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Abstract

In this work, we study the concept of statistical relative A-summability. Based upon
this definition and A-statistical relative uniform convergence for double sequences of
functions, we prove a Korovkin-type approximation theorem and give a strong example. Also,
we compute the rates of convergence of positive linear operators via statistical relative
A—summability.

Key Words: Statistical relative convergence, statistical 4—summability, the Korovkin
theorem, positive linear operator.

Pozitif Lineer Operatorlerin Double Dizileri i¢in istatistiksel Relative A-
toplanabilme

Oz

Bu makalede, istatistiksel relative A-toplanabilme kavrami tanitilmistir. Fonksiyonlarin
double dizileri i¢in bu tanim ve A-istatistiksel relative diizgiin yakinsaklik kullanilarak,
Korovkin tipi yaklagim teoremi ispatlandi ve kuvvetli bir 6rnek verildi. Ayrica, pozitif lineer
operatorlerin istatistiksel relative A-toplanabilme orani ¢aligildi.

Anahtar Kelimeler: Istatistiksel relative yakinsaklik, istatistiksel 4—toplanabilme, Korovkin
teoremi, pozitif lineer operator.

Introduction compact subset D of R (all the real
numbers) (see, for instance, [1]). Later

Firstly, Korovkin [11] researched the many researchers have investigated these
necessary and sufficient conditions for the conditions for various operators defined on
uniform convergence of Lmn(f) to a different spaces. Furthermore, in_recent
function f considering the test functions years, ~ Various Korovkin-type
. approximation theorems have been proved

f, defined by f;(x)=x", (i=0,1,2) for a using the concept of statistical
sequence (L, ) of positive linear operators convergence [2,3]. Recall that every

convergent sequence (in the usual sense) is

defined on C(D) which is the space of all statistical convergent but its converse is

continuous real valued functions on a not a|WayS true. AlSO, statistical
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convergent sequences do not need to be
bounded. So, the usage of this convergence
method in the approximation theory
provides us many advantages. Now, we
remind some definitions that we will use.
A double sequence x =(x,,) is said to be
convergent in the Pringsheim’s sense if,
for every £ >0 there exists N € N, the set
of all natural numbers, such that

X —L| <& whenever m,n>N. Here, L
is called the Pringsheim limit of x and
denoted by P—limx_ =L [15]. We shall

call such an x more bDriefly as
“P—convergent”. By a bounded double
sequence we mean there exists a positive

number K such that |x,|<K for all
(m,n)e N’ =NxN, two-dimensional set

of all positive integers. Recall that a P
—convergent double sequence does not

have to be bounded. Let A:=(ay,,) bea
four-dimensional summability method. For

a given double sequence x=(x.,), the
A-transform  of X, denoted by
AX = ((Ax) ) is given by
= z ajkmn mn
(m,n)eN?
provided the double series converges in the
Pringsheim’s sense for (j,k)eNz. We

say that a double sequence x =(x,,) is A-
summable to L if the A-transform of x
exists for all (j,k)eN? and is convergent

in the Pringsheim’s sense.

In 1926 Robison [16] introduced a four
dimensional analog of regularity for
double sequences in which he gave an
additional assumption of boundedness.
This assumption was necessary because a
P —convergent double sequence is not
necessarily bounded. The definition and
the characterization of regularity for four
dimensional matrices are known as
Robison-Hamilton  conditions  (briefly,
RH-regularity) [8,16]. Express that a four
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dimensional matrix A =(a;,, ) is said to

be RH—regular if it maps every bounded P
—convergent sequence into a P
—convergent sequence with the same P
—limit. The Robison- Hamilton conditions
state that a four dimensional matrix

A= (@, ) is RH-regular if and only if

0) P—Ii_rkna =0 foreachmand n,
N

jkmn
(“)P_Iirkn Z ajkmn =1,
" (m,n)eN?

(iii) for each n N, P—lim >l

k meN

(iv) foreach meN P - I|m2‘a

jkmn | T

-0,

jkmn

V) Y [ajm| is P-convergent,

(m,n)eN?
(vi) There exists finite positive integers A
and B such that Y |ay,,|<A holds for

m,n>B

jkmn
every (jk)eN.

