progress of 

the search for the optimal solution (Ding et al., 2006). 

In industrial applications, several search algorithms 

such as, pattern search, simplex, simulated annealing and 

GA, have been linked with simulation. These search 

algorithms successfully bring simulation model to near-

optimal solutions. Developed algorithms in the literature 

showed that GA has the capability to robustly solve large 

problems and problems with nonnumeric variables. It 

performed well over the others in solving a wide variety 

of simulation problems (Ding et al., 2006). Thus, in this 

study we will consider these systems as a combination of 

GA and simulation. 

4. NUMERICAL EXAMPLE 

4.1. The Model 

We consider a four stage serial supply chain in which 

random customer demand occurs at stage 1, retailer; stage 

1 orders from stage 2, distributer; stage 2 orders from stage 

3, manufacturer; stage 3 orders from stage 4, supplier; and 
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stage 4 orders from an outside raw material supplier that 

has unlimited supply.  

Figure 4. Serial Supply Chain Model 

We develop a simulation based genetic algorithm 

(GA)  in order to find the optimal numerical "S" value that 

minimizes the total supply chain cost (TSCC), comprising 

holding and shortage costs, and compare our results 

between two inventory control methods. Simulation is 

used to evaluate “S” numerical values generated by the 

GA. 

The objective function of the problem can be formulated 

as below. 

Min (Total Supply Chain Cost) = 

 

 hi = unit inventory holding cost at member i     

( i=1 to N) 

 Ii,t = the quantity of on hand inventory at member i   

( i=1 to N) 

 bi = unit shortage cost at member i                                      

( i=1 to N) 

 Bi,t = the quantity of backordered inventory at member i 

( i=1 to N) 

 Li, = replenishment lead time with respect to member i    

( i=1 to N) 

 Di,t= demand per unit time at member i                          

( i=1 to N) 

In this study, we use a four-stage serial supply chain 

model, which is developed by Daniel and Rajendran 

(2005). The assumptions of the model are given below.  

 There is no lead time for information or order 

processing, however, there is a combined lead time 

consisting of processing and transportation at each 

stage and it is called replenishment lead time. Every 

member has its respective replenishment lead time and 

they are 1, 3, 5, 4 days respectively for retailer, 

distributor, manufacturer and supplier.  

 When there is enough on-hand inventory to meet the 

order of the downstream member, the demand is fully 

replenished. Otherwise, the unsatisfied demand is 

backlogged, in other words, placed in the back-order 

queue.  

 Every member has infinite capacity.  

 The most downstream member, retailer, faces random 

customer demand, which is assumed to be constant.  

 The source of supply of raw materials to the most 

upstream member, supplier, has infinite raw material 

availability.  

4.2. Application of the inventory control policies  

We aim to observe different impacts of the relative 

inventory control policies in terms of cost reduction on a 

specific serial supply chain model.  

(R,S) inventory control policy application 

Inventory level at every member is periodically 

monitored and if the relative inventory position falls below 

the pre-specified “S” level, a replenishment order is placed 

for a quantity that will bring the inventory position back to 

the pre-specified “S” level. Base-stock level at every 

member in the supply chain takes integer values.     

 (R, S, Qmin) inventory control policy application 

In this policy, the inventory position is monitored 

periodically and if the inventory position is above the level 

“S”, then no order is placed. In case the inventory position 

is below the level “S", an amount of order is placed which 

equals or exceeds Qmin (minimum order size). An amount 

larger than Qmin is ordered if the minimal order size Qmin 

is not sufficient to raise the inventory position up to level 

S. 

Since (R,S,Qmin) policy differs most from the order-up-

to policy (R,S) or fixed order size policy (R,s,Q) when the 

numerical values of Qmin is close to the mean period 

demand, a non-dimensional parameter, m=Qmin/ E [D], is 

introduced.  In our study, we assume that Qmin value is 

predetermined and it is 38 for all supply chain members 

while m=0.95.   

