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Abstract: To ensure comfortable and safe driving, the automotive industry has accelerated the 

development of autonomous vehicles in recent years.  In the design of autonomous vehicles, challenging 

problems such as lane detection need to be solved. Convolutional neural networks, which show superior 

performance in many fields, have also been used in the lane detection problem. The datasets required to 

train CNN models are too large to be collected and labeled by manual effort. In this study, a method is 

proposed to automatically collect a labeled data set from the video game environment to be used in the 

detection of highway lanes. Different CNN models such as ResNet50, VGG16, Xception, and 

InceptionV3 networks are trained using the Transfer Learning method with 745,823 collected images. 

The images captured by the front vehicle camera are used as input, the coordinates of the points in the 

left and right lane and the center of the lane in the 2D plane in front of the vehicle and the angle of the 

vehicle are used as outputs. The performances of these models are tested and compared on the images 

collected from a road not used in the training set. According to the performance comparisons, ResNet50 

performs best. 
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Video oyunu ortamında otonom sürüş için şerit tespiti  

 
Özet: Konforlu ve güvenli sürüşü sağlamak için otomotiv sektörü son yıllarda otonom araçların 

gelişimini hızlandırmıştır. Otonom araçların tasarımında şerit tespiti gibi zorlu problemlerin çözülmesi 

gerekmektedir. Birçok alanda üstün performans gösteren evrişimli sinir ağları şerit tespit problemlerinde 

de kullanılmıştır. CNN modellerini eğitmek için gerekli olan veri setleri, manuel çaba ile toplanıp 

etiketlenemeyecek kadar büyüktür. Bu çalışmada, otoyol şeritlerinin tespitinde kullanılacak etiketli bir 

veri setinin video oyunu ortamından otomatik olarak toplanması için bir yöntem önerilmiştir. ResNet50, 

VGG16, Xception ve InceptionV3 ağları gibi farklı CNN modelleri, toplanan 745,823 görsel ile Transfer 

Öğrenme yöntemi kullanılarak eğitilmiştir. Araç ön kamerası tarafından yakalanan görüntüler girdi 

olarak kullanılmış, aracın yol merkezine olan açısı ile birlikte aracın önündeki iki boyutlu düzlemde 

bulunan sol, sağ ve merkez şerit koordinatları çıktı olarak kullanılmıştır. Bu modellerin performansları 

eğitim setinde kullanılmayan bir otoyoldan toplanan görüntüler üzerinde test edilerek karşılaştırılmıştır. 

Performans karşılaştırmalarına göre en iyi performansı ResNet50 modeli vermektedir. 

Anahtar Kelimeler:  evrişimli sinir ağları, otonom sürüş, yol şerit tespiti
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1. Introduction 

According to the World Health Organization (2018), 1.35 million people die in traffic accidents 

annually, and related studies show that human factors cause 97.5% of accidents (Pakgohar et al., 2011). 

In this regard, autonomous vehicles are expected to eliminate the human factor and significantly reduce 

the number of casualties. The automotive industry is continuously moving towards autonomous vehicles 

as more and more companies invest in the development of self-driving vehicles. Lane detection is one 

of the many challenges that the industry and researchers are trying to solve using various data collected 

by sensors such as RADAR, LIDAR, and high-resolution cameras. Developing, testing, and deploying 

lane detection in real-world scenarios on public roads is costly, time-consuming, and can be dangerous.  

This study aims to provide a cheaper and more efficient alternative to this problem by using a popular 

video game called Grand Theft Auto V (2022), developed and published by Rockstar Games, which 

provides high-quality, realistic visuals and traffic environments. GTA V offers a wide variety of scenes 

with different lighting conditions, day and night cycles, weather conditions, and numerous vehicle and 

pedestrian models. The game's virtual city, Los Santos, is based on real-life Los Angeles with amazing 

detail. As a result, the scenery, road types, and traffic patterns are replicas of the real city. Examples of 

different driving scenarios are shown in Figure 1. 

The aforementioned features of video games have led to their use by many researchers. Shafaei et al. 