Now let A=(ay,,) be a nonnegative

RH-regular summability matrix, and let
Kc N2, ThenA density of K is given by

8(a) (K)= —I|m D amn

mneK

provided that the limit on the right-hand
side exists in the Pringsheim sense. A real
double sequence x=(x,,) is said to be
A—statistical convergent to L if, for every
>0,

2 2. —
QA){(m,n)eN .‘xm’n—L‘Zg}—Ol
In this case, we write st/ —limx=L.
Clearly, each P —convergent double

sequence is A—statistical convergent to the
same value but its converse it is not always
true. Also, note that an A-statistical
convergent double sequence need not to be
bounded. We note that if we replace
C(1,1), which is double Cesaro matrix, by
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A matrix, then we obtain C(1,1)-statistical
convergence coincides with the notion of
statistical ~ convergence  for  double
sequence, which was introduced in
([12],[14]). Finally, if we replace the
matrix A by the identity matrix for four-
dimensional matrices, then A-statistical
convergence reduces to the Pringsheim
convergence. E. H. Moore [13] introduced
the concept of relative uniform
convergence of a function sequences.
Then, E. W. Chittenden [5] stated the
definition convergence which is equivalent
to the definition given by Moore.
Similarly, a double sequence (f,,) of

functions, defined on any compact subset

of R?, converges relative uniformly to a
limit function f if there exists a function

o(x,y) called a scale function o(x,y) such
that for every ¢ >0 there are two integers
n,,m_ such that for every n>n_ and

m > m,_ the inequality

[fan V) = (X Y) < |0 (X Y))
holds uniformly in (x,y). The double
sequence (fmn) is said to converge
uniformly relative to the scale function o or
more simply, relative uniformly. It will be
observed that if we take the scale function
from a non-zero constant, we obtain the
concept of uniform convergence of
function sequences. (for more properties
and details, see also [4-6, 10, 17]). Let f

and f belong to C(D) which is the
space of all continuous real valued
functions on a compact subset D of R?
and ||, denotes the usual supremum

norm of f in C(D).

Definition 1. (fmi) Is said to be
statistical relative uniform convergent to f
on D if there exists a function o(x,y)
called a scale function satisfying
|o(x,y)| >0 such that for every £>0
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fon (6 V) = F OO Y| SH ~0.

52 (m,n): sup -
can H (xy)eD o(x,Y) |

This limit is denoted by
(St)(zc(l,l)) - fmn o f(D!O-)

Definition 2. L€ A:(ajkmn) be a

nonnegative  RH-regular  summability
matrix. (f,, ) is said to be statistical

relative A—summable to f on D if there
exists a function o(xy), |o(xy)>0,
such that for every £ >0,

5(2c(1,1)) {{(m, n): (SU)p |(Afmn )(X, y)— (X, y)| > 6}} —o.

o(x,y)
This limit is denoted by
(St)?c(l,l)) _(Afmn) = f (D’ G)

Remark 1. If we replace the matrix A in
Definition 2 by the identity double matrix,
then we immediately get the Definition 1.

Remark 2. If we take A = C(1,1) = C
(double Cesaro matrix), then statistical
relative A—summability is reduced to
statistical relative C—summability.

Now we present an example as follows :

Example 1. Let A be double Cesaro

matrix, i.e.

—, 1<m< jandl;<n<Kk,
Cjkmn =

0, d.d.
and for each (mn)eN?, define
0., :[0,1]x[0,]] > R by

2n°m?xy
X,y)=————. 1

U (X, Y) I+ ity @

Then observe that

(St)<20(1,1)) —(C9yn ) =2 9=0(D;0), where
1
—, (x¥)e(0,1]x(0,1

o(xy)=9% (xy)(01](01]

0. (xy)=00
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however (g,,)is not statistical (or

ordinary) uniform convergent to the
function g =0 on the interval [0,1]x[0,1].

