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ABSTRACT:  

In this study, we present a method in order to get initial value fractional 

differential equations with artificial neural networks. On the basis of the function 

approach of feedforward neural networks, this method is a general method that 

is written in an implicit analytical form and results in the creation of a 

differentiable solution. The first part of the created trial solution which is stated 

as the sum of the two parts, with no controllable parameters, gives the initial 

conditions. The second part, unaffected by the initial conditions, consists of a 

feedforward neural network with controllable parameters (weights). The 

applicability of this approach is demonstrated in systems of both fractional single 

ODEs and fractional coupled ODEs. 
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INTRODUCTION 

Fractional differential equations are widely benefited as generalizations of traditional differential 

equations in order to describe different complex phenomena in many fields such as diffusion of chemical 

kinematics, biological populations, plasma physics, solid state physics, signal processing, optical fiber, 

electricity etc. Therefore, a lot of efficient methods including generalized darboux transformation (Yang 

et al., 2022), galerkin finite element (Esen et al., 2013), exponential multistep methods (Zhan et al., 

2022), variational iteration (Ain et al., 2022), sumudu transform (Karatas Akgül & Akgül, 2022), first 

integral method (Akinyemi et al., 2022), Wronskian determinant (Tang et al., 2021), modified 

exponential function (Tian & Liu, 2021), the modified auxiliary expansion (Akram et al., 2022), 

Adomian’s decomposition (Kumar, 2022), inverse scattering (Gao et al., 2022), homotopy  perturbation 

(Kocak et al., 2014),  generalized Exp-function method (Shakeel et al., 2022) or modified trial equation 

method (Aderyani et al., 2022) have been given in previous studies in the literature. 

Due to the wide range of usage areas, in this article we look at many of the methods presented so 

far for the solution of fractional differential equations from a different perspective. In our study, we 

present a general method based on the function approach of feedforward neural networks, which is 

written in a closed analytical form and results in the creation of a differentiable solution. This form uses 

a feedforward neural network whose parameters (weights and biases) are adjusted to minimize the error 

value as the basic approximation element (Lee & Kang, 1990). We use optimization techniques to train 

the network calling for the calculation of the gradient of the error according to the network parameters, 

respectively. Here the solution is stated as the sum of two parts: the first part gives the initial conditions 

and does not include any controllable parameters. The second part includes a feedforward neural network 

to be trained to give the differential equation. For being conscious of that a multilayer perceptron with a 

hidden layer can draw up any function to arbitrary accuracy, it is logical to think such a network 

architecture as a prospective model for handling differential equations. 

When the literature on artificial neural networks is examined; it has been seen that neural networks 

are used to get approximate serial solutions of initial value ordinary differential equations with fractional 

degrees over a limited area (Jafarian et al., 2017), to parameterize the derivative of the hidden state using 

a neural network instead of specifying a separate set of hidden layers (Chen et al., 2018),  to develop the 

legendre neural network method to solve linear and non-linear ordinary differential equations and the 

system of equations (Yang et al., 2018) and to create a partial differential equation solver based on 

collocation points and for the function approximation (Liu et al., 2019). In some of the studies, it has 

been mentioned that deep artificial neural networks can provide better accuracy for fewer network points 

to solve systems of ordinary differential equations, the moment minimization method and a vectorized 

algorithm are demonstrated applying it by Python (Dufera, 2021) and the neural network approach that 

simulates the behavior of partial differential equation systems using neural networks (Omidi et al., 2022). 

Since artificial neural networks learn through examples, no prior knowledge is needed to 

understand the relationship of parameters in a complex problem. The relationships between the 

parameters on which the problem depends may not be linear. However, when the traditional method is 

used to solve the problem, certain points are approached linearly. This increases the fault tolerance for 

the system whose behavior we want to determine. Whether the relationships in artificial neural networks 

are linear or not is not a situation that needs to be focused in order to reach the desired system. The non-

linearity of processes in artificial neural networks spreads this feature to the entire network structure, 

and this feature of artificial neural networks provides convenience for solving complex nonlinear 

problems. Neural networks can be retrained when new information emerges and data changes. Even if 
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some cells of artificial neural networks break down and become inoperable, the network continues to 

work. However, it can be said that artificial neural networks have fault tolerance, since the performance 

of the network may decrease depending on the importance of the damaged cells. 

