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Abstract: The target of computational neuroscience studies can be considered in two-folds: understanding the 

connection between the physiology and functional aspects of the brain to develop new approaches for diagnosing and 

treatment of neurological disorders and behavioral deficits and understanding mind and consciousness to develop new 

intelligent technologies. The methods and approaches used in computational neuroscience have to overcome the 

complexity of the system in all aspects. So, different methods and approaches are developed for different scales not only 

for observing the phenomena, but also for modeling. In this paper, an approach is proposed to build a connection 

between different levels of modeling. A simple, linear system will be shown to give an understanding of the working 

principle of basal ganglia circuit which is modeled with a detailed spiking neural network approach. First, spiking 

neural network of basal ganglia circuit will be introduced and the role of dopamine on its functioning will be shown; 

then a simple linear system model will be given, and the relation between two models will be explained.  The aim of this 

work is to show that even a simple model which is not sufficient for detailed understanding of the neuronal process, 

could give a coarse understanding of a complex phenomenon. Such simple models could be used as a starting point in 

building complex models and also can be benefited for implementing intelligent technologies. 

Keywords: Basal ganglia circuit, spiking neural network, mass model, dopamine. 

 

1. Introduction 
 

In computational neuroscience literature, there are 

numerous models of neurons and neural structures at 

different levels. One reason of this diversity is the 

collection of data at different levels using different 

measurement tools and methods.  While based on 

single neuron measurements, it is possible to obtain 

data to build a detailed model of a neuronal behavior 

based on the role of ion channels [1,2], it is also 

possible to pinpoint the regions of the brain that are 

active during a task by fMRI (functional magnetic 

resonance imaging) and obtain neural field model 

which can mimic the collective activity of neurons at a 

specific region during a specific task [3]. The 

resolution of measurements also depend on the scale. 

While, temporal resolution of single neuron 

measurements and EEG (electroencephalogram) / LFP 

(local field potential) are better, spatial resolution of 

fMRI is superior to other techniques. Thus the models 

corresponding to different levels have to cope with all 

these different scales and the dynamics of the brain is 

either modeled by a set of nonlinear, ordinary 

differential equations or partial differential equations. 

Besides these, there are hybrid models, where some 

structures are modeled at neuron level; others are 

modeled as mass model [4,5]. 

Of course the role of different aspects on neurological 

disorders and diseases is another reason of this diversity.  

While mutual activity of neurons is responsible for some 

processes and the malfunctioning in their collective 

behavior give rise to deficits, the activity of ion channels 

and the concentration of ions and neurotransmitters are 

important in other cases. So models differ as they target all 

these different phenomena at different levels. This variety 

of models is needed since all provide information necessary 

to understand the complexity of cognitive processes and 

neurological disorders and diseases. In computational 

neuroscience, the level of the model built has to be decided 

considering the experimental results to be used and the 

cognitive process dealt with. In some cases, models at 

different levels should be considered together to have a 

better understanding.   

There is another aspect which should be noted for the 

models in computational neuroscience other than building 

the connection between the physiology and functional 

aspects of the brain.  As pointed out in abstract, 

computational neuroscience also focuses on understanding 

mind and consciousness to develop new intelligent 

technologies. For this aspect, the simplicity of the models is 

crucial, since implementation on a hardware and real time 

applications is possible only if the computational burden is 

manageable. Even though there are some attempts to 

develop special hardware for neural structures as 
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SpiNNaker [6], neuromorphic hardware as Neurogrid 

[7], the scale of model should be kept small to use the 

models in mobile and robotics applications [4]. Thus, 

while modeling the behavior of a group of spiking 

neurons, the number of neurons in the model is not 

same as the number of neurons in the neuronal 

structure to be modeled, but scaled to a number that is 

capable to display the behavior. Also, the membrane 

potential of a neuron is modeled by either by first order 

dynamical systems as integrate and fire models [8,9] or 

second order dynamical systems as Izhikevich model 

[10], even though a detailed model could be obtained 

by adding ion channel dynamics to Hodgkin-Huxley 

model [11]. Thus, in neurorobotics applications and in 

developing new learning rules simple models are 

preferred, rather than detailed models. 

