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Abstract

In the current research, we investigate and establish Korovkin-type approximation theorems
for linear operators defined on the space of all 2π-periodic and real valued continuous
functions on R2 by means of A -summation process via statistical convergence with respect
to power series method. We demonstrate with an example how our theory is more strong
than previously studied. Additionally, we research the rate of convergence of positive linear
operators defined on this space.

1. Introduction and Preliminaries Notations

Before starting with the presentation of the definitions which will be used to prove approximation theorems, we recall the well-known
notions.
A double sequence x =

(
xi j
)

is convergent to L in Pringsheim’s sense if, for every ε > 0, there exists N = N(ε) ∈ N such that
∣∣xi j−L

∣∣< ε

whenever i, j > N and denoted by P− lim
i, j

xi j = L (see [1]). A double sequence is bounded if there exists a positive number M such that∣∣xi j
∣∣≤M for all (i, j)∈N2 =N×N. As it is known that every single convergent sequence (in the usual sense) is bounded, while a convergent

double sequence need not to be bounded.
Let us turn our attention to statistical convergence and power series method for double sequences.
Moricz [2] proposed and investigated the idea of statistical convergence for double sequences, which may be restated in terms of natural
density. Let E ⊂ N2 be a two-dimensional subset of positive integers and let Em,n = {(i, j) ∈ E : i≤ m, j ≤ n} . Then the two-dimensional
analogue of natural density can be defined as follows:

δ2(E) := P− lim
m,n

1
mn
|Emn|

if it exists. The number sequence x =
(
xi j
)

is statistically convergent to L provided that for every ε > 0, the set E := Emn(ε) :={
i≤ m, j ≤ n :

∣∣xi j−L
∣∣≥ ε

}
has natural density zero; in that case we write st2− lim

i, j
xi j = L. For all that a statistically convergent sequence

need not be convergent in light of the above.
It is obvious that a double sequence that is P-convergent statistically converges to the same value, but the opposite is not always true.
Additionally, Moricz [2] characterized the statistical convergence for double sequences as follows:
A double sequence x =

(
xi j
)

is statistically convergent to L if and only if there exists a set E ⊂ N2 such that the natural density of E is 1 and

P− lim
i, j→∞

and (i, j)∈E

xi j = L.

Let
(

pi j
)

be a double sequence of nonnegative numbers with p00 > 0 and such that the following power series

p(t,s) :=
∞

∑
i, j=0

pi jt is j
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has radius of convergence R with R ∈ (0,∞] and t,s ∈ (0,R) . If for all t,s ∈ (0,R) ,

lim
t,s→R−

1
p(t,s)

∞

∑
i, j=0

pi jt is jxi j = L

then we say that the double sequence x =
(
xi j
)

is convergent to L in the sense of power series method and denoted by P2
p − limxi j = L ( [3]).

Keep in mind that the method is regular if and only if

lim
t,s→R−

∞

∑
i=0

piν t i

p(t,s)
= 0 and lim

t,s→R−

∞

∑
j=0

pµ js j

p(t,s)
= 0, for any µ,υ , (1.1)

hold [3].

Remark 1.1. In case of R = 1, if pi j = 1 and pi j =
1

(i+1)( j+1) , the power series methods coincide with Abel summability method and

logarithmic summability method, respectively. In the case of R = ∞ and pi j =
1

i! j! , the power series method coincides with Borel summability
method.

Here and throughout the paper power series method is always assumed to be regular.
Ünver and Orhan [4] have recently introduced Pp-density of E ⊂ N0 and the definition of Pp-statistical convergence for single sequences.
A natural question is what about statistical convergence or Pp-statistical convergence of the sequence. Hence, they showed that statistical
convergence and Pp-statistical convergence are incompatible. In view of their work, Yıldız, Demirci and Dirik [5] have introduced the
definitions of P2

p -density of F ⊂ N2
0 = N0×N0 and P2

p -statistical convergence for double sequences:

Definition 1.2 ( [5]). Let F ⊂ N2
0. If the limit

δ
2
Pp
(F) := lim

t,s→R−

1
p(t,s) ∑

(i, j)∈F
pi jt is j

exists, then δ 2
Pp
(F) is called the P2

p -density of F. Note that, from the definition of a power series method and P2
p -density it can be established

that 0≤ δ 2
Pp
(F)≤ 1 whenever it exists.