2. A Korovkin-type approximation
theorem

In this section we prove a Korovkin-type
approximation theorem on C (D) using the
concept of statistical relative A-
summability. Let L be a linear operator on
C (D). Then, as usual, we say that L is
positive linear operator provided that f>0
implies L (f) > 0. Also, we denote the value
of L(f) at a point (x, y) € D by L(f(u, v); X,
y) or, briefly, L(f;x,y).

First, Dirik and Demirci in [7] have
studied the statistical version of the
Korovkin-type theorem;

Theorem 1.

Let A=(a
regular summability matrix method. Let
(L,,) be a double sequence of positive

linear operators acting from C(D) into
itself. Then, for all f € C(D),

)be a nonnegative RH-

jkmn

(St)gA) B ” Lo f = f”c(D)
if and only if
()t ~ L ()= fil =0+ (i=0123)

where oY) =L f,(x,y)=x,

f,(x.y)=y, f,(x,y)=x*+y’.
Then we recall the following Korovkin-
type result introduced in [9];

Theorem 2.

Let A=(a,,)be a nonnegative RH-
regular summability matrix method. Let
(L,,) be a double sequence of positive

linear operators acting from C(D) into
C(D). Then, for all f e C(D),
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(SDcam = 22 Bjambm (F)- =0 2
(m,n)eN? o)
if and only if
(Ofcay [ 2 Bmbm (F)-f] =0,(1=0123). (3)
(m,n)eN? o)
Theorem 3.

Let A=(ay,,)be a nonnegative RH-

regular summability matrix method. Let
(L, ) be a double sequence of positive

linear operators acting from C(D) into

itself.  Then, for all f eC(D),
(St)(zca,l)) _(ALmn ( f )) = f (D;0), (4)
if and only if

() cLy) (ALmn< ))jfi(D;G),<i:0,L2,3) (5)
where a(xy) =max{]ai(x,y)|;i=0,],2,3},

o (x.y)|>0 and
i=0,1,2,3.

o, (xY) is unbounded,

Proof.

Since each f, eC(D),(i=0,1,2,3), the

implication (4) is obvious. Now we prove
the converse part. By the continuity of f on
compact set D, we can write

If &, ) <M

where M = ||f||C(D).

Also, since f is continuous on D, we write

& >0 there exists a number
that for every ;

d > 0 such that |f (u, v) — f(x, y)| <& for all
(u,v) € D satisfying |u — x| < ¢ and |v—
y|<d. Hence, we get

|f(u,v)—f(x,y)|<g+25—|\£|{(u—x)2 +(v—y)2}.

(6)

Using the linearity and the positivity of the
operators (Lmn) and considering (6), we
obtain
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Z ajkanmn(f;Xr y)_ f(va)

(m,n)eN?

<

ajkmn Lmn (‘ f (U,V) - f (X| Y)‘7X, y)

2

(m,n)el:

+f(x, )|

Zz jkmn mn(f X, y) f (X!y)

(m.n)eN

z ]kmnl‘rnn(‘r;+ {(U X) +(V y) } X! Y)
(m,n)eN?

D A b (Foi %, ) = f5 (X, )

(m,n)eN?

2M
s“[“M 24 fSHC(D)j

<

+M

Z ajkmn Lmn ( fo e y) - fo (X) y)
(m,n)eN?

+?H 1HC(D) Z ajkanmn(fl;X’ y) - fi(xy)
(m,n)e]‘i2
+?Hf2HC(D) Z Ajkmn mn(f X,¥) - f(X y)
(m.n)eN?
2M
+? Z ajkanmn(fS;X! y) - (%, )|
(m,n)eN?
Then, we get
z ajkmn mn(‘f X, y)_ f(X y)
sup (mmer < sup
(x,y)eD

z ajkmn Lmn(fo;xl y)_ fO(X! y)‘

(m,n)eN?

+K< su
(x,y)ED o, (X, y) ‘

z ajkmn mn(f XY)_f(X y)‘

(m,n)enN?