(2016) showed that video games can be used to train and evaluate computer vision models and that 

trained models can be evaluated on real-world data. Using the same video game, Zou et al. (2020) 

evaluated the generalization performance of a model trained on video game data for remote sensing 

image segmentation, with promising results. 

 
Figure 1. Variety of driving scenarios in the video game. 
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Filipowicz et al. (2017) presented an AlexNet model to learn stop signs from the dataset generated in 

GTA V and investigated the success of the developed model on real-world data. It was concluded that 

it is possible to transfer the models trained in the game to real-world applications. Using GTA V, 

Filipowicz (2016) demonstrated how to extract video game data, such as vehicle and pedestrian 

bounding boxes and vehicle distance to lane markings, for model training and the creation of tools to 

automate the process. Richter et al. (2016) proposed a semantic labeling tool to extract ground truth 

from GTA V without accessing the source code. Martinez et al. (2017) showed that it is possible to 

generate datasets from GTA V that include the distances of the agent's car to the lanes and other vehicles. 

Cai et al. (2021) used the same video game to generate a large-scale 3D human dataset with a variety of 

subjects, actions and scenarios for 3D human recovery. The study concluded that the game data was 

surprisingly useful and provided an important complement to real-world data. Novello et al. (2021) also 

used GTAV in an end-to-end approach, developing a model that converts inputs from a hood camera 

image and a set of speed values into three driving commands, such as steering angle, accelerator, and 

brake pressure. In another research, Jaladi et al. (2022) proposed an end-to-end learning and testing 

framework based on GTAV for autonomous highway driving. The study proposes to use the video game 

to train a neural network model capable of learning from human driving data. Schöning et al. (2023) 

used the video game’s sophisticated traffic environment to create a simulator for evaluating traffic-based 

cognitive enhancement technology. Park and Yun (2021) used GTAV to virtualize self-driving 

algorithms for a digital twining autonomous vehicle, and in their study they have used the video game 

for object recognition, collision avoidance and lane recognition. Sekkat et al. (2020) used GTAV to 

generate omnidirectional images for robotics and automotive applications, which is challenging to do in 

the real world. 

This study focuses on the detection of lanes on a highway by a camera placed on the dashboard of a 

vehicle. The main goal is to create a framework that generates labeled visual data from the video game 

that can be used to train convolutional neural networks, which have been successfully used in 

autonomous driving tasks (Muller et al., 2005; Huval et al., 2015). For the lane detection task, classical 

computer vision methods can be used. The main challenge with these methods is adapting them to 

different environments, such as different types of road markings, damaged road surfaces, discontinuous 

road lines, weather and lighting conditions. Classical methods mainly consist of detecting edges or 

matching them to predefined templates. These methods introduce noise into the extracted lane 

information (Duong et al., 2014). Using CNNs for lane detection has several advantages over traditional 

methods. Traditional methods can be prone to error depending on the lighting, brightness, and contrast 

of the captured images, or when road lanes are partially visible. Deep neural networks can generate 

interpretable features from time-series data, which can lead to better classification results (Gallitz et al., 

2019). In addition, semantic segmentation networks have been widely used in lane detection tasks, and 

have shown significant improvements in network performance. Although the effectiveness of these 

networks is not yet high enough to be practically used in real life, they are one of the key methods that 

will soon be practically used (Shi and Zhao, 2021). Fast and accurate lane detection is critical when 

using such algorithms in real-world applications. An example of such a network is Z-Net, which is 

specifically designed for lane detection (Zhang, 2020). Other studies using deep learning for lane 

detection tasks include LaneNet, end-to-end lane detection using differentiable least squares fitting, and 

robust lane detection from continuous driving scenes using deep neural networks (Neven et al., 2018; 

Van Gansbeke et al., 2019; Zou et al., 2019). 

Training CNNs requires a large amount of labeled data. The datasets generated by the methods described 

in this study do not require a manual labeling process, allowing the collection of approximately eight 

thousand image-label pairs during an hour of driving. Data is generated using third-party tools that 

leverage source code functionality. Lane labeling is done directly using game engine data and functions, 

so the data is collected exactly as the game generates it. This increases the accuracy of the dataset. 

Using the methods described in this study, a dataset of 745,823 frames was collected over approximately 

90 hours of driving. From each frame, the angle of the vehicle, the coordinates of the center point of the 

lane, and the coordinates of the left and right lane boundaries are extracted. 

