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Abstract 

The inventory of oil tanks is essential for both economy and military applications, since it can be used to manage and estimate oil 

reserves. Knowing that the oil tanks contain valuable materials required for transportation and industrial production, they are a 

significant type of target. Oil tank detection techniques have several use-cases, including monitoring disasters, preventing oil leaks, 

designing cities, and assessing the damage. A huge amount of satellite imagery has recently been available and it is used in both 

military and civil applications. The new spaceborne sensors' higher resolution enables the detection of targeted objects with varying 

sizes. Therefore, remote sensing instruments provide ideal tools for oil tank detection tasks. Conventional approaches for oil tank 

detection from high resolution remote sensing imagery generally relies on geometric shape, structure, contract differences and color 

information of the boundary or hand-crafted features. However, these methods come along with vulnerabilities and hence it can be 

challenging to obtain accurate detection in the presence of a number of disturbance elements, particularly a wide range of colours, 

size variations, and the shadows that view angle and illumination create. Therefore, deep learning-based methods can provide a big 

advantage for the solution of this task. In this regard, this study employs four YOLO models namely YOLOv5, YOLOX, YOLOv6 

and YOLOv7 for oil tank detection from high-resolution optical imagery. Our results show that YOLOv7 and YOLOv5 architectures 

provide more accurate detections with mean average precision (mAP) values of 68.11% and 69.69%, respectively. The experiments 

and visual inspections reveal that these models provide efficient, generalized and transferable results.  
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Introduction 

Oil tanks are essential energy storage devices and critical 

infrastructures which are widely used in petroleum, 

natural gas, petrochemical industries and transportation 

(Xu et al., 2022; Yu et al., 2021). Rapid and accurate 

detection of oil tanks is substantial in terms of disaster 

management, risk evaluation and monitoring (Ok  and 

Başeski, 2015; Xu et al., 2022). 

With the advanced ability to acquire high resolution 

imagery, remote sensing has become an ideal tool for 

this task. There have been many approaches in the 

literature proposed for oil tank detection from remote 

sensing imagery. The first studies applied template 

matching and Hough transform methods for automatic 

oil tank detection which are generally based on structure 

and geometric shape information (Zhang et al., 2005; 

Zhu et al., 2012). These methods can be vulnerable to 

various factors such as scale, rotation, small targets, 

complex backgrounds and false detections. Saliency 

based methods were also exploited using synthetic 

aperture radar (Zhang  and Liu, 2020; Zhang et al., 2019) 

and optical imagery (Liu et al., 2019). However, saliency 

methods rely on contrast differences and color 

information of the boundary which can also lead to false 

positives and false negatives. Zhang et al. (2015) have 

proposed machine learning based support vector 

machines (SVM) classification for extracted features 

using high resolution optical imagery. The drawback of 

machine learning methods is that they require manual 

feature extraction and feature selection processes.  

Recent developments in artificial intelligence have also 

put forward deep learning-based methods which 

automatize these processes. In the literature, the 

implementation of deep learning is limited as an end-to-

end solution for oil tank detection by researchers. Wang 

et al. (2019) have applied state-of-the-art Faster R-CNN 

and R-FCN architectures with increasing scales of the 

anchors. The authors obtained a recall value of around 

80%. For boundary extraction of oil tanks, Yu et al. 

(2021) have developed Res2-Unet+ architecture that 

replaces the convolution block in the encoder of U-Net 

in order to decompose the feature map. In order to 

generalize their proposed model, the authors trained the 

model with high spatial resolution images from three 

different sensors. They obtained better accuracy values 

compared to state-of-the-art segmentation models such 

as U-Net, SegNet and PSPNet. Xu et al. (2022) present 

an improved version of EfficientDet architecture using 

3-D deformable convolution, attention mechanism and 

focal loss function. They have achieved better accuracy 

results compared to various models which are generally 

region proposal-based architectures. Wu et al. (2022) 

proposed an improved version of YOLOX using 

transformers and VGG-like blocks specifically for SAR 

imagery. The authors have trained and evaluated their 
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proposed model using Geofen-3 imagery. They have 

achieved 60.8% and 94.8% for mAP and mAP at 50% 

intersection over union threshold, respectively. Qi (2022) 

applied RetinaNet for the created a detection dataset 

composed of TripleSAT imagery which includes wind 

turbines, airplanes and oil tanks. For the oil tank class, 

they obtained 96.55% value for mean average precision 

value at 50% intersection over union threshold.  

Literature review shows that there is no study-to-date 

that implements state-of-the-art YOLO architectures for 

oil tank detection using high resolution optical imagery. 

In this study, we aim to apply four versions of YOLO 

architectures namely YOLOX (Ge et al., 2021), 

YOLOv5 (Jocher, 2022), YOLOv6 (Li et al., 2022) and 

YOLOv7 (Wang et al., 2022) in order to investigate 

comparative performances for oil tank detection from 

high resolution optical imagery.  

