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Abstract: Tactical UAV path planning under radar threat using reinforcement learning involves particular challenges ranging 

from modeling related difficulties to sparse feedback problem. Learning goal-directed behavior with sparse feedback from 

complex environments is a fundamental challenge for reinforcement learning algorithms. In this paper we extend our previous 

work in this area to provide a solution to the problem setting stated above, using Hierarchical Reinforcement Learning (HRL) 

in a novel way that involves a meta controller for higher level goal assignment and a controller that determines the lower-level 

actions of the agent. Our meta controller is based on a regression model trained using a state transition scheme that defines the 

evolution of goal designation, whereas our lower-level controller is based on a Deep Q Network (DQN) and is trained via 

reinforcement learning iterations. This two-layer framework ensures that an optimal plan for a complex path, organized as 

multiple goals, is achieved gradually, through piecewise assignment of sub-goals, and thus as a result of a staged, efficient and 

rigorous procedure.  
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Taktik Ortamlarda IHA Güzergahı Planlama Amaçlı Hiyerarşik Pekiştirmeli Öğrenmeye Dayalı bir 

Çerçeve 

 
Öz: Pekiştirmeli öğrenme ile radar tehditi altındaki İHA’ların güzgergah planlamasının yapılması, modelleme ile ilintili 

zorluklardan başlayıp seyrek geri-besleme (sparse feedback) problemine uzanan bir dizi zorluklar içerir.  Esasen, amaca yönelik 

davranışların seyrek geri beslemenin söz konusu olduğu karmaşık ortamlarda öğrenilmesi hususu pekiştirmeli öğrenme 

algoritmaları açısından temel bir problemdir. Bu makalede, daha önce bu alanda yaptığımız bir çalışmanın genişletilmesi 

suretiyle, bahse konu bu probleme, hiyerarşik pekiştirmeli öğrenme yöntemine dayalı özgün bir  çözüm önerilmektedir. Bu 

çözüm, aktörlere üst seviye hedeflerin atanmasını yöneten bir meta-denetleyici ile aktörün alt seviye eylemlerini yöneten bir 

alt-denetleyicinin hiyerarşik bir şekilde çalışması prensibine dayanmaktadır. Çözümümüzdeki meta-denetleyici, yüksek-seviye 

hedeflerin atanması sürecini tanımlayan bir durum geçiş düzeneği kullanılarak eğitilen bir regresyon modeline, alt-düzey 

denetleyici ise pekiştirmeli öğrenme ile eğitilen bir DQN’e dayanmaktadır. Bu iki katmanlı çerçeve, birden fazla hedef şeklinde 

organize edilmiş karmaşık bir güzergah için en iyi  planın,  hedeflerin aşamalı olarak atanması suretiyle ilerleyen; kademeli, 

etkin ve sıkı bir yöntem ile tedricen başarılmasını sağlamaktadır. 

 

Anahtar kelimeler: Hiyerarşik pekiştirmeli öğrenme, taktik İHA güzergah planlama, makine öğrenmesi, güzergah 

optimizasyonu. 
 

1. Introduction 

 

The problem of Tactical UAV (TUAV) path optimization under radar threat includes several constraints 

which make it different from other path planning problems. Perhaps the most important of these constraints is the 

requirement to evade the detection and tracking of radars capable of undermining the survivability of the UAV. In 

[37] we have illustrated the integrated use of RL methods and a transfer learning approach in a single framework 

to solve the UAV path optimization problems in a tactical environment.  As stated in [37] there are a number of 

peculiarities in comparison to more conventional problem settings, regarding UAV path optimization and the 

problem of Tactical UAV path planning under hostile radar tracking threat. To recap, these can be summarized as 

follows: 

    1.  Radar coverage areas exhibit different properties from a penetration point of view, since depending on 

the performance parameters of the radars, those 3D regions would translate into different threat levels for a 

potential target. Moreover, those regions may be overlapping as opposed to conventional physical obstacles. 

    2.  In a tactical context, some radars have an associated response period and a missile impact-to-kill time, 

leading to legitimate penetration periods without impairing the survivability of the target.  
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    3.  Target detection is achieved via the interaction of the propagating radar EM waves with the Radar Cross 

Section (RCS) of the target which is a function of multiple parameters such as the radar operating frequency, the 

shape of the UAV and more importantly the engagement geometry between the radar and the UAV. The 

engagement geometry, in particular, implies that multiple angles (such as the bank angle, the aspect angle and 

elevation angle) would change as a result of the maneuvers performed by the UAV. So, even if the slant range 

(i.e., direct distance) to the radar is relatively stable, its detectability can still fluctuate dramatically.  

    4.  The operating environments tend to be larger compared to in-door or small-sized urban areas, which 

implies that the feedback signals leading the agent towards the goal(s) may be delayed. This induces a well-known 

complication termed as sparse reward problem.  

 

In fact, learning a task in a complex environment where sparse-feedback is an issue, is a significant challenge 

for artificial intelligence as noted in [16]. In such environments, the learning process should either incorporate a 

structured and effective way of representing the knowledge at multiple levels of spatio-temporal abstractions, or 

otherwise it should make sure that the reward signals provide sufficient and timely feedback to direct the agent 

effectively towards the goal. In practice, a variant of the general path planning problem may emerge when there 

are a set of well-defined sub-tasks during the course of the total mission flight time. The interim tasks can be as 

simple as passing along a pre-defined fixed location, or they may require more complex logic which may involve 

a set of constraints that must be satisfied at multiple levels.  In reinforcement learning terms this translates into a 

hierarchical learning process guided via a multiple goal structure, leading to the concept of Hierarchical 

Reinforcement Learning (HRL). As such, HRL inherently caters for sparse reward problem and conveniently 

accommodates a class of problems involving multiple tasks with a well-defined arrangement.  

However, HRL is a specific form of the general problem with non-trivial implications and therefore induces 

some adjustments to the underlying formal model (i.e., Markov Decision Process (MDP)) as well as to the 

architecture of the framework providing the solution to the problem. In particular, from a theoretical point of view, 

the fact that actions of the agent may now be organized with regard to a set of temporal and/or logical abstractions, 

breaks the Markov Principle which states that the transition from current (present) state (St) to the next state (St+1) 

is entirely independent of the past (i.e. the previous states). In other words, Markov Property entails that the actions 

of the agent must be atomic in time and the current state already captures the information of the past states. 