In the article, the important properties of the 𝛽 −conformable fractional derivative will be 

mentioned, the structure of the artificial neural network will be explained and its applicability to the 

initial value problem for the 𝛽 −order 𝛽 −conformable fractional differential equation will be examined. 

MATERIALS AND METHODS 

The beginning of artificial neural networks has started with people's interest in neurobiology and their 

application to computer science. Artificial neural networks (Neural Networks-NNs) are computer systems inspired 

by biological nervous systems, developed with the aim of automatically performing abilities such as deriving new 

information and creating new information through learning being one of the features of the human brain without 

any assistance. 

Artificial nerve cells are also called as process elements in engineering science. Each process element has five 

basic components. These elements are; 

Inputs: The information that artificial neurons (processing elements) receive as inputs, is defined by the 

instances that the neural network purposes to learn from. 

Weights: Weights show the effect of information coming into an artificial cell on the cell. The fact that 

the weights are large or relatively small does not indicate that the information is important or 

unimportant. Weights can change or take fixed values. 

Addition Function: The net input to a cell is determined by the addition function. This is accomplished 

using several functions. The most frequent method is to compute the weighted sum. Here, each incoming 

input value is multiplied by its respective weight to determine the network's net input. 

Activation Function: This function determines the net input to the cell and determines the 

corresponding output that the cell will produce as a result of this input. Various functions are used to 

calculate the output, however one of the most frequently used as activation function is the sigmoid 

function. 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

𝜎′ = −𝜎2 + 𝜎 

𝜎′′ = 2𝜎3 − 3𝜎2 + 𝑠 

𝜎′′′ = −6𝜎4 + 12𝜎3 − 7𝜎2 + 𝜎 

𝜎(4) = 24𝜎5 − 60𝜎4 + 50𝜎3 − 15𝜎2 + 𝑠 

. 

. 

. 

Output of the Cell: The value determined by the activation function, the output produced is transmitted 

to the outside world or to another cell. 

For 𝑥 = 𝑥0 = 𝑎, where  𝑥 ∈ [𝑎, 𝑏],   

𝐷0
𝐴

𝑥
𝛽
𝑦 = 𝑓(𝑥, 𝑦(𝑥)),    

𝐷0
𝐴

𝑥
𝛽(𝑥0) = 𝑦0 
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Is the initial value problem for the 𝛽 −order 𝛽 −conformable fractional differential equation. Let the 

parameters of the feedforward artificial neural network be �⃗� = �⃗�(�⃗�,𝛽,�⃗⃗⃗�) with �⃗�, 𝛽 and �⃗⃗⃗� ∈ 𝑅, where 𝑛 

is the total number of inputs and 𝑚 is the number of neurons in the interlayer. For 𝑗 = 1, 2, . . . , 𝑛 the 

output of the neural network at the point 𝑥𝑗 ∈ [𝑎, 𝑏] is shown as 𝑁𝑁(𝑥𝑗 , �⃗�) for the �⃗� parameter values. 

In general, the points acquired from the fragmentation of the interval [𝑎, 𝑏] such that 𝑥𝑗 = 𝑎 + 𝑗. ℎ for a 

fixed step length of ℎ > 0 are used for training the network. 