Driving is also automated using third-party tools, and manual input is only required if the vehicle is to 

be driven to a predefined point in the world. Otherwise, the vehicle will follow the defined parkour 
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without the need for any manual input. The collected data is used to train InceptionV3, Xception, 

VGG16, and ResNet50 models (Szegedy et al, 2016; Chollet, 2017; Simonyan and Zisserman, 2014; He 

et al, 2016). 

This study demonstrates the potential of using a realistic simulation environment for large-scale data 

collection and training of AI models using transfer learning methods. The dataset generation methods 

presented do not require manual labeling and are highly accurate. These methods can be used to generate 

more complex and larger datasets to increase the success rate of AI models under different conditions. 

The proposed methods can be reused with minimal effort for AI models developed for tasks other than 

lane detection. 

The rest of this paper is organized as follows: In Section 2, the main tools used to extract game data 

and the CNN models used are presented. The performance comparison of the models is shown in 

Section 3, the shortcomings of the proposed data extraction methods are discussed in Section 4, and 

the conclusions are given in Section 5. 

2. Materials and methods 

While collecting images from a video game is easier, manually labeling lane boundaries on each image 

is nearly impossible. To streamline the labeling process, the initial idea was to use more traditional and 

widely used methods such as Canny Edge Detection and Hough Transform (Canny, 1986; Hough, 1962). 

To partially automate the labeling process, a tool that can modify the parameters of these methods in 

real-time is used (Gale, 2018).  However, visual inspection revealed that under different lighting 

conditions and when lanes are only partially in the scene, the parameters of these methods need to be 

readjusted to produce acceptable results. In most complicated traffic scenes, the lanes could not be 

detected by these methods. 

Third-party tools such as Script Hook V and Rage Plugin Hook make it possible to extract information 

directly from the video game engine (Blade, 2022b; Url1, 2022). The Rage Plugin Hook connects to the 

game instance and acts as an interface between the game’s engine and custom user code. It also provides 

an in-game menu to facilitate the data collection, such as teleporting the player character to a specific 

point in the world, changing weather and time conditions, and spawning a vehicle. This menu can also 

be used to hide the game's HUD (Head-Up Display) for more realistic images. Script Hook allows the 

use of any .NET language for the development of scripts that run in the game. It provides a huge database 

containing APIs (Application Programming Interface) of the game engine that have been researched and 

reverse-engineered by the game's fanbase (Blade, 2022a). Native APIs from the game engine can 

provide critical information about the location of lanes and their 3D world coordinates within the game. 

By converting 3D world coordinates to 2D screen coordinates, a huge dataset consisting of images and 

coordinates of four key points can be collected. These points are: 

• The angle of the vehicle to the road 

• Left lane boundary 

• Right lane boundary 

• Center of the lane. 

2.1. Extracting game data 

The virtual world of GTA V is filled with different types of AI-driven vehicles, including cars, buses, 

trucks, and motorcycles. Hundreds of such entities can surround the player’s character in virtual traffic 

at any given time. These vehicles behave similarly to real life, they can go slower or faster and they can 

change lanes. They are controlled by in-game path-finding algorithms, and such functions can be used 

to understand how the roads are detected for the AI vehicles. The two main pieces of information used 

are nodes and links. Nodes are individual points scattered throughout the virtual world. They are placed 

in the middle of roads and connected by entities called links. The links contain information about the 

type of road (highway, urban, seaway, etc.) and other information such as the number of lanes on the 

road and the width of each lane. A game file called “paths” holds the information about nodes and links, 

along with their 3D world coordinates. By parsing this file, one can determine how path-finding 

information is distributed in the virtual world. 
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Auxiliary functions such as GET_NTH_CLOSEST_VEHICLE_NODE_ID can be used to determine 

where the player’s character is in the virtual world and how close the character is to a vehicle node or 

vehicle link. Since nodes and links are labeled with unique IDs, it is possible to determine the properties 

of the road the player is currently traveling on. The exact positions of the left, right, and center lane 

points are determined in real time from the road type, lane width, and number of lanes. Using vector 

calculation APIs such as GET_ANGLE_BETWEEN_2D_VECTORS, even the angle of the vehicle’s 

forward vector to the road center can be calculated. Calculated ground truths can be displayed in the 

virtual world for debugging and visual inspection. 