In this paper, the objective is whether it is possible 

to foresee the behavior of a complicated computational 

model by a simple one. If this is fulfilled than it would 

be possible to build a connection between different 

levels of modeling and a tool can be developed to ease 

detailed modeling. Since models at each level are 

versatile as they point different aspects of the neural 

phenomenon, the aim is not to replace a detailed model 

by a simple one, but to use a coarse approach to 

understand a complex but detailed one. To show the 

possibility of such an approach basal ganglia network 

will be considered, and it will be modeled by spiking 

neural models and by a simple linear system. 

Modeling basal ganglia network has been 

considered in computational neuroscience literature 

extensively [9,11-16] due to its role in voluntarily 

action selection, reward related learning and in 

neurological deficits and diseases as Parkinson's 

disease, Huntington's disease, and in behavioral deficits 

as addiction. Especially, models of basal ganglia 

network are developed to understand deep brain 

stimulation [2]. In recent years more attention is paid to 

the role of basal ganglia circuits in high level cognitive 

processes as decision making [17], substance 

dependence [18,19].  

In the following section, a brief introduction to the 

basal ganglia circuits will be given, especially focusing 

on the role of dopamine in action selection. Then, the 

proposed spiking neuron model will be introduced and 

a simple linear mass model will be given. The 

simulation results obtained using BRIAN simulator and 

XPPAUT will be given and these results will be 

discussed. It will be shown that a connection between 

the the firing rate of the spiking neuron model and 

dynamic behavior of simple linear model can be drawn.  

 

2. Basal Ganglia Circuit 
 

Basal ganglia circuits proposed to have important 

role in motor activation and cognitive processes [20] 

especially their role in reward based learning and 

decision making pointed in various works [17,21-23]. 

Impairment of basal ganglia circuits manifest deficits 

in motor actions observed in neurodegenerative 

diseases such as Parkinson's and Huntington's disease, 

and also cause behavioral deficits observed in attention 

deficit hyperactivity disorder (ADHD), obsessive-

compulsive disorder (OCD) and addiction [19,24-27]. 

These behavioral disorders and motor movement disorders 

are treated by deep brain stimulation (DBS), a well-known 

treatment of Parkinson's disease [28,29]. The role of basal 

ganglia in psychiatric disorders is considered more recently 

[30,31], and their treatment by DBS makes basal ganglia a 

target for functional and restorative neurosurgery [32,33]. 

In computational neuroscience, modeling basal ganglia 

circuits is an important subject and many models are 

proposed. While mostly focus more on the role of basal 

ganglia circuits in  voluntary movement and action 

selection [9,11-16], there are also models for reinforcement 

learning [34-42]. Some models deal with the 

malfunctioning of basal ganglia circuits and how treatments 

can be developed [2,43-46]. Most of these work except 

[13,42,45] focus on simple spiking neuron networks. Here, 

both mass model simpler than the ones in [13,42,45] and 

spiking neuron networks will be considered.  

Striatum is considered as the input structure of basal 

ganglia and it is together with Subthalamic nucleus (STN), 

Globus pallidus (internal(GPi), external(GPe) and ventral 

pallidum) and substantia nigra (pars compacta and pars 

reticulata) [47,48] form the direct, indirect and hyper-direct 

pathways of cortico- striatal circuit [20,24]. Normally, 

direct and indirect pathways are at an equilibrium state. 

Little perturbations on the output of basal ganglia circuit 

which correspond to the GPi/SNr (substantia nigra pars 

reticulata), result in the selection of an action. The role of 

the hyper-direct pathway is to perform the fine tuning 

between several possible output choices which are 

conducted by direct or indirect pathway [49]. Dopamine 

from  substantia nigra pars compacta and ventral tegmental 

area modify the activation in basal ganglia circuit by acting 

on striatum. 

The afferents of striatum are mainly cortical pyramidal 

neurons located in layer V and occasionally in layer III 

[50]. During motor activation, posterior putamen and the 

dorsolateral anterior putamen receive inputs from motor 

and motor association cortex [21,51].  

Striatum is mostly composed of medium spiny neurons 

(MSNs) which comprise 80-95% [47] (90 - 95 % [48]) of 

striatum, remainder is mostly interneurons. Even though 

MSNs are structurally homogeneous they have different 

chemical properties and are classified according to their 

response to neurotransmitter dopamine (DA) [48]. The two 

most effective groups are MSN with D1 type and D2 type 

receptors. D2 type receptors are more abundant and they 

are considered to be promoting the selection of the latent 

reinforcers [52].  