Definition 1.3 ( [5]). Let x =
(
xi j
)

be a double sequence. Then x is said to be statistically convergent with respect to power series method
(P2

p -statistically convergent) to L if for any ε > 0

lim
t,s→R−

1
p(t,s) ∑

(i, j)∈Fε

pi jt is j = 0

where Fε =
{
(i, j) ∈ N2

0 :
∣∣xi j−L

∣∣≥ ε
}
, that is δ 2

Pp
(Fε ) = 0 for any ε > 0. In this case we write st2

Pp
− limxi j = L.

Let A = [aklmn], k, l,m,n ∈ N, be a four-dimensional infinite matrix. The A-transform of a given double sequence x = (xmn) is given by

(Ax)kl = ∑
(m,n)∈N2

aklmnxmn, k, l ∈ N,

provided the double series converges in Pringsheim’s sense for every (k, l) ∈ N2 and denoted by Ax := ((Ax)kl) . If the A-transform of x
exists for all k, l ∈ N and convergent in the Pringsheim’s sense i.e.,

P− lim
p,q

p

∑
m=1

q

∑
n=1

aklmnxmn = ykl and P− lim
k,l

ykl = L

then we say that a sequence x is A-summable to L. A two-dimensional matrix transformation is referred to as regular in summability theory if
it converts each convergent sequence into one with the same limit.
Now consider a sequence of four-dimensional infinite matrices with non-negative real elements A :=

(
A(i, j)

)
=
(

a(i, j)klmn

)
. For a given

double sequence of real numbers, x = (xmn) is said to be A -summable to L if

P− lim
k,l

∑
(m,n)∈N2

a(i, j)klmnxmn = L

uniformly in i and j.
A -summability is the A-summability for four-dimensional infinite matrix if A(i, j) = A, four-dimensional infinite matrix. Some results
regarding matrix summability method for double sequences may be found in the papers [6, 7]. C∗

(
R2) stands for the space of all continuous

functions on R2 that are real valued and have a period of 2π. If a function h ∈C∗
(
R2) , then

h(x,y) = h(x+2kπ,y) = h(x,y+2kπ) , for all (x,y) ∈ R2,

holds for k = 0,±1,±2, .... In what follows, this space is equipped with the supremum norm

‖ f‖∗ = sup
(x,y)∈R2

|h(x,y)| ,
(

h ∈C∗
(
R2
))

.
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A sequence L := (Lmn) of positive linear operators from C∗
(
R2) into itself is referred to as an A -summation process on C∗

(
R2) if (Lmnh)

is A -summable to h for every h ∈C∗
(
R2) , i.e.,

P− lim
k,l

∥∥∥SLkli jh−h
∥∥∥
∗
= 0, uniformly in i, j

where for all k, l, i, j ∈ N, h ∈C∗
(
R2) the series

SLkli jh := ∑
(m,n)∈N2

a(i, j)klmnLmnh (1.2)

and it is assumed that the series in (1.2) absolutely convergent for each i, j,k, l ∈ N and h.

For the rate of convergence, we need to recall the following modulus of continuity of h. Let h ∈C∗
(
R2) , then

w(h;γ) = sup
{
|h(u,v)−h(x,y)| : (u,v) ,(x,y) ∈ R2 and

√
(u− x)2 +(v− y)2 ≤ γ

}

for γ > 0. This definition yields the following basic property for h ∈C∗
(
R2) .

For any a > 0,

w(h;aγ)≤ (1+[a])w(h;γ)

where [a] is defined to be the greatest integer less than or equal to a.

The paper of Korovkin [8] is an important issue. It can help us to understand the nature of approximation of sequences. This approximation
problem has a rich history associated with the names of the different convergence methods on some spaces in the theory. For some recent
research works in this direction, see [9–21]. In this paper, we investigate and establish Korovkin-type approximation theorems for linear
operators defined on the space of all 2π-periodic and real valued continuous functions on R2 by means of A -summation process via
statistical convergence with respect to power series method. We demonstrate with an example how our theory is more strong than previously
studied. Additionally, we research the rate of convergence of positive linear operators defined on this space.

2. The Second Theorem of Korovkin Type

The aim of this section is to deal with approximation of all 2π-periodic and real valued continuous functions on R2 by means of A -summation
process via statistical convergence with respect to power series method.

Our main result is the following.