For the solution of the given initial value problem, the trial function that satisfies the initial 

conditions depending on the artificial neural network’s output can be expressed as  

𝑦𝑇(𝑥, �⃗�) = 𝑦0 + (𝑥 − 𝑥0)𝑁𝑁(𝑥; �⃗�)  

As seen in Figure 1; for 𝑖 = 1, 2, 3, . . . , 𝑚, 𝑧𝑖  represents 𝑖. neuron in the middle layer, with 𝑚 

indicating the number of neurons in the middle layer. For input 𝑥𝑖, the output of the 𝑧𝑖 neuron is 

calculated as 𝑧𝑖 = 𝑤𝑖𝑥𝑖 + 𝛽𝑖 when 𝑤𝑖 is the weight and 𝛽𝑖 is the threshold. The output of each neuron is 

weighted after processing with the activation function. The sum of the weighted outputs is determined 

as the output of the neural network. That is, when �⃗� = �⃗�(�⃗�,𝛽,�⃗⃗⃗�) represents the unknown parameters of 

the network, the weighted sum value is attained with  

𝑁𝑁(𝑡𝑗, �⃗⃗�) =∑ 𝛼𝑖𝜎(𝑧𝑖)

𝑚

𝑖=1

 

This constitutes the output of the feedforward neural network. The error function that must be 

diminished is as follows: 

𝐸(𝑝) =∑{ 𝐷0
𝐴

𝑥
𝛽(𝑦𝑇(𝑥, �⃗�) − 𝑓[𝑥𝑖, 𝑦𝑇(𝑥, �⃗�)])}

2
𝑚

𝑖=1

 

Here, {𝑥𝑖}𝑖=1
𝑚  are some arbitrary discrete points in the range [𝑎, 𝑏]. Our purpose is to minimize the 

error function to solve the differential equation. 𝜇 is the learning coefficient, which usually takes a value 

between 0 and 1; Gradient Descent Algorithm is used to update 𝛼𝑖, 𝑤𝑖 ve 𝛽𝑖 values for 𝑖 = 1, 2, . . . , 𝑛. 

In this approach, parameter values are updated to  

𝛼𝑖 = 𝛼𝑖 − 𝜇
𝜕𝐸

𝜕𝛼𝑖
   

𝑤𝑖 = 𝑤𝑖 − 𝜇
𝜕𝐸

𝜕𝑤𝑖
 

𝛽𝑖 = 𝛽𝑖 − 𝜇
𝜕𝐸

𝜕𝛽𝑖
 

respectively. 
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Definition 1. Let 𝑎 ∈ 𝑅 and 𝑓 be a function, such that, 𝑓: [𝑎,∞) → 𝑅. Then, the 𝛽 −derivative of 𝑓 is 

defined as: 

𝐷0
𝐴

𝑥
𝛽{𝑓(𝑥)} =

{
 

 

lim
𝜀→0

𝑓 (𝑥 + 𝜀 (𝑥 +
1

𝛤(𝛽)
)
1−𝛽

) − 𝑓(𝑥)

𝜀
, 0 ≤ 𝑥

             𝑓(𝑥)                         ,

  0 < 𝛽 ≤  1 

 where 𝑓 is a function such that 𝑓: [0,∞) → 𝑅 and the gamma-function 

𝛤(𝛽) = ∫ 𝑥𝛽−1
∞

0

𝑒−x𝑑𝑥 

If the above limit of exists, then 𝑓 is said to be 𝛽 −differentiable. Note that for 𝛽 = 1, we have 

𝐷0
𝐴

𝑥
𝛽
𝑓(𝑥) =

𝑑

𝑑𝑥
𝑓(𝑥) (Atangana, 2015). Moreover, unlike other fractional derivatives, the 𝛽 −derivative 

of a function can be locally defined at a certain point, the same way like first-order derivative. 