Materials and Methods 

Most deep learning architectures requires huge amounts 

of data in order to be trained. In this study, we use the 

open access Airbus Oil Storage Detection (AOSD) 

dataset (AirbusGeo, 2021). The dataset consists of 98 

SPOT RGB imagery around the world with roughly 1.2 

meters of geometric resolution, 8-bit radiometric 

resolution and 2560 x 2560 pixels size. The dataset also 

provides 13,593 bounding boxes for oil tanks. A sample 

image and corresponding bounding boxes can be seen in 

Figure 1.  

Fig. 1. A cropped image and bounding boxes (red) from 

the AOSD dataset. 

This study employs four versions of YOLO architecture. 

YOLO architecture was first introduced by Redmon et 

al. (2016) which approaches the detection task as a 

regression problem based on Darknet architecture. In 

despite of popular Region Proposal Networks (RPN), 

YOLO would both predict bounding boxes and class 

probabilities in a single network. The main idea is based 

on a user-defined size grid cell in which responsible for 

detecting the object if it falls into the cell.  

In order to decrease training time and produce a more 

generalized network, YOLO9000 (Redmon  and Farhadi, 

2017) has been proposed with some modifications to 

original YOLO such as batch normalization, higher 

resolution classifier and anchor boxes with convolutions 

(Atik et al., 2022).  

In the next version of YOLO, the authors proposed a 

deeper network which is referred as Darknet-53. 

YOLOv3 (Redmon  and Farhadi, 2018) uses 53 

convolutional layers in combination with skip 

connections. Another advancement in the YOLOv3 is 

the multi-scale detector at it performs detections as 3 

different scales using the feature pyramid network 

concept.  

In the following years, YOLOv4 has been proposed by 

Bochkovskiy et al. (2020) in order to achieve the optimal 

balance between the number of convolutional layers and 

parameters, the input network resolution and the number 

of layer outputs. The Cross Stage Partial (CSP) (Wang et 

al., 2020) is integrated into Darknet-53 and the backbone 

is renamed as CSPDarknet-53 in which residual blocks 

are replaced with dense blocks. CSP allows to manage 

features better and to decrease the number of parameters. 

Additionally, Spatial Pyramid Pooling (SPP) module (He 

et al., 2014) is also integrated in order to expand the 

network’s receptive field. SPP removes the most 

important context elements while minimizing 

performance losses on the network.  

Similar to YOLOv4, YOLOv5 uses CSP backbone and 

path aggregation network as neck. YOLOv5 is proposed 

in PyTorch environment with 4 different sizes in terms 

of network depth. Even though the developers have not 

published a paper regarding the details of YOLOv5, the 

main improvements in this version are mosaic data 

augmentation and auto learning anchors (Nelson  and 

Solawetz, 2020). In this study, YOLOv5x version has 

been exploited.  

YOLOX architecture has chosen a different approach 

and the developers have switched the YOLO detector 

with an anchor-free based detector. By doing this, the 

predictions for each location are reduced and only four 

values are predicted which are two offsets from grid 

corners, and the height and weight of the box. For the 

detection part, the couple head which performs 

classification and localization is decoupled with a lite 

head in order to improve converging speed. In this study, 

YOLOX-x version has been used. 

YOLOv6 is a renovated version of YOLO in terms of 

network design which is based on RepVGG (Ding et al., 

2021). It also includes VariFocal Loss (Zhang et al., 

2021) and a combination of SIoU (Gevorgyan, 2022) 

and GIoU (Rezatofighi et al., 2019) for classification and 

regression loss, respectively. In this study, YOLOv6-L 

version has been exploited. 

YOLOv7 is currently the latest version of the YOLO 

series. The main improvement is the backbone which is 

Extended Efficient Layer Aggregation. The architecture 

uses the cardinality of extending, mixing and combining 

to continuously improve the learning ability of the 
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network without disturbing the original gradient path. 

The architecture uses group convolution to expand the 

channel of computational blocks. YOLOv7 concatenates 

layers together considering the scaling of depth and 

width of the network. The architecture also exploits 

gradient flow propagation paths in order to determine 

which modules need re-parameterization. Finally, an 

auxiliary head is integrated which is settled on a coarse-

to-fine definition for better predictions. In this study, 

YOLOv7-X version has been implemented. 

Results 

In this study, oil tank detection performances of 

YOLOv5, YOLOX, YOLOv6 and YOLOv7 have been 

investigated using the AOSD dataset. Investigation of 

the dataset shows that raw image sizes are huge for 

training in terms of GPU memory. Moreover, almost half 

of the images have more than 100 oil tanks of varying 

sizes. This could lead to data loss during image resizing, 

especially for small objects. Therefore, we have decided 

to crop the dataset into 640 x 640 pixels sized images 

with a 10% overlap between chips within the image. In 

the end, we obtained 1021 images which are then split as 

70% (714 images), 20% (205 images) and 10% (102 

images for training, validation and testing, respectively. 

All experiments were performed on the Google Colab 

environment.  All architectures were trained for 100 

epochs with 640 x 640 sized images using pre-trained 

weights obtained with the MS COCO dataset.  