 

4.3. Proposed Solution Methodology 

Simulation-based GA is used as an experimental 

method to evaluate the models performance. The supply 

chain simulation is run for given customer demands 

generated from a uniform distribution for a specified run 

length over which the statistic TSCC is collected.  Random 

customer demand is generated uniformly within the range 

[20, 60] per unit time. Simulation experiments are carried 

out with a run length of 1200 days and TSCC is noted.  

 

T N

i i,t i i,t

t=1 i=1

(h I + b B ) 

S4
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Figure 5. Excel Link 
 

The GAtool in MATLAB 7 is used to run the GA. We 

generate an Excel Link between MATLAB and Microsoft 

Excel in order to evaluate the performance of the “S” 

values which are generated by GA and we make a decision 

about which members of one generation are forced to 

leave the population in order to make room for an 

offspring to compete. Additionally, we derive 100 

different uniform random number sets and take the 

average of the objective function (TSCCk) value which is 

obtained through simulation in order to avoid 

computational errors that might arise due to the usage of 

random numbers.  A macro is developed in Excel to 

calculate the average of the objective function (TSCCk) 

value. Thus, GA derives the “S” values and sends them to 

the Excel simulation as an input data and the output data 

of the simulation which is the fitness value (fk) of the 

chromosome, is sent to GA as an input data.  

Chromosome representation: This study uses gene-wise 

chromosome representation. Each chromosome is coded 

with a set of “S” values representing every member in the 

chain. In the numerical example, string length is taken as 

four and each gene in a chromosome represents the 

respective installation’s “S” value as shown below in 

figure 6.  

Figure 6. Chromosome representation 

Initial Population Generation: The initial population is 

created by the following procedure:  

Si
UL= Max Di,t * Max Li 

Si
LL= Min Di,t * Min Li 

A random number between [20,780] is generated, 

which is assigned as the “S” value for that member and 

same procedure is repeated for the remaining members. 

For the retailer considered in this model, the maximum 

and minimum customer demands are 60 and 20 per unit 

time respectively. The minimum replenishment lead time 

is predetermined as 1 day for the retailer. However, if the 

distributor doesn’t have enough on hand inventory at the 

time, to fulfill the order of retailer, the lead time will be 

longer than 1 day. And, in case all upstream members 

don’t have enough on hand inventory, the replenishment 

lead time for retailer will be the maximum replenishment 

lead time, which is the sum of replenishment lead times of 

the retailer, the distributor, the manufacturer, and the 

supplier, i.e. 13 days. (i. e. 1+3+5+4 days) Therefore, the 

initial “S” value for retailer is generated randomly 

between [20, 780]. According to that procedure, the lower 

limit and upper limit vectors [Si
UL, Si

LL] for all supply 

chain members are determined as [ 20 60 100 80] and [780 

720 540 240], respectively.  

Selection: In this study, we use the roulette-wheel 

selection procedure.  In roulette selection process, 

chromosomes are grouped together based on their fitness 

function values. First, MATLAB sends each chromosome 

in the initial population over to the simulation in Microsoft 

Excel via the M-file and the simulation calculates fitness 

values of those chromosomes. Then those fitness values 

are again sent from Excel to GATOOL in MATLAB via 

the M-file. Fitness values for each chromosome are 

summed up to reach a cumulative fitness value.  The 

process continues by dividing each chromosome’s fitness 

value by the cumulative fitness value, thus calculating a 

percentage value for each chromosome. Then, those 

percentages are lined up in order around a roulette wheel 

and the selection process starts; a random uniform number 

between 0 and 1 is selected and whichever chromosome 

falls into this number is selected to be passed on to the next 

generation.  

Figure 7. Selection flow chart 

In the next step, some random changes are made on 

chromosomes with the help of the genetic operators, in 

order to obtain better results. Various trials are conducted 

when determining which genetic operators to use in order 

to generate the optimum results. 

Crossover: The crossover operator, by combining the 

chromosomes of two parents, helps to obtain one or two 

offspring, which have a better fitness function. A single 

point crossover operator is used in this study. This type of 

crossover operator generates a random number between 1 

and the length of chromosome (N) and this becomes a cut 

point. Parts of two parents after the cut point are 

exchanged to form the two offspring. 