Some important properties of the 𝛽 −conformable fractional derivative are: 

𝐷0
𝐴

𝑥
0𝑓(𝑥) = 0 

𝐷0
𝐴

𝑥
𝛽
(𝛼𝑓(𝑥) + 𝜇𝑔(𝑥)) = 𝛼 𝐷0

𝐴
𝑥
𝛽
𝑓(𝑥) + 𝜇 𝐷0

𝐴
𝑥
𝛽
𝑔(𝑥) 

𝐷0
𝐴

𝑥
𝛽
((𝑓𝑜𝑔)(𝑥)) = 𝐷0

𝐴
𝑥
𝛽
(𝑓(𝑔(𝑥)))𝑔′(𝑥) 

𝐷0
𝐴

𝑥
𝛽(𝑓−1(𝑥)) = −

𝐷0
𝐴

𝑥
𝛽(𝑓(𝑥))

𝑓2(𝑥)
 

𝐷0
𝐴

𝑥
𝛽
(𝑓(𝑥)𝑔(𝑥)) = 𝐷0

𝐴
𝑥
𝛽
(𝑓(𝑥))𝑔(𝑥) + 𝐷0

𝐴
𝑥
𝛽
(𝑔(𝑥))𝑓(𝑥) 

𝐷0
𝐴

𝑥
𝛽
(
𝑓(𝑥)

𝑔(𝑥)
) =

𝐷0
𝐴

𝑥
𝛽(𝑓(𝑥))𝑔(𝑥) − 𝐷0

𝐴
𝑥
𝛽
(𝑔(𝑥))𝑓(𝑥)

𝑔2(𝑥)
 

 

Figure 1. Topological structure of feedforward artificial neural network for numerical solutions of 

fractional differential equations 

0 ≤ 𝑥           𝛽 = 0 
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Definition 2. Given that 𝑓: [𝑎, 𝑏] → 𝑅 is a continuous function on the closed interval [𝑎, 𝑏], then, the 

2𝛼 −derivative of 𝑓 is described as the following: 

𝐷0
𝐴

𝑥
2𝛽
(𝑓(𝑥)) = 𝐷0

𝐴
𝑥
𝛽
( 𝐷0
𝐴

𝑥
𝛽
(𝑓(𝑥))),               0 ≤ 𝛽 ≤ 1 

The 𝑛𝛽 −derivative of 𝑓 is typically stated as: 

𝐷0
𝐴

𝑥
2𝛽
(𝑓(𝑥)) = 𝐷0

𝐴
𝑥
𝛽
( 𝐷0
𝐴

𝑥
(𝑛−1)𝛽

(𝑓(𝑥))) ,     0 ≤ 𝛽 ≤ 1 

Remark 1. Pointing out that the 𝑛𝛽 −derivative of a given function gives information of the (𝑛 −

1) −derivatives coming before it, is very crucial. 

As an example of: 

𝐷0
𝐴

𝑥
2𝛽
(𝑓(𝑥)) = (𝑥 +

1

𝛤(𝛽)
)
1−𝛽

[(1 − 𝛽) (𝑥 +
1

𝛤(𝛽)
)
−𝛽

𝑓′ + (𝑥 +
1

𝛤(𝛽)
)
1−𝛽

𝑓′′] 

As a result, it provides this derivative an unsurpassed memory characteristic that no other derivative has. 

Furthermore, it is simple to illustrate that we attain the second derivative of 𝑓 if  𝛽 = 1.  

RESULTS AND DISCUSSION 

In this section, an application problem is solved in an attempt to illustrate the technique 

recommended in the previous section. With the enema solution acquired by the method, it converges to 

the exact solution and is completely stable. In order to demonstrate the behavior and features of the 

recommended method, we perform experiments on the following problem. All of the programs are 

written by Jupyter Notebook 6.4.8. 

𝐷0
𝐴

𝑥
𝛽
𝑦 + 𝑦 = 𝑥2 + 2𝑥√𝑥 +

1

𝜋
 

with 

𝐷0
𝐴

𝑥
𝛽
𝑦(0) = 0                  𝛽 =

1

2
 

and 𝑥 ∈ [0,1]. The analytic solution which is depicted in Figure 2 is 𝑦(𝑥) = 𝑥2. The solution’s trial 

neural form is presumed to be as follows, in accordance with equation (1):  

𝑢𝑇(𝑥, �⃗�) = 𝑥𝑁𝑁(𝑥; �⃗�)  

Values in the range [0,1] consisting of 10 equal points are used to perform the training of the network. 