Theorem 2.1. Let A =
(

A(i, j)
)

be a sequence of four-dimensional infinite matrices. Let L = (Lmn) be a sequence of positive linear

operators acting from C∗
(
R2) into itself. Assume that (1.2) holds. Then, for all h ∈C∗

(
R2)

st2
Pp
− lim

∥∥∥SLkli jh−h
∥∥∥
∗
= 0 uniformly in i and j (2.1)

if and only if

st2
Pp
− lim

∥∥∥SLkli jhr−hr

∥∥∥
∗
= 0 uniformly in i and j (r = 0,1,2,3,4) (2.2)

where h0(x,y) = 1, h1(x,y) = sinx, h2(x,y) = siny, h3(x,y) = cosx and h4(x,y) = cosy.

Proof. Since 1, sinx, siny, cosx and cosy belong to C∗
(
R2) , the necessity is clear. Suppose now that (2.2) holds. Let h ∈C∗

(
R2) and I, J

be closed subinterval of length 2π of R. Fix (x,y) ∈ I× J. As in the proof of Theorem 2.1 in [22], it follows from the continuity of h that

|h(u,v)−h(x,y)|< ε +
2Mh

sin2 δ

2

ϕ (u,v)
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which gives,∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h;x,y)−h(x,y)

∣∣∣∣∣≤ ∑
(m,n)∈N2

a(i, j)klmnLmn (|h(u,v)−h(x,y)| ;x,y)+ |h(x,y)|

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h0;x)−h0(x,y)

∣∣∣∣∣
≤ ∑

(m,n)∈N2
a(i, j)klmnLmn

(
ε + 2Mh

sin2 δ

2
ϕ (u,v) ;x,y

)
+Mh

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h0;x)−h0(x,y)

∣∣∣∣∣
≤ ε +(ε +Mh)

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h0;x)−h0(x,y)

∣∣∣∣∣

+ Mh

sin2 δ

2



2

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h0;x)−h0(x,y)

∣∣∣∣∣
+ |sinx|

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h1;x,y)−h1(x,y)

∣∣∣∣∣
+ |siny|

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h2;x,y)−h2(x,y)

∣∣∣∣∣
+ |cosx|

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h3;x,y)−h3(x,y)

∣∣∣∣∣
+ |cosy|

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h4;x,y)−h4(x,y)

∣∣∣∣∣


≤ ε +N ∑

4
r=0

∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (hr;x)−hr(x,y)

∣∣∣∣∣
where Mh = ‖ f‖∗ , ϕ (u,v) = sin2 u−x

2 + sin2 v−y
2 and N := ε +Mh +

2Mh

sin2 δ

2
. Then, taking supremum over (x,y) ∈ R2, we obtain

∥∥∥SLkli jh−h
∥∥∥
∗
≤ ε +N

4

∑
r=0

∥∥∥SLkli jhr−hr

∥∥∥
∗
. (2.3)

Now given r > 0, choose ε > 0 such that ε < r, and define

D : =
{
(k, l) :

∥∥∥SLkli jh−h
∥∥∥
∗
≥ r
}
,

Dr : =
{
(k, l) :

∥∥∥SLkli jhr−hr

∥∥∥
∗
≥ r− ε

5N

}
, r = 0,1,2,3,4.

It is easy see that from (2.3)

D⊆
4⋃

r=0
Dr.

Hence, we may write

δ
2
Pp
(D)≤

4

∑
r=0

δ
2
Pp
(Dr) .

Then, according to (2.2), we have

δ
2
Pp
(D) = 0,

and hence

st2
Pp
− lim

∥∥∥SLkli jh−h
∥∥∥
∗
= 0 uniformly in i and j

which is the desired result.

3. An example

Now, we give an example that our theorem (Theorem 2.1) is stronger than Theorem 9 in [23].

Example 3.1. Now assume that A =
(

A(i, j)
)

is a sequence of four-dimensional infinite matrices defined by a(i, j)klmn =
1
kl if i≤ m≤ k+ i−1,

j ≤ n≤ l + j−1 and a(i, j)klmn = 0 otherwise. Let us consider the double sequence of Fejer operators on C∗
(
R2) where

Lmn (h;x,y) =
1

(mπ)(nπ)

π∫
−π

π∫
−π

h(u,v)Fm (u)Fn (v)dudv (3.1)
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where Fm (u) = sin2 m(u−x)
2