The stimulation of the D1 type DA receptors cause 

neuronal excitation while the stimulation of the D2 type 

receptors cause neuronal inhibition. Both D1 and D2 type 

receptors exist together on the membrane of a neuron and 

their net effect drives the neuronal output. While D1 type 

MSNs inhibit GPi neurons and form direct pathway, D2 

type MSNs inhibit GPe neurons and form indirect pathway. 

The direct pathway promotes the action initiation and 

selection whereas indirect pathway prevents actions 

[21,53]. The role of DA on striatum behaviour is vital, 
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many neurological diseases and disorders are due to 

malfunctioning of dopamine neurons in striatum 

[2,16,46].  

The well-known and extensively studied basal 

ganglia action selection circuit [24] has two main 

pathways: direct and indirect. Both pathways start with 

the stimulus from cortex to the neostriatum (caudate 

and putamen - Str) and unite again at the output 

nucleus of the basal ganglia, GPi/SNr.  

The direct pathway is responsible for action 

selection while the indirect pathway is responsible for 

the inhibition of the unwanted actions. Direct pathway 

starts with the glutamatergic projections from the 

cortex to the MSNs of striatum. Some of the striatal 

neurons have direct GABAergic (gamma aminobutyric 

acid) projections to the GPi. The connection between 

GPi and thalamus (THL) is inhibitory while the 

connection from thalamus to cortex is excitatory. The 

net result of the direct pathway is the inhibition of the 

inhibition on thalamus so the motor cortical areas are 

stimulated which is called disinhibition in the 

neuroscience literature [47,48]. In the indirect pathway 

different type of striatal neurons have inhibitory 

GABAergic connections to GPe. GPe inhibits STN 

while STN stimulates GPi via glutamatergic 

connection. The net result of the indirect pathway is the 

disinhibition on the GPi so thalamus is inhibited and 

motor cortical areas are less stimulated.  

In addition to the direct and indirect pathways, there 

is another excitatory connection between the cortex and 

the STN and this is called the hyper-direct pathway 

[49]. Via hyper-direct pathway cortical activity is 

transferred to GPi over STN and the striatal pathways 

are short-circuited. By the help of the excitation from 

the STN, already tonically active GPi inhibits thalamus 

stronger. For action selection, ventral oralis nuclei of 

thalamus is active [54] and its efferent is layer IV of 

supplementary motor area of cortex [21,48,54,55]. 

 

3. Computational Models of Basal Ganglia 

Circuit at Different Levels  
 

In this section, two different levels of modeling 

basal ganglia circuit will be considered and a spiking 

neuron model based on Izhikevich type neurons will be 

introduced first. Then, a simple continuous time 

differential equation set will be used to define a mass 

model of basal ganglia circuit. Such mass models for 

basal ganglia circuit have been given previously 

[13,42,56,57], but all these were composed of discrete 

time, nonlinear dynamical systems. These two model 

focus on the effect of dopamine on action selection and 

the role of dopamine is modeled by a parameter. 

 

3.1. Spiking neural network model 
 

In this work, a computational model of basal ganglia-

thalamocortical circuit for action selection which is 

shown in Figure 1 is first built using point neurons. 

The point neuron model used in forming these groups 

is Izhikevich neuron [58] and the equations governing 

the neuron model with the reset condition are given in 

Equation 1 and Equation 2, respectively. While forming 

the model the neural activation pattern of each 
  

 
 

Figure 1. Cortex - Basal Ganglia and Thalamus circuit. 

 

component of basal ganglia circuit is considered and to 

model different patterns different parameters of Izhikevich 

neuron model are used. These parameter values are given in 

the upper part of Table 1.  
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In Equation 1,  eg  and ig  represents the excitatory and 

inhibitory connections to the neuron. As a neuron is 

connected to numerous neurons sum of excitatory and 

inhibitory neurons effects the behavior of the neuron [59]. 

The dynamics of synapses and the parameter values are 

given in Equation 3, Equation 4 and Table 2, 

respectively. 
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Here index e corresponds to excitatory, and i corresponds to 

inhibitory connections. 
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As the connection increases when a presynaptic neuron 

fires, xkjw ,  denotes this increase in the weight from 

neuron j to neuron k either excitatory or inhibitory. 

While cortex in the model has 200 excitatory 

pyramidal neurons which have regular spiking activity.  