Relaxation of this principle leads to a variant of MDP known as Semi-Markov Decision Process (SMDP) [39], 

[40]. From an implementation point of view, on the other hand, the framework providing the solution should 

include a layered architecture where higher level(s) would deal with assignment and learning of more abstract 

tasks, and lower level(s) would handle optimum action selection for the agent towards achieving a particular 

(sub)task.    

In this paper we extend our previous work reported in [37] to provide a solution to the problem setting stated 

above, using hierarchical reinforcement learning in a novel way that involves a meta controller for higher level 

goal assignment and a controller that determines the lower-level actions of the agent. Our meta controller is based 

on a regression model trained using a state transition scheme that defines the evolution of goal designation, whereas 

our lower-level controller is based on a Deep Q Network (DQN) [25] and is trained via reinforcement learning 

iterations. This two-layer framework ensures that an optimal plan for a complex path, organized as multiple goals, 

is achieved gradually, through piecewise assignment of sub-goals, and thus as a result of a staged, efficient and 

rigorous procedure.   

The rest of the paper is organized as follows: Section 2 provides some background and related work and 

introduces the details of the environment modeling; Section 3 sketches the theoretical framework of Reinforcement 

Learning, Section 4 introduces the specific RL formulation of the TUAV path optimization problem, Section 5 

presents the experiments, results and discussions, and finally Section 6 provides the concluding remarks.  
 

2. Background And Environment Modeling 

 

TUAV path optimization under radar tracking threat has been explored by a number of researchers in non-

RL settings [33, 21, 36, 17, 35, 12, 11]. The methods proposed by these researchers include Nonlinear Trajectory 

Generation (NTG) algorithm [11], Label Setting Algorithm (LSA) [33], 𝐴∗ algorithm [21, 35], numerical 

optimization procedure for a minimax optimal control, with moving average functional [12], Among the non-RL 

based solutions the one presented in  [12] is utilized in our work since it integrates the model of the aircraft, a 

probabilistic model of a radar, and a behavioral approximation of missile subsystems based on the decision process 

for launching a SAM and the requirement to maintain tracking during missile flyout. Two of the components, 

namely radar and RCS models, however, are extended to incorporate pulse integration capability of a radar and to 
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account for the impact of target fluctuation via the Swerling type, which can have a significant effect for airborne 

platforms with a certain agility.  

To put the path optimization problem in perspective with respect to RL, it is important to note that RL can be 

thought as a form of simulation-based, approximate dynamic programming, and as stated in [8], it provides a viable 

solution to such optimization problems. In fact, the ability of RL to tackle control and optimization problems is 

well-appreciated in the literature [27, 2, 24]. As such, more and more research work are being reported which 

involve RL based solutions. In a recent survey, AlMahamid and Grolinger [37] provide a systematic review of 159 

recent works reported between 2016 and 2021, that use RL as a solution to UAV navigation and path planning 

problems. We note that none of the covered papers in this comprehensive review proposes a HRL-based solution 

to tactical UAV path optimization problem under radar threat. Incidentally, use of HRL in UAV path planning 

problems, in general, has been on the agenda only very recently. One of the quite recent works that resort to HRL 

as a solution in the UAV path planning context is that of Cheng Y. et.al [44] who aim to model cooperative 

formation of swarm UAVs. They combine a variant of MAXQ approach and simulated annealing to accomplish 

grid method-based path planning for multi-UAV collaborative formation. They report quicker astringence, lower 

volatility, better learning effect, less time consumed and optimized searched route compared to non-hierarchical 

RL methods. Their problem setting is different to ours, in that their main objective is to achieve collaborative 

formation of multiple UAVs and that they do not consider evading lethal threats in tactical environments. Another 

recent work that proposes an HRL-based solution to missile guidance problem with threat-region (i.e., circular no-

fly zones) avoidance is that of Bohao et.al. [46], who use an improved version of hierarchical deep deterministic 

policy gradient (DDPG) algorithm. From a problem-context point of view their objective has some similarities to 

ours since it involves navigation to a target (although using UAVs) and threat avoidance. However, from a 

methodological point of view, there are important differences. Their purpose of employing hierarchical learning 

is to weaken acceleration chattering rather than constructing a temporal abstraction for staged navigation. They 

achieve this by employing a somewhat shallow hierarchy of two DDPG value networks sharing the same policy 

network. Being a DDPG based solution, their approach uses a continuous action space, a policy-gradient learning 

method and an actor-critic architecture in each of the DDPG component. Our solution is based on a strictly layered 

architecture, uses discrete action space and is based on learning directly the optimum Q-Values (rather than the 

optimum policy). The last research work we would like to compare is that of Qin et.al. [50] who   propose to solve 

the trajectory design problem of rechargeable UAVs in continuous data collection tasks using a hierarchical DQN 

(H-DQN) architecture based on SMDP. Their problem setting is significantly different to ours in that higher level 

tasks (called options in their paper akin to the options formalism of Sutton et.al,[47]) pertain to pre-defined UAV 

behaviors such as data collection, returning to base for re-charge etc. Whereas in our work, higher level tasks are 

interim sub-goals inspired by navigational targets. From an algorithmic point of view their method has similarities 

in particular in the way low level tasks are learned, which involves training a DQN network with experience replay 

using epsilon greedy exploration. The main methodological difference is that our framework is more akin to 

Hierarchies of Abstract Machines (HAMs) of Parr [39]  and our learning scheme is based on Feudal RL (more on 

this in Section 3 and Section 4.) 

In the following subsections we provide the details of the modeling aspects that are important for 

understanding the underlying logic of the environment state generation in our framework. 

 

2.1 Modeling of the RL Environment  

 

The modeling related aspects of our RL environment were developed in [37], here we include a concise summary 

of the mathematical model that underpins the overall response of the environment with respect to the interactions 

of the agent. For details that cannot be found in this paper we refer the reader to the aforementioned publication. 