For the evaluation of the architectures, we have used 

average precision (AP) metrics of MS COCO evaluation. 

These are mean AP (mAP) at 50% intersection over 

union (IoU) threshold, mAP at 75% IoU threshold and 

mAP which is calculated as the average of 10 AP values 

for 10 IoU thresholds between 50% and 95% with 5% 

increments. 

The calculated accuracy metrics for all YOLO models 

are given in Table 1. The values in Table 1 are calculated 

using the test dataset which has not been used during the 

training. 

Table 1. Accuracy results for all models. The best values 

for each metric have been indicated with bold. 

Model mAP@0.50 mAP@0.75 mAP 

YOLOv5x 93.40% 79.43% 69.69% 

YOLOX-x 85.60% 61.90% 55.60% 

YOLOv6-L 90.20% 74.70% 65.60% 

YOLOv7-X 94.45% 77.24% 68.11% 

The results show that YOLOv7 has the highest accuracy 

with 94.45% according to mAP@0.50 with only a 

marginal difference from YOLOv5 with 93.40%. 

However, it seems that YOLOv5 performs marginally 

better with increasing IoU threshold according to 

mAP@0.75 and mAP with 79.43% and 69.69%, 

respectively. This can also can be seen in the precision-

recall curve presented in Figure 2.  

(a) 

(b) 

Fig. 2. Precision-Recall curve from test dataset for 

(a) YOLOv5 and (b) YOLOv7. 

Accuracy values for YOLOv6 are slightly worse 

compared to YOLOv5 and YOLOv7. However, it can be 

said that YOLOv6 results are still efficient compared to 

YOLOX. mAP value of YOLOX is almost 15% lower 

than the most successful network. Additionally, it can be 

said that an mAP value of around 55% is quite low for a 

single class detection task.   

Figure 3 shows a detection sample for each network for 

the same image from the test dataset. 

(a) 

mailto:mAP@0.50
mailto:mAP@0.75
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(b) 

(c) 

(d) 

Fig. 3. A sample oil tank detection result for (a) 

YOLOv5, (b) YOLOX, (c) YOLOv6 and (d) YOLOv7. 

Discussion and Conclusion 

In this study, state-of-the-art YOLO architectures were 

tested for oil tank detection from high resolution optical 

imagery. It can be said that YOLOv7 have provided the 

best solutions considering mAP@0.50 as Redmon and 

Farhadi (2018) suggested. Additionally, it is safe to say 

that a mAP value of 94.45% for 50% IoU threshold 

should be sufficient for this task in terms of usability and 

implementation.  

It should be noted that oil tank detection is a challenging 

task due to varying shapes and especially sizes. Some oil 

tanks can be as small as 10 x 10 pixels in the image 

(Figure 4). Even though small objects in object detection 

applications can be problematic, YOLOv7 seems to 

successfully detect these small oil tanks. Inspection of 

the predictions of the test dataset also shows that 

confidence values for detections are quite high. 

Moreover, visual inspections show that medium and 

large-sized oil tanks are detected in most cases by all 

used architectures. Therefore, small targets are more 

decisive to determine which architecture is superior. 

Figure 5 shows a tiny oil tank example for all YOLO 

architecture. As can be seen in the figure, the oil tank 

could only be detected by YOLOv5 and YOLOv7 which 

are also the best architectures in terms of mAP. 

Fig. 4. Detected small oil tanks by YOLOv7. 

(a)          (b) 

      (c)           (d) 

Fig. 5. A tiny oil tank detection result for (a) YOLOv5, 

(b) YOLOX, (c) YOLOv6 and (d) YOLOv7. 
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Fig. 6. Partly visible oil tank examples (top left). 

Fig. 7. Extra image with snow cover from the AOSD dataset 

Since the original images were divided into smaller 

chips, in some cases oil tanks are also split into multiple 

images. Nevertheless, YOLOv7 is still able to detect 

partly visible oil tanks (Figure 6).  The AOSD dataset 

also provides a couple of extra images without ground 

truth. An image with a snow cover has been run for 

prediction with YOLOv7 (Figure 7). Considering that 

the training dataset does not contain any images with 

snow cover, the prediction results seem sufficient. 

However, it can be seen that shadows of the oil tanks are 

detected as False-Positive. Recently, deep learning-based 

methods have emerged as a key methodology for 

resolving issues with remote sensing. Deep learning-

based techniques are crucial for improved, accurate, 

extensive, and quick data generation. 

In this study, YOLOv7 and YOLOv5 have provided the 

best results among four YOLO models for oil tank 

detection using high resolution optical imaging. The 

Bakırman / IJEGEO 10(1):009-015 (2023) 
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accuracy and visual inspection results show that both 

architectures can be used efficiently for this task.  

In future work, it is aimed to implement more MS 

COCO accuracy metrics to investigate the effect of 

object size more deeply and apply instance segmentation 

on oil tanks in order to extract also their boundaries. 

Moreover, the performance of the very recently released 

YOLOv8 for oil tank detection from high resolution 

optical imagery is worth investigating. 
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