By default, the video game does not provide a ‘dashboard camera’. To provide this view to the player 

another third-party tool called Hood Camera is used (Url2, 2022). To further speed up the data collection 

process, another script called Self Drive Plugin is used (Url3, 2022). This script allows placing a 

waypoint on the game’s map, and when the start button is pressed, the car drives to the waypoint at an 

adjustable speed. The script uses in-game functions similar to the developed dataset collection tool, and 

the player’s vehicle behaves like any other AI-controlled vehicle in the game. 

The video game is run at the highest possible graphics settings for more detailed and realistic visuals, 

but at 800x600 resolution to reduce the size of the dataset.  

The dataset collected in this study focused on highway driving in the middle of two lanes on a predefined 

parkour. Using the developed and above-mentioned complementary scripts and tools, a data collection 

procedure is defined. After starting the game, a vehicle is spawned using the Rage Plugin Hook tool. 

The view is switched to the dashboard camera. Both the time and the weather are set to dynamic mode, 

which means that they change randomly over time. The vehicle is teleported to the starting point of the 

parkour on the highway. A waypoint is placed at a point on the parkour and the Self Drive Plugin is 

initiated, each time at a different speed, so that the captured frames are as varied as possible. The 

developed dataset collection script is initiated from the in-game console provided by the Script Hook V 

tool. Once the waypoint is reached, another is automatically placed on the parkour, and so on. A folder 

named ‘dataset’ is automatically created at the beginning of the process, containing the image files in 

jpg format and corresponding text files containing the labels. 

The flow chart of the developed dataset collection script and an example of its output are shown in 

Figure 2 and Figure 3, respectively. The functions used in the flowchart are explained in the following. 
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Figure 2. Flowchart of the developed dataset collection script. 

• OnTick: A periodic function that is called periodically from the game engine via Script Hook. 

• prepDataFolder: Get the last filename in the dataset folder, so that an interrupted process can 

pick up where it left off. 

• populateNodes: Parse the entire "paths" game file for nodes and links to create a database to be 

used for path detection. 

• setLinePoints: Calculate the lane points of links using the width and number of lanes on the 

road. 

• DataSetCollect: Get the current coordinates of the vehicle on the game world, find the closest 

nodes and links using the database. Also calculates the angle of the vehicle to the road. 

• GetCurrentLanePoints: Get lane points for the current position of the car. 

• World3Dto2D: Convert 3D world coordinates of lane points to 2D screen coordinates. 

• DumpLabels: Save lane coordinates and road angle to a txt file. 

• screenCapture: Take a screenshot of the game and saves it as a jpg file. 
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𝐴𝑛𝑔𝑙𝑒 = 88,24182 

𝐶𝑒𝑛𝑡𝑒𝑟 = {𝑋 = 394, 𝑌 = 477} 

𝑃𝑜𝑖𝑛𝑡0 = {𝑋 = 662, 𝑌 = 476} 

𝑃𝑜𝑖𝑛𝑡1 = {𝑋 = 114, 𝑌 = 478} 

 

Figure 3. Example of image-label pair from the dataset. Point0 and Point1 represents the right and left 

lane boundary coordinates respectively. 

2.2. Data analysis 

Using in-game entities such as markers, as shown in Figure 4, and the game engine's subtitle or help 

displayer functions, an analysis of the developed scripts is performed. By manually driving the vehicle 

in the virtual world, visual inspections are performed for placed markers, and the angle of the vehicle to 

the road is displayed as a subtitle. When driving straight on the highway, it is seen that the script can 

generally detect 4 or 5-point pairs (left-right lane boundaries) in front of the vehicle. By increasing the 

range of nodes and links considered as input to the script, it is possible to determine more pairs of points 

that belong to lanes. However, this results in incorrect lane detection when the vehicle passes near a 

connector road or when the node-link density within the vehicle's range is lower. This is because the 

game has a larger number of nodes and links on the connecting roads to provide more paths for AI-

driven vehicles. Since the developed script only considers a predetermined number of nodes and links 

from the nearest to the farthest, having many nodes and links clustered on the path causes confusion, 

and makes lane detection difficult. Therefore, it was decided to use only one pair of lane points in front 

of the vehicle, which is detected correctly in almost every label file. 