 

2.1.1 A Probabilistic Model of Radar for detection, tracking and destruction of a target  

 

  From a probabilistic point of view, based on the SNR values and a choice of false alarm rate (𝑃𝑓𝑎) it is 

possible to compute a probability of detection for a combination of pulse integration capability of the radar and 

the type of the target behavior.  [18] states that for a single pulse (no pulse integration) radar and non-fluctuating 

target the following approximation gives the solution:  

 

𝑃𝑑 ≈ 0.5 × 𝑒𝑟𝑓𝑐 (√−𝑙𝑛(𝑃𝑓𝑎) − √𝑆𝑁𝑅 + 0.5)             (1) 
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   In the context of tactical UAV survivability, target tracking is more important than target detection, since 

for a successful engagement, a track lock has to be acquired  and  maintained on the target for a certain period of 

time.  Therefore, the probability of track has to be included in the model. [34] states that given a 𝑃𝑑 value and a 

probabilistic account of the track loss, the probability of track of a radar can be calculated in a recursive way using 

the following Equation:  

 

𝑧[𝑛 + 1] = (1 − 𝑧[𝑛 − 𝑙])𝑃𝑑 × (1 − 𝑃𝑚)𝑙 + 𝑧[𝑛]            (2) 

𝑃𝑡𝑟𝑎𝑐𝑘 = 1 − 𝑧[𝑘];   𝑛 > 𝑙, 𝑎𝑛𝑑  𝑃𝑚 = 1 − 𝑃𝑑 

 

 

where a track loss is set to occur only after 𝑙 number of consecutive misses in a 𝑘 number of such observations, 

subject to 𝑘 > 𝑙. However, for an effective and convenient computational model of radar-target engagement, a 

direct relationship between critical parameters of the engagement is required. [12] proposes a concise formulation 

where the relationship between the target range, the RCS of the target and the probability of track is established 

and parameterized by a combination of performance and operational characteristics of the radar.   

 

 

𝑃(𝑅, 𝜎) =
1

1+(𝑐2×
𝑅4

𝜎
)

𝑐1                  (3) 

 

 The function 𝑃(𝑅, 𝜎) given above in Equation (3), is a direct function of range (𝑅) and RCS (𝜎) where 𝑐1 

and 𝑐2 are constants and can be determined using the operational parameters and some required performance 

characteristics of a radar. To account for cases where a number of radars are installed to form a tactical network, 

the aggregate probability of being tracked by a number of those radars has to be computed. Under the assumption 

that tracking logic of the participating radars is not shared among them the aggregate probability can be evaluated 

as follows;  
 

𝑃𝑡𝑟 = 1 − (1 − 𝑃𝑡𝑟1
)(1 − 𝑃𝑡𝑟2

). . . (1 − 𝑃𝑡𝑟𝑛
)             (4) 

 

 Where 𝑃𝑡𝑟1
 denotes the probability of the UAV being tracked by a first radar, 𝑃𝑡𝑟2

 denotes the probability of 

the UAV being tracked by a second radar and so on, and 𝑃𝑡𝑟 is the probability of the event that the UAV is tracked 

by an overall integrated air defense network consisting of all radars in a given mission area.  

The last element of our probabilistic engagement model, is the probability of the TUAV to be hit by a missile 

after it has been detected and a track lock is acquired on it. In this respect, two primary factors have to be 

considered: 1 - system response time, 𝑇𝑟 (i.e., the time interval in which the radar system concludes that a missile 

must be fired and actually fires it), 2 - missile flyout time, 𝑇𝑓 (the time interval in which a missile travels to 

physically hit or explode in proximity to the aircraft). For an aircraft to be destroyed at time 𝑡, the radar system 

must have tracked it during the continuous interval [𝑡 − (𝑇𝑟 + 𝑇𝑓), 𝑡]. If Δ𝑇 = 𝑇𝑟 + 𝑇𝑓 is defined to be the threat 

window, then probability of kill is defined as:  

 

𝑃𝑘(𝑡) ⪅
1

Δ𝑇
∫

𝑡

𝑡−Δ𝑇
𝑃𝑡(𝜏)𝑑𝜏                 (5) 
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2.1.2 A Kinematic  Bank-to-Turn Model of the UAV 

(a) 𝜆, 𝜃 𝑎𝑛𝑑  𝜓 angles from an orthogonal top view    (b) 𝜇 is the bank (roll) angle 

 

Figure 1 A Visual representation of UAV model parameters 

The UAV is represented using a kinematic model given in [12] and also adopted in [36], which account for 

the coupling between the RCS and aircraft dynamics. To be more specific, the turn rate of the aircraft is determined 

by its bank angle which in turn is determined by a steering input represented by 𝑢. Hence, the RCS and dynamics 

of the aircraft are coupled through the aspect and bank angles. 

Figure 1 (a) shows an orthogonal top view to indicate the relationship between 𝜆, 𝜃 𝑎𝑛𝑑  𝜓 angles.  

Figure 1 (b) shows a tilted 3D view of a UAV to illustrate the relationship between 𝜇 (the bank (roll) angle) 

𝑢 𝑎𝑛𝑑 𝑔 . According to this model, the bank-to-turn aircraft is assumed to move in a horizontal plane at a constant 

altitude governed by the equations:  

 

�̇� = 𝑣  𝑐𝑜𝑠  𝜓,                    (6) 

�̇� = 𝑣  𝑠𝑖𝑛  𝜓,                    (7) 

�̇� = 𝑢/𝑣                     (8) 

 

 Where, 𝑥 and 𝑦 are Cartesian coordinates of the UAV, 𝜓 is the heading angle, 𝑣 is the constant speed, 𝑢 is 

the input signal which is the acceleration, normal to the flight path vector. Further, to define the position and 

posture of the aircraft with respect to a given 𝑖𝑡ℎ radar the following equations are defined [1]:  

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦−𝑦𝑖

𝑥−𝑥𝑖
),                  (9) 

𝜆 = 𝜃  − 𝜓  +   𝜋                   (10) 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑧

√(𝑥−𝑥𝑖)2+(𝑦−𝑦𝑖)2
),                (11) 

𝜇 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑢/𝑔)                   (12) 

𝑅𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + 𝑧2               (13) 

 

 Where, 𝜃, 𝜆, 𝜙, 𝜇 are the azimuth, aspect, elevation and bank (or roll) angles, respectively, 𝑧 is the aircraft 

altitude, 𝑥𝑖 , 𝑦𝑖  are the coordinates of the 𝑖𝑡ℎ radar on the 𝑥 − 𝑦 plane (note that 𝑧 = 0 for any radar), 𝑔 is the 

acceleration of gravity and 𝑅𝑖  is the range of the 𝑖𝑡ℎ radar to the aircraft. To ensure a certain degree of faithfulness 

to the actual RCS of the aircraft rather than rely on a simple isotropic RCS, we adopt the optical region 

approximations using a 3D Elliptical RCS model, which is one of the suggested approximations in the literature 