Striatum model consists of three groups of neuron 

populations: D1 type medium spiny neurons (MSND1), 

D2 type medium spiny neurons (MSND2) and 

interneurons (IN). 

 
Table 1. Izhikevich model parameters and connection 

weights.   is used for inhibitory and   for excitatory 

connections. 

 

Parameters RS FS 

a 0.02/ms 0.1/ms 

b 0.25/ms 0.2/ms 

c -65mV -65mV 

d 8mV/ms 2mV/ms 

Connections 
xkjw ,  Probabilities 

CRTXMSND1 0.75V/s 0.5 

INMSND1 1V/s 0.5 

CRTXMSND2 0.75V/s 0.5 

INMSND2 1V/s 0.5 

MSND1 IN 1V/s 0.25 

MSND2 IN 1V/s 0.25 

MSND2GPe 1V/s 0.25 

STNGPe 1V/s 0.25 

GPeSTN 1V/s 0.25 

CRTXSTN 1V/s 0.25 

MSND1GPi 0.75V/s 0.25 

GPeGPi 0.75V/s 0.25 

GPiTHL 1V/s 0.25 

 

MSND1 and MSND2 neuron populations are 

composed of 100 neurons and IN group has 25 

neurons. MSND1 and MSND2 are modeled as regular 

spiking neurons like cortex excitatory neurons. The 

neurons in GPi, GPe, IN and STN are modeled as fast 

spiking neurons with initial values iv =-75, iu  =-16, 

while cortex inhibitory neurons have as initial 

condition iv =-65, iu =-15. The connection weights 

and probabilities for the model in Figure 1 are given in 

the lower part of Table 1. The number of point neurons 

considered for all structures are given in Table 3. 

In order to model the role of dopamine on action 

selection, the synaptic connections have to be changed 

with dopamine and here, this is accomplished as in 

[60,61]. Thus, the Equations given in Equation 3, 

Equation 4 will be modulated with dopamine as in 

Equation 5. 

 },,
.

' iex
g

g
syn

x
x 


                (5) 

 

Here, with these equations implemented to the model, the 

effect of Dopamine can be investigated by changing DA 

parameter. In order to show different effect of dopamine on 

MSND1 and MSND2, the parameter  =DA is used for 

MSND1 group and  =1/DA is used for MSND2 group. 

 
Table 2. Synaptic time constant and frequencies of Poisson 

groups. 

 

 CRTX GPe, THL STN GPi 

10ms 100Hz 150Hz 200Hz 250Hz 

 

 
Table 3. Number of neurons in each neural population given in 

Figure 1. 

 

Neural Population # of neurons Behaviour 

CRTX 200 RS 

MSND1 100 RS 

MSND2 100 RS 

IN 25 FS 

GPi 100 FS 

GPe 100 FS 

STN 100 FS 

THL 100 FS 

 

 

3.2. Mass model 
 

A mass model equations for basal ganglia circuits are 

formed by linear differential equations given in Equation 

6. This model is inspired by the firing rate results of spiking 

neuron model given in previous section and knowledge of 

state space behavior of linear dynamical systems. 

The behavior of cortex areas crtx  are modeled by a 

Heaviside function. Striatum is represented by two state 

variables 1Dmsn  and 2Dmsn , which have afferent 

exitatory connection from crtx  weighted by dopamine 

level (DA) denoted by 1DAw  and 2DAw , for 1Dmsn  and 

2Dmsn , respectively. Each of neural structures other than 

striatum is modeled by a single state variable, thus egp , 

igp , stn  and thl  are represented by a single dynamical 

variable and they all have afferent and efferent connections, 

corresponding to the circuit given in Figure 1. The role of 

dopamine on action selection is investigated by changing 

dopamine level DA from low to high levels where the 

values of DA  are taken as 0.25, 0.5 and 0.75 for low, 

normal, and high level respectively [62,63]. 

 

crtxwmsnmsn DADD .' 111   

crtxwmsnmsn DADD .' 222   
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4. Results and Conclusion 
 

The simulations are done for spiking neural network 

model and mass model proposed in Section 3. In both 

cases the role of dopamine on action selection is 

investigated similarly. The levels of dopamine are 

changed through time and its effect on the results are 

shown with the activity of THL population. This 

activity which will be called THL activity is depicted 

with raster plot and firing rate for spiking neuron 

model and with curves obtained by the dynamical 

system for mass model. 