 
 

Figure 4. Road lanes marked in-game. 

Since GTA V is not a research tool, debugging and developing the script is a task that must be done 

using in-game assets such as the markers shown in Figure 4. As a result, the developed scripts have 

some bugs that cause some nodes-links to be missed or not detected at all, especially when the vehicle 
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is turning on a highway and the nearest node is not visible on the screen. Sometimes nodes are registered 

multiple times, which can be caused by the existence of multiple links providing the same lane position 

information. Depending on the position of the vehicle, the developed script may detect one lane point 

(left or right boundary) earlier (registered as Point0 in Figure 3) than another one. This can cause 

confusion during training because Point0 may be a right lane boundary in one label file and a left lane 

boundary in another. 

To reduce the effects of inconsistencies in the training, a label post-processing tool is developed in 

Python. The tool removes multiple detected points and compares X-axis information within detected 

points and rearranges left-right lane boundaries so that Point0 output is always the left lane boundary 

and Point1 is the right lane boundary. If the nearest node is not visible on the screen and therefore not 

logged in the label file, it is removed from the dataset. Finally, post-processing converts the txt files in 

the dataset folder into a single csv file, including the ID (which corresponds to the file name), the angle 

to the road center, the left and right lane points, and the center lane point. 

2.3. Model training 

Four different models are selected for lane point detection, including ResNet50, VGG16, Xception, and 

InceptionV3. These models were trained on the ImageNet dataset and the Xception model showed the 

best Top-5 accuracy. In this study, transfer learning methods are applied to these models to provide a 

comparison and to select the most suitable model for the lane detection task. To fit the purpose of lane 

detection, some modifications are made to the models. The input layer is rescaled to 224x224x3 pixels, 

and a fully connected layer consisting of seven neurons is added as the output layer of the model. 

The outputs are, the angle of the vehicle to the road, the coordinates of the center, the coordinates of the 

left lane boundary, and the coordinates of the right lane boundary. The sigmoid activation function is 

used at the output layer to scale the values between 0 and 1. The parameters of the last layer are updated 

during the training phase. 

All images are rescaled from 800x600x3 to 224x224x3 and all labels are rescaled with the same ratio 

before normalization. The angle to the road is divided by 180 degrees for normalization. Therefore, all 

the output values are between 0 and 1 before training starts. 

Training is performed on all models by freezing all base model layers and updating weights on the newly 

added, fully connected layer on top. It is done using the Adam Optimizer with a preset learning rate of 

0.00001 and 60 epochs. Training is performed on the RTX 3080 graphics card in a total of 18646 batches 

for one epoch. Since the batch size of 32 images does not fit into the 10 GB video RAM of the graphics 

card, a manual input generator is implemented, which reads the data from the disk and mixes the inputs.  

3. Results 

Data collected by using the mentioned tools and methods are used to train Xception, InceptionV3, 

VGG16, and ResNet50 models. The Mean Squared Error is used as the loss function and the results of 

the first training are shown in Table 1. The validation and training loss graphs are shown in Figure 5. 

The results showed that the best performing model in terms of low validation loss is ResNet50, so it is 

selected to be used after a second training for fine tuning.  
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Table 1. Results of the first trainings. 

Model Training Loss (e-3) Validation Loss (e-3) Training 

Duration 

ResNet50 8.7169 8.8481 14h 24m 

Xception 9.4252 9.5401 14h 8m 

InceptionV3 9.6134 9.7153 12h 26m 

VGG16 9.9814 9.932 13h 36m 

 

 

Figure 5. Training and validation losses for all models. 

The first 165 layers of the ResNet50 model are frozen and the remaining last block of the base model is 

joined in the training. Similarly, the Adam Optimizer is used, but this time the learning rate of 0.00001 

is decreased in every 10 epochs by multiplying by (0.85)epoch/10. The second training is performed for 50 

epochs and took approximately 12.5 hours and resulted in a validation loss of 3.4737e-3, which is 

significantly lower than the first training. Graphs of the training and validation losses of the fine-tuning 

training are shown in Figure 6. 