[18]. Based on Equations (9), (10), (11) and (12), the RCS of the aircraft can be modeled as a function of the aspect 

angle 𝜆, the elevation angle 𝜙, and the bank angle 𝜇, (as suggested in [12]) such that;  
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𝜎(𝜆, 𝜙, 𝜇) =
𝜋𝑎2𝑏2𝑐2

(𝑎2𝑠𝑖𝑛2𝜆𝑒𝑐𝑜𝑠2𝜇𝑒+𝑏2𝑠𝑖𝑛2𝜆𝑒𝑠𝑖𝑛2𝜇𝑒+𝑐2𝑐𝑜𝑠2𝜆𝑒)2           (14) 

 

𝜆𝑒 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑐𝑜𝑠𝜙

𝑐𝑜𝑠𝜆
)                  (15) 

 

𝜇𝑒 = 𝜇 − 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑡𝑎𝑛𝜙

𝑠𝑖𝑛𝜆
)                 (16) 

 

3. Theoretical Background On Hierarchical Reinforcement Learning 

 

Reinforcement Learning (RL) can, informally, be defined as learning from incrementally gained experience 
via interactions with an environment to achieve a pre-defined goal. As such, it is a computational paradigm where 

an agent learns a policy of optimal actions by seeking to maximize the cumulative rewards obtained as a result of 

its interactions with an environment along a task horizon, in conjunction with a set of state that evolves during 

these interactions. The primary formal framework used for the specification of the above definition is the Markov 

Decision Process (MDP) [28, 7].  In a set theoretical setting, an MDP is formally defined (see, for instance,  [31]) 

as a tuple of five elements 〈𝑆, 𝐴, 𝑇, 𝑅, 𝛾〉 where 𝑆 is a finite set of states defining a discrete state space, 𝐴 is a finite 

set of actions defining a discrete action space, 𝑇 a transition function defined as 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1], 𝑅 is a reward 

function defined as 𝑅: 𝑆 × 𝐴 × 𝑆 → 𝑅 and 𝛾 ∈ (0,1) denotes a discount factor. The transition function 𝑇 and the 

reward function 𝑅 together define the model of the MDP. Given an MDP, a policy is a computable function that 

outputs for each state 𝑠 ∈ 𝑆 an action 𝑎 ∈ 𝐴 (or 𝑎 ∈ 𝐴(𝑠)). Formally, a deterministic policy 𝜋 is a function defined 

as 𝜋: 𝑆 → 𝐴. It is also possible to define a stochastic policy as 𝜋: 𝑆 × 𝐴 → [0,1] such that for each state 𝑠 ∈ 𝑆, it 

holds that 𝜋(𝑠, 𝑎) ≥ 0 and ∑ 𝑎 ∈ 𝜋(𝑠, 𝑎) = 1.  

It has been argued that RL as a computational paradigm faces some important challenges such as sampling 

and exploration inefficiency, sparse reward problem in long horizon tasks, low interpretability, inherent difficulties 

with transfer of learned skills (of the agent), complexity of reward function design process etc. (see for 

instance[41],[42],[43] for more discussion). HRL extends the capabilities of RL by introducing an approach where 

complex tasks are abstracted into smaller sub-tasks which can also be re-used for other similar complex tasks. 

More specifically, HRL increases exploration efficiency via temporally extended exploration (due to temporal 

correlation of higher level tasks), alleviates the sparse reward problem by utilizing various forms of intrinsic 

motivation  in order to provide additional denser reward signals for individual abstractions, addresses sample 

inefficiency through efficient use of temporal and state abstractions, facilitate  transfer learning and increase 

interpretability using various forms of abstractions. 

HRL is formalized on the basis of the theory of Semi-Markov Decision Process (SMDP) [39], [40]. It is stated 

in [[39], [40] that an SMDP is a stochastic control process comparable to an MDP, but it differs from MDP in that 

it incorporates the concept of time for which an action is executed after it has been chosen. In the context of HRL, 

the actions which are not atomic (i.e., span a certain amount of time) are the subtasks. Starting from a state 𝑠𝑡  ∈
 𝑆, assume that an agent chooses a subtask 𝜔𝑡  ∈  𝛺, where Ω is the set of subtasks (or the subtask space). The 

reward obtained as a result of performing the subtask 𝜔𝑡 starting from state 𝑠𝑡 is denoted as 𝑅(𝑠𝑡 , 𝜔𝑡), calculated 

as follows, 

 

𝑅(𝑠𝑡 , 𝜔𝑡) = 𝔼𝑎∼𝜋𝜔𝑡(𝑠) [ ∑  

𝑐𝜔𝑡
−1

𝑖=0

  𝛾𝑖𝑟(𝑠𝑡+𝑖 , 𝑎𝑡+𝑖) ∣ 𝑠𝑡 , 𝑎𝑡 = 𝜋𝜔𝑡
(𝑠𝑡)] .                             (17) 

 

Equation (17) indicates that the reward 𝑅(𝑠𝑡 , 𝜔𝑡) is equal to the expected cumulative reward obtained while 

following the subtask policy 𝜋𝜔𝑡
 from time 𝑡 until the termination of 𝜔𝑡 after 𝑐𝜔𝑡

 timesteps. Now, an optimal task 

policy would be the one that leads to the following desired maximum Q-value: 

 

𝑄(𝑠𝑡 , 𝜔𝑡) = 𝑅(𝑠𝑡 , 𝜔𝑡) + ∑  

𝑠𝑡+𝑐𝜔𝑡
,𝑐𝜔𝑡

𝛾𝑐𝜔𝑡 𝑃(𝑠𝑡+𝑐𝜔𝑡
, 𝑐𝜔𝑡

∣ 𝑠𝑡 , 𝜔𝑡) max
𝜔𝑡+𝜔𝑡

 𝑄 (𝑠𝑡+𝑐𝜔𝑡
, 𝜔𝑡+𝑐𝜔𝑡

),    (18) 
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Where, ∀𝑠 ∈ 𝑆 and ∀𝜔 ∈ Ω. It should be noted that the Q-value in Equation (18) also depends on 𝑅(𝑠𝑡 , 𝜔𝑡) and 

𝑃 (𝑠𝑡+𝑐𝜔𝑡
, 𝑐𝜔𝑡

∣ 𝑠𝑡 , 𝜔𝑡). These two quantities are determined by the execution of 𝜔𝑡 using its policy 𝜋𝜔𝑡
. Therefore, 

an agent actually needs to learn multiple policies at different levels of a task decomposition hierarchy. 