 

4.1. Spiking neural network results 

 

The simulations for spiking neural network model are 

carried in Python based simulation environment 

BRIAN [59]. During the simulations the level of 

dopamine is modified by changing parameter   in 

Equation 5. As the effect of dopamine on D1 and D2 

type receptors is different, and    =DA for MSND1 

group and  =1/DA for MSND2 group, to change the 

value of  , DA is taken as 1 for normal level, 0.9 for 

low level and 1.1 for high level. This modification is 

done through time and the level of dopamine is taken 

to be at normal level for the first 500ms and then 

switched to high level till 1500ms and then switched to 

normal level till 2500ms, to low level till 3500ms and 

again to normal level till the simulation ended at 

4000ms. This switching is done to investigate the effect 

of dopamine level change on the action selection 

through time. The simulation results are given for a 

randomly chosen single neuron from MSND1 and 

MSND2 population and synaptic activity in Figure 2, 

where the effect of dopamine on single neuron activity 

can be followed. As it can be followed from Figure 2, 

the neuron chosen from MSND1 population is more 

active when the level of dopamine is high, and the 

neuron chosen from MSND2 population is more active 

when the level of dopamine is low. This change in 

activity is also projected to synaptic dynamics and 

synaptic activity in both populations show difference as 

the membrane potentials. 

The outcome of the activity of neuronal populations in 

basal ganglia circuit determines the activity of THL 

which can be interpreted as the result of action 

selection. Thus eventhough the single neuron activity 

of striatum MSN population reflect the effect of 

dopamine, the overall result of all this neuronal activity 

is revealed in THL, so the population activity of 

MSND1, MSND2 and THL are given in Figure 3, with 

raster plots and firing rates of neurons in MSND1, MSND2 

and THL populations. 
 

 
 

Figure 2. Membrane potential )(tv  and synaptic dynamics 

)(tge  and )(tgi  for neurons which are randomly selected in 

MSND1 and MSND2 groups.  eg  and ig  is black and red, 

respectively. DA level is 1 (normal), 1.1 (high), 1 (normal), 0.9 

(low) and 1 (normal) for 0-500ms, 500ms-1500ms, 1500ms-

2500ms, 2500ms - 3500ms and 3500ms-4000ms time intervals. 

 

In time course of the change of dopamine level can be 

followed from firing rates easily while raster plot gives the 

information of neuronal population at neuron level. The 

firing rates inspired the idea of proposing a simple model 

for the interaction of neuronal population, where each 

population activity is denoted by a single dynamical 

variable as proposed in mass model. 

 

 
 

 Figure 3. Raster plot and firing rates of MSND1, MSND2 and 

THL. When DA level is high, THL activity is higher than normal 

rate and DA level is low, THL activity is lower than normal rate. 

 

 

4.2. Mass model results 

 

The simulation for the mass model are done using 

XPPAUT, a tool developed for dynamical system analysis. 

In order to demonstrate the analogy between the firing rate 

results of spiking neuronal network and mass model, the 

time course of dynamical behavior of the variables 
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corresponding to MSND1, MSND2 and THL 

populations are given in Figure 4. Here, again the 

dopamine level is switched similarly from normal to 

high, then to normal level followed by low level and 

finally to normal level by  

 

 
 

Figure 1. MSND1, MSND2 and THL activity. Mass model 

results show similar results spiking neural network. THL 

activity is effected by DA level similar to spiking neural 

network firing rate. 

 

changing the parameter DA in Equation 6. The 

simulation interval is different as the it is scaled for the 

mass model, but the results shown in Figure 4, 

resembles the change in firing rates given in Figure 3. 

 

4.3.Discussion of the results 

 

As the simulation results given in Subsections 4.1 and 

4.2 reveal, the overall activity of neuronal population 

can be followed from the mass model proposed as a 

simple linear system. Of course, with this coarse linear 

system approach, it is not possible to investigate the 

synaptic activity, or the activity in a neuronal 

population, but a general idea about the effect of 

dopamine can be followed easily. So building a simple 

model which consolidate the afferent and efferent 

connections between neuronal populations and the 

effect of neurotransmitter, would be informative to 

grasp the dynamics behind the neuronal activity. 

Furthermore, such a simple model can be versatile for 

the implementation of biologically inspired approaches 

and developing new learning rules as in [4,5]. 
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