 

Figure 6. Training and validation losses for ResNet50 fine-tune training. 
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Using the developed tools, a test dataset consisting of 754 images is collected on a completely different 

highway than the one used for the training and validation datasets. When the trained model is evaluated 

on the test dataset, the loss is calculated to be 0.01231. 

To visually evaluate the output of the trained network, another tool based on Python’s MSS module is 

created to capture live video from the game window. Sample images of the test set and detected lane 

points are shown in Figure 7 through Figure 9. The respective ground truth and predicted values of the 

seven outputs are shown in Table 2, Table 3, and Table 4. 

 

 

Figure 7. Three points marked by the model. 

Table 2. Predicted and actual results for Figure 7. 

Parameter Actual Predicted 

Angle to road 89.85872 91.25470 

Center-X 450 466 

Center-Y 376 385 

Point0-X 331 332 

Point0-Y 376 385 

Point1-X 569 612 

Point1-Y 376 385 

 

 

Figure 8. Three points marked by the model. 
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Table 3. Predicted and actual results for Figure 8. 

Parameter Actual Predicted 

Angle to road 90.26978 88.40917 

Center-X 427 490 

Center-Y 355 364 

Point0-X 340 409 

Point0-Y 355 367 

Point1-X 514 583 

Point1-Y 356 362 

 

The results show that the model can find lane points when driving straight on a highway it hasn't seen 

before. 

 

Figure 9. Detection of lane boundaries while lanes are partially visible. 

Table 4. Predicted and actual results for Figure 9. 

Parameter Actual Predicted 

Angle to road 92.12427 92.27007 

Center-X 506 434 

Center-Y 449 417 

Point0-X 262 247 

Point0-Y 449 417 

Point1-X 743 637 

Point1-Y 449 418 

 

The positive aspect of extracting data from the game is that the lane points can be marked even when a 

larger vehicle blocks the agent’s view, as shown in Figure 9. Such cases are not a problem, because the 

dataset contains many similar cases where there is traffic and lanes are only partially visible or not 

visible at all. 

Additionally, the trained ResNet50 model is tested on real-world video footage obtained from open 

source projects (Gautam, 2019; Udacity, 2017). Visual inspection showed similar behavior to in-game 

footage. The output of the model on two different videos is shown in Figure 10. 
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Figure 10. Evaluation of the trained ResNet50 model on real world images 

4. Discussion 

The presented data collection method shows how quickly large amounts of data can be collected for 

various purposes using the in-game engine and some third-party tools. A drawback of the presented 

solution is that the developed scripts are difficult to debug while the game is running. This can be 

overcome by using in-game assets to visualize the information needed for debugging. 

The prediction error of lane points when a vehicle is turning on a connection road is higher than when 

driving straight resulting in an increase in MSE. This is due to the fact that the parkour selected during 

the training contains only several connection roads that the vehicle needs to turn. Also, because the AI 

drives the vehicle in an almost perfectly straight line during data collection, the training data is largely 

dominated by road angles around 90 degrees, making it difficult for the model to learn different angle 

scenarios. 

Model prediction errors can be reduced by using human players to collect data instead of AI scripts.  

This will increase the randomness in recorded scenes as well as scenarios where the car is not being 

driven perfectly. 

5. Conclusion 

The study demonstrates the ability to collect large amounts of data and train artificial intelligence models 

in realistic simulation environments. Using transfer learning methods, ResNet50, VGG16, Xception and 

InceptionV3 models, which are typically trained on real-world data, were trained to detect lane points 

and road angles in a virtual world. ResNet50 was shown to outperform the comparison models for lane 

and road angle detection tasks on the collected dataset. The training time and computational 

requirements for transfer learning are significantly less than the training of a network from scratch. 

The dataset generation methods presented in this study do not require manual labeling operations and 

are robust in accuracy since the data is extracted directly from the game engine. Using the methods 

presented, more complex and larger datasets can be generated to further increase the success rate of the 

developed model under different conditions. 
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