As noted in [41], earlier HRL methods, were mostly based on three main approaches: the options formalism 

of Sutton et.al,[47] the Hierarchies of Abstract Machines (HAMs) of Parr [39] and Parr and Russell [40], and the 

MAXQ framework of  Dietterich [48], which share many common elements and more importantly rely on SMDP 

as the underlying theory. Further research has resulted in many variants and improvements as detailed in recent 

comprehensive surveys such as [42] and [43]. One such relatively recent approach listed in the larger taxonomy 

of approaches is called Feudal Reinforcement Learning (Feudal RL) [49].  Feudal RL involves a hierarchy, in 

which the action space of a higher-level policy consists of subgoals corresponding to various subtasks. A subgoal 

chosen by the higher-level policy is taken as input by a universal policy at the lower level. The objective of this 

lower-level universal policy is to achieve the input subgoal. The universal policy at each level can be treated as a 

sub-agent (as part of the HRL agent) that can perform all the possible subtasks at that level. This leads to the feudal 

concept of a “manager” sub-agent (higher-level policy) directing a “worker” sub-agent (lower-level policy). This 

method is particularly relevant to our work, since we adopt the main framework proposed in it. 

 

3.1 Methodological Details of Our Framework Based on HRL 

 

  In this work we adopt a two-layered architecture consisting of a controller and a meta-controller. We adopt 

a Feudal RL approach which is briefly described as follows: a higher-level manager selects a subtask that is to be 

fulfilled by a worker at a lower-level. The manager assigns the subtask to the worker via a sub-goal. The objective 

of the worker is to achieve the designated sub-goal. The cumulative rewards produced by a task are visible only 

to the manager at the highest level while the workers at other levels learn using the rewards for reaching the sub-

goals. In this setting, we use a multinomial logistic regression model [51] to implement a meta controller for the 

manager which is then trained using a state transition graph that models the selection of the appropriate high-level 

goal based on a meta state depicting the status of the higher-level learning process. Since this meta state is a 

categorical description of the higher-level tasks and the confidence in the learning level of those tasks, we use an 

encoding scheme similar to one-hot encoding to model the relevant state data. 

For the worker, we implement a lower-level controller, using one of the most popular model-free, Q-

Learning-based RL algorithms, namely Deep Q Network (DQN) which was developed by [20]. DQN relies on a 

neural network for approximating the behavior of the Q-function in a non-linear manner. In fact, a DQN is a multi-

layered (deep) neural network which takes a vector of observations, 𝜔𝑡 ∈ Ω, as its input, and assigns likelihood 

values to a vector of action values 𝑄(𝜔𝑡 , . ; 𝜃) in its output, where 𝜃 are the parameters of the network. Standard 

Q-learning algorithms were plagued with instability until [20] introduced two mechanisms that address this 

deficiency. The first of these mechanisms is the experience replay which involves accumulating a customizable 

window of observation sequence and randomizing over the data in this sequence to remove correlations in the 

observation history and to smooth over changes in the data distribution. During the training of the DQN, 

experiences are first accumulated in the experience replay buffer using 𝜖-greedy policies. The second of these 

mechanisms is called a target network and relies on the use a separate neural network (architecturally identical to 

the value network), with parameters 𝜃− . During the training, the parameters of the value network are copied over 

to the target network every 𝑘 steps, so that then 𝜃𝑡
− = 𝜃𝑡, and kept fixed on all other steps.  

 In its original form, experience replay buffer is sampled uniformly. A more effective variant was introduced 

by [25] called prioritized experience replay. The motivation here is to increase the impact of surprising and/or 

task-relevant transitions within the experiences during the learning process. More specifically, this technique, uses 

the magnitude of the temporal-difference (TD) error pertaining to transitions, and tends to favor (i.e., prioritize) 

those with high expected learning progress. Such selective prioritization may result in a loss of diversity and can 

introduce bias, but these are reconciled with stochastic prioritization and importance sampling respectively. 

 

4. Casting the Problem into A Reinforcement Learning Context 

 

RL assumes a specific framework in which an agent interacts with its environment conforming to a relatively 

simple but a well-defined pattern.  Hierarchical RL, on the other hand, adds a further meta-layer for the assignment 

and management of tasks that may consist of an arbitrary hierarchy. The structural (or data-model centric) aspects 

of this interaction scheme and its associated management layer can be specified via an agent observation space, a 

meta-layer observation space and an action and task space. The algorithmic (or behavioral) aspects, on the other 
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hand, can be specified via the reward function. In this section we first provide the details of those structural and 

behavioral aspects, and then we proceed by introducing our algorithm that implements the actual hierarchical 

learning scheme based on the specified aspects.  

 

4.1 Agent Observation Space 

 

 An observation for the lower-level controller agent, 𝜌𝑡 ∈ Ω, is the observable part of the environment state 

by the agent at time step 𝑡. 𝜔𝑡 is defined as a tuple as below:  

 

𝑅𝑔 = √(𝑥𝑔 − 𝑥)2 + (𝑦𝑔 − 𝑦)2,                (19) 

𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦𝑔−𝑦

𝑥𝑔−𝑥
),                  (20) 

𝛽 = |𝜓 − 𝛼|,                    (21) 

𝜌𝑡 = <∥ 𝑥 ∥, ∥ 𝑦 ∥, ∥ 𝑅𝑔 ∥, 𝑃𝑡𝑟 , 𝑃𝑘 , 𝛼, 𝜓, 𝜇, 𝛽, ∥ 𝑅𝐶𝑆1 ∥, . . . , ∥ 𝑅𝐶𝑆𝑛 ∥, MSg >       (22) 

 

 where 𝑃𝑡𝑟 is the aggregate probability of track at a certain time step, as defined earlier in Equation  (4), 𝑃𝑘(𝑡) 

is the probability of kill as defined earlier in Equation  (5), 𝑥𝑔 , 𝑦𝑔 are the coordinates of the center of the goal area 

in x-y plane, 𝑥, 𝑦 are the coordinates of the UAV in x-y plane, 𝛼 is the angle between the x-axis and the line 

connecting the current UAV position to the center of the goal area ( i.e. the goal angle), 𝛽 is the difference between 

the UAV direction angle (i.e. 𝜓 as defined in Equation  (8)) and the goal angle, 𝜇 is the UAV bank (or roll) angle 

as defined in Equation  (12), and 𝑅𝐶𝑆𝑖  is the RCS of the UAV with respect to the 𝑖𝑡ℎ radar in the mission area, 𝑛 

being the total number of radars deployed in the mission area. MSg is the one hot encoded sub-goal achievement 

meta state that describes the current state of the agent with regard to achieving the set of all sub-goals.   The ∥. ∥ 

symbol denotes normalization.  