S1
 

S3
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Figure 8. A single point crossover representation 

Mutation: The mutation operator randomly modifies a 

parent to generate an offspring who will replace it. Since 

every gene in a chromosome represents the “S” value of 

the corresponding member, a gene-wise mutation is used 

in this study. 

Elitism: This operator aims to ensure the offspring that 

have the best fitness scores evolve into successive 

generations.  In this study, the number of the offspring that 

will be allowed to evolve into successive generations is 

determined to be 2.  

Termination Criteria: These criteria are determined in 

order the complete genetic algorithm calculations based on 

user preferences. Termination criteria include number of 

generations, time limit, fitness value limit, maximum 

number of generations in case genetic algorithm generates 

an identical value. In this study, there is no time limit set 

and the number of generations is determined to be 100.  

As a result of MATLAB GATOOL calculations, and 

using aforementioned operators, (R,S) policy “S” 

numerical values  are determined as [52 147 227 185] for 

the retailer, the distributor, the manufacturer and the 

supplier, respectively. TSCC generated by GATOOL is 

calculated as 415.832. On the other hand, (R,S, Qmin) 

policy “S” numerical values are determined as [47 144 224 

191], for the retailer, the distributor, the manufacturer and 

the supplier, respectively. TSCC generated by GATOOL 

is calculated as 439.951.  

5. SUMMARY AND CONCLUSION 

Supply chain management provides customers with the 

right product or service at a reasonable price, in the right 

place, at the right time, and with the best quality possible, 

thus increasing customer satisfaction. Supply chain 

managers strive to deliver products or services at the right 

price in order for customers to gain competitive advantage 

over competitors.   At this point, reducing inventory cost, 

which is a major part of total supply chain costs, will help 

provide products or services at a better price. Since 

demand is stochastic in real life cases, and there is certain 

replenishment lead-time for every member, supply chain 

members do not have an option to apply lean production 

techniques, in which the inventory levels are zero.  

However, the trade-off between the quality of customer 

service level and the costs should be taken into account 

carefully while determining the appropriate level of on-

hand inventory.  Thus, insufficient inventory level might 

lead to inferior customer service level and satisfaction 

albeit a lower product cost. In this study, we aim to 

determine the optimal level of on-hand inventory in order 

to minimize supply chain inventory costs. In the decision 

process, in order to save on time and costs, supply chain 

managers should prefer a method such as simulation, 

which better reflects uncertainties of real life situations. In 

addition to this, they can use a heuristic optimization 

method, such as genetic algorithm, which derives optimal 

solutions in a short time period. Using a combination of 

those two methods, thus placing results generated by 

genetic algorithm into the simulation, they can observe 

results in several different realistic circumstances.  

  In our study, we examine the application and measure 

the performance of the inventory policy (R, S, Qmin) 

developed by Keismüller et al.(2011) on the four stage 

serial supply chain model. This policy was considered on 

a single item single echelon system with stochastic 

demand in a previous study. Our study extends (R, S, Qmin) 

inventory control policy implementation by applying it in 

a multi echelon system. We develop a simulation model 

using Microsoft Excel spreadsheet for the sake of 

implementation simplicity. This simulation model can be 

used to evaluate the performance of the (R, S, Qmin) 

inventory policy on various supply chain scenarios.  

Next, we compare the relative inventory policy with the 

classic (R, S) policy. According to our experimental 

results, the (R, S, Qmin) policy costs slightly more than the 

classic (R, S) policy, for the given scenario. However, it 

leads to a better customer service level by avoiding 

inventory shortages. Also, (R, S, Qmin) policy is more 

efficient when economies of scale exist. We use a 

simulation based GA to determine the “S” numerical value 

which will minimize the TSCC. In this model, the TSCC 

consists of two cost components, which are holding and 

shortage costs. The solution methodology used in this 

study is easy to implement and doesn’t require 

cumbersome mathematical endeavors, which makes the 

process practical for users who don’t have advanced level 

of analytical skills. 
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