Also, the deviation of the approximate solution from the exact solution is presented in Figure 2. Despite 

the fact that only a few points have been utilized in the training, it is obvious that the solution is excellent 

accuracy. Additionally, for locations near to the equation field, the extrapolation error continues to be 

minimal. 

The results attained with an ANN method in which the parameters are optimized using a gradient 

descent backpropagation algorithm to solve the 𝛽 −order 𝛽 −conformable fractional differential 

equation are visualized below.  
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Table 1. Comparison of the numerical solution got by artificial neural networks with the exact solution 

 

The graphs of the exact solution 𝑦(𝑥) = 𝑥2 and the numerical solution of 𝑢𝑇(𝑥, �⃗�) for different 

training steps (103 and 106) in the [0,1] range are demonstrated in Figure 2. 

The biggest disadvantage of classical methods is that the solution sought in a certain interval is 

found only at the nodes attained from the fragmentation of the specified interval. Interpolation 

techniques are generally used to have the numerical solution of the differential equation at points other 

than the nodal points. However, this approach results in increased cumulative error. On the contrary, in 

the neural network in our example, the nodes got from the fragmentation of the gap are used only for the 

training of the network. In addition, after completing the network training in Figure 2, it is seen that it 

produces a solution at every point on the range. 

Input Data 𝑢𝑇1(𝑥, 𝑝) 𝑢𝑇1(𝑥, 𝑝) 𝑢𝑇2(𝑥, 𝑝) 𝑢𝑇2(𝑥, 𝑝) 𝑦(𝑥) 

0 0 0 0 0 0 

0.01 0.0006702795 0.67𝑥10−3 0.00022911071 0.22𝑥10−3 0.1𝑥10−3 

0.02 0.0014052297 1.40𝑥10−3 0.0005400422 0.54𝑥10−3 0.4𝑥10−3 

0.03 0.00221075 2.21𝑥10−3 0.00094771583 0.94𝑥10−3 0.9𝑥10−3 

0.04 0.003093045 3.09𝑥10−3 0.0014672052 1.46𝑥10−3 1.6𝑥10−3 

0.05 0.0040586004 4.05𝑥10−3 0.0021132813 2.11𝑥10−3 2.5𝑥10−3 

0.06 0.0051141502 5.11𝑥10−3 0.0028998812 2.89𝑥10−3 3.6𝑥10−3 

0.07 0.006266749 6.26𝑥10−3 0.003839688 3.83𝑥10−3 4.9𝑥10−3 

0.08 0.007523658 7.52𝑥10−3 0.0049438733 4.94𝑥10−3 6.4𝑥10−3 

0.09 0.0088923415 8.89𝑥10−3 0.0062217684 6.22𝑥10−3 8.1𝑥10−3 

0.10 0.010380539 10.3𝑥10−3 0.0076808045 7.68𝑥10−3 10𝑥10−3 

Figure 2. Comparison of the numerical solution acquired with artificial neural networks and the exact solution in the 

range of [0,1] 
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CONCLUSION 

In the article, the 𝛽 −conformable fractional derivative, the structure of the artificial neural 

network and to get the solution of the initial value problem for the 𝛽 −order 𝛽 −conformable fractional 

differential equation were discussed. The originality of the study was achieved by getting the solutions 

of differential equations intuitively with computers without using theoretical methods. It was observed 

that there is no common artificial neural network structure in the numerical solutions of the differential 

equations, since different types of trial functions must be used, including the solution of the artificial 

neural network and satisfying the initial or boundary conditions of the differential equation. It is thought 

that the results of the current study got with different fractional derivative definitions can be compared 

and transferred to deep learning, which is a sub-branch of machine learning. 
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