 

4.2 Meta-Level Observation Space 

 

The observation space for higher level meta controller, 𝜎𝑡, is an n-tuple representing the task (or goal) meta 

state, encoded similar to one-hot encoding defined as follows; 

 

𝜎𝑡 =< x1, … xn, m >;  n = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 

 

𝑥𝑖 = 1𝑀(𝑢𝑖) = {
1  𝑤ℎ𝑒𝑛 𝑢𝑖 ∈  𝐺𝑡

0   𝑤ℎ𝑒𝑛 𝑢𝑖  ∉ 𝐺𝑡
 

 

𝑚 = {
1  𝑤ℎ𝑒𝑛 𝑥𝑖   𝑖𝑠 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦
0  𝑤ℎ𝑒𝑛 𝑥𝑖   𝑖𝑠                𝑁𝑂𝑇 𝑙𝑒𝑎𝑟𝑛𝑒𝑑  

 

 

𝐺𝑡 = {𝑔1𝑡
, … , 𝑔𝑘𝑡

}; k ≤ n; kt = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

 

where 1𝑀(𝑢𝑖) is an indicator function that determines whether a specific element of the tuple 𝜎𝑡 is 1 or 0 

depending on the sub-goal number being encoded; 𝑚 is a binary code that indicates whether the encoded goal is 

learned successfully or not, and 𝐺𝑡 is the set of sub-goals achieved (or visited) by the agent at time 𝑡  including the 

final goal. 𝐺𝑡  grows as the agent achieves more goals. Note that with this encoding scheme our framework supports 

categorical states, so it is inherently suitable for extension to other contexts, involving more liberal task definitions 

such as non-navigational behaviors (e.g., hover along a circle for reconnaissance). 

 

4.3 Action And Task Space 

 

 For the lower-level controller, the actions in our problem setting are defined in terms of steering input, 𝑢, to 

the UAV navigation system, as specified in Equation (8). We adopt a discrete action space which is defined as 

follows:  

 

𝐴 = {𝑢1, . . . , 𝑢7},    𝑢𝑖 ∈ [−15,15]                (23) 

𝑢𝑖 = 𝑢𝑖−1 + 5,                    (24) 
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 where 𝐴 is a finite set that defines all the available actions containing 7 elements. The elements range from 

-15 to 15 with an increment of 5. Positive values cause the aircraft to perform a right-turn maneuver, whereas  

negative values cause the aircraft to perform a left-turn maneuver.  

For the higher-level meta controller, the task space consists of a single integer representing the task (i.e., sub-

goal) number to be assigned to the lower-level worker as the target.  

 

4.4 Reward Function  

 

   Our reward function is designed to provide direction and range feedback with respect to the designated 

(active) goal, as early as possible The overall cumulative reward signal, 𝑅𝑡 , is composed of a number of sub-

components as defined below:  

 

𝑅𝑊𝑔𝑟 =∥ 1 − 𝑅𝑔 ∥ 

 

𝑃𝑁𝑝𝑡𝑘 = {
0, 𝐢𝐟  𝑃𝑡𝑟 < 𝜉

2(𝑃𝑡𝑟(𝑡) + 𝑃𝑘(𝑡)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝐹𝐵𝑑𝑖𝑟 = {
5(1−∥ 𝛽 ∥), 𝐢𝐟  𝛽 < 10
−2 ∥ 𝛽 ∥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑅𝑡 = {

−50, 𝐢𝐟  (𝑃𝑘(𝑡) > 𝜁)  ∨   (𝑈𝐴𝑉 𝑜𝑢𝑡 𝑜𝑓 𝑎𝑟𝑒𝑎)
αRWsg, 𝐢𝐟  𝑈𝐴𝑉 𝑖𝑛 𝑔𝑜𝑎𝑙 𝑎𝑟𝑒𝑎

𝑅𝑊𝑔𝑟 + 𝐹𝐵𝑑𝑖𝑟 − 𝑃𝑁𝑝𝑡𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 where 𝑃𝑡𝑟 is the aggregate probability of track at a certain time step, as defined in Equation  (4), 𝑃𝑘(𝑡) is the 

probability of kill which was defined in Equation  (5), 𝜉 is the tracking probability threshold (the probability value 

at which a track lock is initiated), 𝜁 is the kill probability threshold (i.e. the value of 𝑃𝑘(𝑡) for which a UAV-kill 

event is set to happen), 𝑅𝑔  and 𝛽 are defined in Equations  (19) and  (21) respectively, 𝑃𝑁𝑝𝑡𝑘 is the penalty for 

being tracked or killed, 𝑅𝑊𝑔𝑟  is the reward for getting  nearer to the goal, 𝐹𝐵𝑑𝑖𝑟  is the direction feedback which 

increases as  the heading of the UAV aligns better  towards the goal, RWsg  is a specific numeric reward for 

reaching a certain sub-goal weighted with a coefficient α. Here α takes greater values as the target sub-goal is 

closer to the final goal. 

A 2D visualization scheme, as depicted in Figure 2, is employed to represent the output of the reward function, 

where reward values are used to generate a color-coded image map. The figure illustrates a rectangular mission 

area containing 2 radars installed in various locations, and some interim goal areas placed in different locations 

within the mission area. Radar coverage areas are indicated via opaque circular regions. As it would be expected, 

those circular areas are discouraged by the reward function, so blue color signifies negative reward values (i.e., 

punishment), darker shades indicating more dramatic penalty levels.  Positive reward values are indicated by a red 

color, signifying direction-wise and range-wise proximity of the agent to active (i.e., currently assigned) goals. In 

this respect,  Figure 2 (a) depicts a case where an agent with a direction angle of 0 (i.e., 𝜓 = 0) obtains increasingly 

higher positive rewarded values as it moves towards the goal along a straight line. Note that the central line of the 

 

(a)  𝜓 = 0, target is Goal-1        (b) 𝜓 = 45, target is Goal-2 

 
Figure 2 Color-coded representation of reward function returns for different UAV direction angle (ψ) values. ( 𝜓 equals 0 and 

the target is Goal-1 on the left. 𝜓 equals +45 and the target is Goal-2 on the right) 
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path exhibits highest positive rewards (indicated by a darker red color), since it minimizes the difference 

between the goal angle and UAV’s direction. Figure 2 (b) illustrates a case where an agent with a direction angle 

of 45 (i.e., 𝜓 = 45)  gets increasingly higher positive reward values as it approaches towards the goal along a 

diagonal line with a 45 degrees angle with the center line of the goal area etc. Note that the illustrations are only 

valid for scenarios employing an isotropic RCS for the UAV. Cases involving non-isotropic RCS, would result 

in dramatic changes (in fact fluctuations) in the probability of detection values, depending on the maneuvers of 

the UAV, due to changes in the three engagement angles.  This would make the reward signals much harder to 

map in a comprehensive way. 