2sin2 u−x
2

and 1
π

π∫
−π

Fm (u)du = 1. Let
(

pi j
)

be defined as follows

pi j =

{
0, i and j even
1, i or j odd

,

and take the sequence
(
xi j
)

defined by

xi j =

{
i j, i and j even
0, i or j odd

. (3.2)

It is easy to see that

st2
Pp
− limxi j = 0. (3.3)

However, the sequence
(
xi j
)

neither statistically convergent to 0 nor Pringsheim convergent. Now using (3.1) and (3.2), we define the
following double positive linear operators T= (Tmn) on C∗

(
R2) as follows:

Tmn ( f ;x,y) = (1+ xmn)Lmn ( f ;x,y) . (3.4)

We now claim that

st2
Pp
− lim

∥∥∥STkli jhr−hr

∥∥∥
∗
= 0 uniformly in i and j, (r = 0,1,2,3,4) . (3.5)

Observe that Lmn (h0;x,y) = h0(x,y), Lmn (h1;x,y) = m−1
m h1(x,y), Lmn (h2;x,y) = n−1

n h2(x,y), Lmn (h3;x,y) = m−1
m h3(x,y),

Lmn (h4;x,y) = n−1
n h4(x,y). So, we can see,

∥∥∥STkli jh0−h0

∥∥∥
∗
=

∥∥∥∥∥i+k−1

∑
m=i

j+l−1

∑
n= j

1
kl
(1+ xmn)−1

∥∥∥∥∥
∗

≤ 1
kl

i+k−1

∑
m=i

j+l−1

∑
n= j

xmn.

It is well known that if a sequence is convergent, its arithmetic mean will also converge to the same value. Thus, by virtue of P2
p -statistical

convergence and thanks to (3.3) it is clear that

st2
Pp
− lim

(
sup
i, j

1
kl

i+k−1

∑
m=i

j+l−1

∑
n= j

xmn

)
= 0, (3.6)

and hence

st2
Pp
− lim

∥∥∥STkli jh0−h0

∥∥∥
∗
= 0, uniformly in i and j,

which guarantees that (3.5) holds true for r = 0. Also, we compute

∥∥∥STkli jh1−h1

∥∥∥
∗
=

∥∥∥∥∥i+k−1

∑
m=i

j+l−1

∑
n= j

1
kl
(1+ xmn)

m−1
m

h1−h1

∥∥∥∥∥
∗

≤

∣∣∣∣∣ 1
kl

i+k−1

∑
m=i

j+l−1

∑
n= j

m−1
m
−1

∣∣∣∣∣+ 1
kl

i+k−1

∑
m=i

j+l−1

∑
n= j

xmn (m−1)
m

.

Since st2
Pp
− lim

(
sup
i, j

(
1
kl

i+k−1
∑

m=i

j+l−1
∑

n= j

m−1
m −1

))
= 0 and from (3.6) we have,

st2
Pp
− lim

∥∥∥STkli jh1−h1

∥∥∥
∗
= 0, uniformly in i and j.

So (3.5) valid for r = 1. Likewise, we have

st2
Pp
− lim

∥∥∥STkli jh2−h2

∥∥∥
∗
=0, uniformly in i and j,

st2
Pp
− lim

∥∥∥STkli jh3−h3

∥∥∥
∗
=0, uniformly in i and j,

st2
Pp
− lim

∥∥∥STkli jh4−h4

∥∥∥
∗
=0, uniformly in i and j.

So, our claim (3.5) is valid for each r = 0,1,2,3,4. Then, observe that the double sequence T= (Tmn) defined by (3.4) satisfy all hypotheses
of Theorem 2.1. Hence, we have, for all f ∈C∗

(
R2) ,

st2
Pp
− lim

∥∥∥STkli jh−h
∥∥∥
∗
= 0.

Also, since
(
xi j
)

is not statistically convergent to 0, (Tmn) does not satisfy Theorem 9 in [23].
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4. Rates of Convergence

In this section, via A -summation process via statistical convergence with respect to power series method, we study the rates of convergence
of a double sequence of positive linear operators mapping acting from C∗

(
R2) into C∗

(
R2) by means of the modulus of continuity.

We have the following result.