 

4.5 The Hierarchical RL Algorithm 

 

We now describe the algorithm that implements the HRL solution.  The procedure given in Algorithm 1 starts 

with the initialization of the meta controller using the set of goals and a multinomial logistic regression model. 

Then there is a pre-training step (in line 6) in which the meta controller is trained using a set of meta state transitions 

and corresponding next states for each meta state tuple in this set. Note that the state tuples are n-tuples encoded 

using a scheme similar to one-hot encoding and the next states are task (or goal) numbers denoting the next task 

(goal) to be targeted. For instance, the following examples illustrate three cases where in the first one, the first 

goal was visited but wasn’t learned (so the last member of the tuple, i.e., the confidence bit 𝑚, is still 0) therefore 

the next meta state (goal) is 1, suggesting that the agent should still target this goal until it confidently learns it. In 

the second one, the meta state indicates that the first goal is visited and learned, so the next task is targeting goal 

number 2. In the third example, the first goal and the second goal are visited and the last goal (i.e. goal number 2) 

is also learned, so the next goal is goal number 3, etc. Note that these examples are valid for a 3-goal scenario. 

Note also that, contrary to strict one-hot encoding, meta state tuple can contain multiple “1” values.  

 

(1,0,0,0)  →  1 
(1,0,0,1)  →  2 
(1,1,0,1)  →  3 

 

Following the training of the meta controller the environment is reset and low-level training of the controller starts 

as a conventional RL training loop, except that the outer loop uses the pre-trained meta controller to assign high 

level goals each time a specific goal is achieved and learned successfully. This is indicated in line 12 of the 

algorithm. The loop starting with line number 14 handles the training of lower level controller, which involves 

asking the controller to predict the next low level action (line 15), forwarding the environment state one step using 

the new action (line 16), calling the optimization step to perform training of the Q-Function which is implemented 

as a DQN in our case (line 18), checking if a goal was reached and making sure the active goal (i.e. the goal that 

was assigned to the agent currently) was learned successfully (lines 19 to 29). Note that this procedure is a two-

stage training process where the first stage is an off-line pretraining phase (for the meta controller). Note also that 

this framework does not allow for dynamic goal discovery, the meta level goal structure has to be predefined.  

 
Algorithm 1 Procedure for training the hierarchical DQN agent 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Procedure HRL (𝑋, 𝑌, 𝐺, 𝐹𝑙𝑟 , 𝑒𝑛𝑣)  
//X is a set of meta state tuples, Y is the next state vector (for a given 

meta state) 

        initialize meta_controller(𝐺, 𝐹𝑙𝑟)//𝐹𝑙𝑟 is a sklearn logistic regression model 

                                                                                            // G is a set of goals 
        meta_controller.train(X, Y)  //train the logit model using X and Y  
   obs = env.reset() 

   R = 0; t = 0    

   While t < max_steps      

      goal_state = obs.get_metastate() 

       //get next task (goal) from the meta controller 

      new_goal = meta_controller.get_next_goal(goal_state) 

      env.set_target_goal(new_goal) 

      While True  

         act = contoller.act(obs)  //get next action from the controller             
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16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

         obs, rew, done = env.step(act) 

         R += rew; t += 1 

         contoller.train(obs, rew, done) 

         if goal_reached 

            if is_active_goal_learned() 

               env.designate_next_goal() 

            else: 

               success_ratio = evaluate_success(new_goal) 

               if success_ratio >= 0.7 

                  learned_current_goal = True 

                  env.set_confidence(new_goal,1) 

               else: 

                  learned_current_goal = False 

                  obs = env.reset() 

         if done or reset or learned_current_goal 

            break 

      End While 

   End While 

End Procedure  

 

 

5. Experiments and Results 

 

  The experiments are carried out in a simulated tactical area where two radars are installed. The x and y 

dimensions of the area is 160 km by 90 km. The radars have different performance specifications characterized by 

the parameters given in Table 1, where 𝑃𝑡𝑥 refers to peak transmit power, 𝑓 is the operating frequency, 𝐹𝑛 irefers 

to the noise figure, 𝑝𝑤 is the pulse width, 𝑃𝑓𝑎 is the probability of false alarm, 𝑆𝑁𝑅𝑚𝑖𝑛  is the minimum required 

SNR, 𝑡𝑟𝑒𝑠𝑝 is the response time of the radar and 𝑣𝑚 is the speed of the Surface to Air (SAM) missile. Both radars 

have the ability to perform non-coherent pulse integration, 𝑘 and 𝑙 parameters given in Equation (2) are taken to 

be 𝑘 = 30, 𝑙 = 4. Three scenarios are experimented: 

1. In the first one only one goal exists in the environment which is located far from the entry point to the 

mission area. In this environment a standard DQN algorithm is used to illustrate the results of using plain 

RL in such long horizon tasks.  

2. In the second scenario a two-goal environment is used and the agent is trained using HRL approach. 

3. In the third scenario one more sub-goal is added to the environment and the performance of the HRL 

agent is demonstrated. 

 
Table 1 Important parameters of two different radar types 

Radar 
Type 

 𝑷𝒕𝒙(𝒅𝑩𝑾)   𝒇(𝑮𝑯𝒛)   𝑭𝒏(𝒅𝑩)   𝒑𝒘(𝝁𝒔)   𝑷𝒇𝒂   𝑺𝑵𝑹𝒎𝒊𝒏 
(𝒅𝑩)  

 𝒕𝒓𝒆𝒔𝒑(𝒔)   𝒗𝒎(𝒎/𝒔)  

Type-1  54.47   8   0.4   8   10−6   10   22   1200  

Type-2  55.18   7   0.4   5.19   10−6   13   20   1300  

 

   In all of the scenarios above;   

1. The UAV is assumed to cruise at a constant altitude of 9000𝑚, at a constant speed of 

170𝑚/𝑠  (0.49𝑀𝑎𝑐ℎ). In other words, take-off, climbing, descending and landing phases are not 

considered.  

    2.  The target fluctuation category of the UAV is assumed to be swerling-1 as defined in [29].  

    3.  At each time step in the simulation, the aggregate probability of track (obtained using Equation (4)) is 

calculated and checked against a tracking probability threshold of value 0.9. If the aggregate prob. of track is 

greater than that value, then for each of the contributing radars, a track sequence is triggered at that time step.  

    4.  If a track sequence is initiated for a particular radar, then missile hit time, 𝑡ℎ𝑖𝑡 = 𝑅𝑡/𝑣𝑚 is calculated 

for that radar and at each consecutive time step the probability of track is checked against a track loss threshold. 

If the probability of track continues to remain above the track loss threshold for a time window equal to  𝑡𝑟𝑒𝑠𝑝 +
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𝑡ℎ𝑖𝑡  of that radar, then the UAV is considered to be lost. Note that it is assumed that 𝑡ℎ𝑖𝑡 stays constant during the 

threat window.  

    5.  To model the difficulty of breaking a track lock via maneuvers once it is acquired, the track loss 

threshold is set to 0.6, indicating that the track lock remains unbroken until the probability of track goes below 

0.6.  

 

Figure 3 An example post mission trace graph 

During the experiments, the flight path of the aircraft and the track history of the radar are logged and plotted 

to provide a visual performance evaluation scheme. An example graph is given in Figure 3. Here,  opaque circular 

areas delineate the region where probability of track is greater than 0.9 for an isotropic RCS of 1.2𝑚2. The dotted 

circles at the outer perimeter indicate the points at which the probability of track is equal to 0.54. Maximum 

detection range based on the minimum SNR value of each radar is also calculated and illustrated using red dotted 

circles in between of those two. Some example flight trajectories are included in the figure, where Path-1 denotes 

a scenario where the UAV was destroyed by Radar-1 following a track period (track initiation point and kill point 

are denoted by a small black dot and relatively larger red dot respectively), Path-2 illustrates a fully successful 

trial and Path-3 illustrates two tracking events initiated by Radar_0 and Radar_2, neither of them being able to 

destroy the target. This layout and notational convention are used throughout the experiments. 

For all scenarios, to model the lower-level controller we use a DQN with input size of 15 (equal to the size 

of the observation vector), an output size of 7 (equal to the size of the discrete action space) and 2 hidden layers 

of 400 channels each. We use ADAM [14] algorithm for the optimization of the neural network. The experience 

replay buffer has a start size of 256, and is sampled using a batch size of 128. The exploration policy is managed 

via a decaying 𝜖-greedy explorer epsilon values ranging in the interval [1.0, 0.1]. 

 

5.1 Presentation of The Results and Discussions 

 

In all of the experiments we performed the evaluation process at 10 episode intervals, averaging cumulative 
reward obtained from 5 evaluation runs. During evaluation runs the agent does not take any exploratory actions, it 

fully exploits the current learning level of the DQN. As illustrated in , in the first scenario the agent was unable to 

learn to reach the target goal area although the experiment was extended to last for nearly 700 episodes (around 1 

million steps). Note that the training curve seem to stabilize around a particular cumulative reward value (around 

7000), but evaluation curve swings along a large interval. This is because the DQN agent struggles to converge to 

a successful policy given the delayed feedback conditions in this long horizon setting. 
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Figure 4 Training statistics and evaluation results for the first scenario 

 

(a) Two goal setting         (b) Three goal setting 

Figure 5 İllustration of navigation paths for the second and the third scenario 

Figure 5 on the other hand illustrates the path of the UAV learned via the HRL algorithm, in two-goal (a) and 

three-goal (b) settings. The labels attached to the goal areas stand for Intelligence Surveillance and Reconnaissance 

(ISR) and Reconnaissance (RECON) to indicate that interim goals may serve different purposes in the mission 

planning.  

Figure 6 provides the training statistics and evaluation results for the second scenario (i.e. two-goal setting). 

Note that small green circles that appear on the evaluation curve denote the point where the agent successfully 

learns the actively assigned goal. So, for instance, for the two-goal setting the first goal is learned at the end of 

10th episode, whereas the second (and final) goal was achieved at the end of episode number 100.  
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Figure 6 Training statistics and evaluation results for two-goal scenario 

Similarly, Figure 7 provides the training statistics and evaluation results for the third scenario (i.e. three-goal 

setting). Note that this time the first goal is achieved in episode number 13, the second goal is achieved in episode 

number 250, and the third goal is achieved around episode number 290. Note that in this three-goal scenario the 

second goal is learned much later compared to the two-goal scenario. Although we use fixed seed to initialize 

random number generators used in the framework, as we pointed out earlier, we use perturbation of the UAV entry 

point to the mission area, which introduces a certain degree of randomness to the process. So this behavior is 

something we would expect.   

The results indicate that our HRL framework ensures that the agent learns the complex navigation 

arrangements in a reasonable amount of time, and via a well-defined procedure.  

 

 
Figure 7 Training statistics and evaluation results for three-goal scenario 
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6. Conclusion 

 

In this paper we have implemented an HRL based framework to provide a solution to sparse reward problem 

surfacing in complex, long-horizon path planning settings. Our proposed framework combines a meta controller 

for higher level goal assignment and a controller that determines the lower-level actions of the agent in a novel 

way, and thus constitutes one of the first examples of such a hierarchical learning scheme put into the use for UAV 

path planning in tactical environments. Several concluding remarks are worth noting: 

 

1. The experiment results are a clear manifestation of the fact that hierarchical learning schemes do indeed 

lead to considerable improvement of the performance of the RL agent in path planning scenarios.  

2. This two-layer framework ensures that an optimal plan for a complex path, organized as multiple goals, 

is achieved gradually, through piecewise assignment of sub-goals, and thus as a result of a staged, 

efficient and rigorous procedure.   

3. The fact that our meta layer is pre-trained using a set of pre-defined state transitions that prescribe the 

evolution of goal assignment based on well-defined goal achievement state, makes the higher-level logic 

deterministic. This brings about performance and more robustness to the training process but limits the 

applicability of the solution to relatively more conservative settings. This implies that the more liberal 

problem settings such as those that require dynamic goal discovery are not readily addressed. 

4. Our framework supports categorical states at the meta-level, so the proposed encoding scheme combined 

with a variable reward function selection mechanism is inherently suitable for extension to other similar 

contexts, involving more liberal task definitions such as non-navigational behaviors (e.g., hover along a 

circle for reconnaissance). 
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