Theorem 4.1. Let A =
(

A(i, j)
)

be a sequence of four-dimensional infinite matrices. Let L= (Lmn) be a double sequence of positive linear

operators moving from C∗
(
R2) into C∗

(
R2). Suppose that (1.2) and the following conditions provided:

(i) st2
Pp
− lim

∥∥∥SLkli jh0−h0

∥∥∥
∗
= 0, uniformly in i and j,

(ii) st2
Pp
− limw(h;γ) = 0, uniformly in i and j,

where γ := γ
(i,l)
( j,k) :=

√∥∥∥SLkli jϕ
∥∥∥
∗

with ϕ (u,v) = sin2 u−x
2 + sin2 v−y

2 . Then we have, for all h ∈C∗
(
R2) ,

st2
Pp
− lim

∥∥∥SLkli jh−h
∥∥∥
∗
= 0, uniformly in i and j.

Proof. To prove this, we firstly suppose that (x,y) ∈ [−π,π]× [−π,π] and h ∈C∗
(
R2) be fixed, and that Let (i) and (ii) be provided.. Let γ

be a positive number. As in the proof of Theorem 9 in [23], since the function h is continious, the following inequality is obtained:

|h(u,v)−h(x,y)| ≤

(
1+π

2 sin2 u−x
2 + sin2 v−y

2
γ2

)
w(h;γ) .

Using the definition of modulus of continuity and since the operators Lmn is linear and the positive, we have

∣∣∣SLkli j(h;x,y)−h(x,y)
∣∣∣=
∣∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn(h;x,y)−h(x,y)

∣∣∣∣∣∣
≤ ∑

(m,n)∈N2

a(i, j)klmnLmn (|h(u,v)−h(x,y)| ;x,y)+ |h(x,y)|

∣∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h0;x,y)−h0(x,y)

∣∣∣∣∣∣
≤w(h;γ) ∑

(m,n)∈N2

a(i, j)klmnLmn (h0;x,y)+π
2 w(h;γ)

γ2 ∑
(m,n)∈N2

a(i, j)klmnLmn (ϕ;x,y)

+ |h(x,y)|

∣∣∣∣∣∣ ∑
(m,n)∈N2

a(i, j)klmnLmn (h0;x,y)−h0(x,y)

∣∣∣∣∣∣
where ϕ (u,v) = sin2 u−x

2 + sin2 v−y
2 . If supremum over (x,y) is taken on both sides of the above inequality and is chosen

γ := γ
(i,l)
( j,k) :=

√∥∥∥SLkli jϕ
∥∥∥
∗
, then we obtain

∥∥∥SLkli jh−h
∥∥∥
∗
≤w
(

h;γ
(i,l)
( j,k)

)∥∥∥SLkli jh0−h0

∥∥∥
∗
+
(

1+π
2
)

w
(

h;γ
(i,l)
( j,k)

)
+Mh

∥∥∥SLkli jh0−h0

∥∥∥
∗

(4.1)

where Mh := ‖h‖∗ . Now, given ε > 0, define the following sets:

D : =
{
(k, l) :

∥∥∥SLkli jh−h
∥∥∥
∗
≥ ε

}
,

D1 : =
{
(k, l) : w

(
h;γ

(i,l)
( j,k)

)∥∥∥SLkli jh0−h0

∥∥∥
∗
≥ ε

3

}
,

D2 : =

{
(k, l) : w

(
h;γ

(i,l)
( j,k)

)
≥ ε

3
(
1+π2

)} ,

D3 : =
{
(k, l) :

∥∥∥SLkli jh0−h0

∥∥∥
∗
≥ ε

3Mh

}
.

Then, it follows from (4.1) that D⊂ D1∪D2∪D3. Also, defining

D4 : =
{
(k, l) : w

(
h;γ

(i,l)
( j,k)

)
≥
√

ε

3

}
,

D5 : =
{
(k, l) :

∥∥∥SLkli jh0−h0

∥∥∥
∗
≥
√

ε

3

}
,

we have D1 ⊂ D4∪D5, which yields

D⊆
5⋃

i=2
Di.
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Hence, we may write

δ
2
Pp
(D)≤

5

∑
r=0

δ
2
Pp
(Dr) .

Using the hypothesis (i) and (ii) , we get

δ
2
Pp
(D) = 0,

and hence

st2
Pp
− lim

∥∥∥SLkli jh−h
∥∥∥
∗
= 0, uniformly in i and j.

Therefore, the proof is completed.

5. Conclusion

The paper contains Korovkin-type approximation theorem and the rate of convergence for linear operators defined on the space of all
2π-periodic and real valued continuous functions on R2 by means of A -summation process via statistical convergence with respect to power
series method. Also, it is demonstrated with an example how the new theory is more stronger than previously studied.
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