(x,y)eD 61(X y) ‘
z ajkmn Lmn ( f2 » X, y) - f2 (Xr y)‘
(m,n)eN?
+ Su
(x.y)ED O, (X, y) ‘
Z jkmn mn(f Xy)_f(x y)‘
(m,n)eN?
+ Ssu
Gryrao o5 (%, y) ‘
where

K=o M+ 22 (e, + 2l + 2l ey +1)

o(x,y) = max{|o;(x,y)[;i=0,1,2,3}.

Now, for a given r>0, choose >0

such

O'(X, y) ‘ (x, y)eD |O_(X y)l

)
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sup ———
that (.y)ep |o (X, y)‘
Then,
zvz Jkmn mn(f X, y) f(ny)
R:={(mn)eN’: sup [0 >r
(x.y)eD o(xy)
and
a'kmn Lmn(fi;xl y)_ fi (Xr Y) r— sup
R :={(mn)eN: sup m"z':”Z J : wo|o (%Y
' (19)D o, (xY) 4K
,i=0,1,2,3.
It follows from (7) that
Rc O R,
and so

3
Z ajkmn CZ z ajkmn'

(m,n)eR i=0 (m,n)eR;
Then using the hypothesis (5), we get
(St)(ZC(l,l)) _(ALmn) = f(D;0),
where
o(x,y) = max{|o; (x,y)|;i=0,1,2,3}. This
completes the proof of the theorem.

Remark 3

If we replace the matrix A in Theorem 1 by
the identity double matrix, then we get the
following theorem.

Theorem 4

Let A=(ay,,)be a nonnegative RH-
regular summability matrix method. Let
(L,,) be a double sequence of positive

linear operators acting from C(D) into
C(D). Then, for all f € C(D),

(sHecay —Lm (f)= f(D;0)

if and only if
(St)fca,l)) — L ( f ) = f,(D;o,) i=0,12,3,
where

o(x,y) = max{|o; (x, y)|;i =0,1,2,3},|o;(x,y)| > 0
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and Y is unbounded, i=0, 1, 2, 3.

To see how our theorem works, we

construct the following example:

Example 2:

Let D =[0, A]x[0,B] = R? and

A=C(], 1 = ar
o ( ) double Cesaro

matrix, defined by

—, 1<m<jand 1<n<Kk,
C, =

jkmn

0, otherwise.

Consider the double Szasz polynomials

ey S

s=0 t=0
on C(D). Using these polynomials, we

introduce the foolowing positive linear
operators C(D);

P (F5%,Y) = (1+ G (%, 1)) S (X, Y)
(x,y)e Dand f eC(D), ®)
where g,..(X,y)is given by (1). Then
observe that
P (Fi%Y)= (149, (%)) fo (X, y)
P (%) = (14 9 (6 1)) Fi (X, Y)
P (F3%,Y) = (1+ g (6, 1)) £, (X, Y)

(

Son (5%, y)=

mn

Since (St)(zc(l,l)) _(Cgmn) j g = O (D,G),
where

1
o (% y)= v (x, y)e(O,l]x(O,l]’
0, (x,y)=(0,0)

we conclude that

(s)ewy —(CPw ()= £, (Dio), 1=0,1,23.
So, by Theorem 3, we see that
() —(CPw ()= f(D;o), forall f eC(D).
However, since (gmn) is not statistical
uniform convergent to the function g = 0
on the compact set D, we can say that

(G255
mn) st t!

v\ Xy
P.(fixy)=(1+ gmn(x,y))(fa(x,y)Jr . + n]'
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Theorem 4 does not work for our
operators defined by (8). Furthermore,
since (gmn) is not uniformly convergent to
the function g = 0 on D, the classical
Korovkin theorem does not work either.
Therefore, this application clearly shows
that our Theorem 3 is a non-trivial
generalization of the classical and the
statistical cases of the Korovkin results
introduced in [7] and [9], respectively.

2. Rates of convergence in Theorem 3

In this section, using the concept of
statistical relative A4—summability we
study the rate of convergence of a
sequence of positive linear operators
defined on C(D) with the help of modulus
of continuity. Let f e C(D). Then the
modulus of continuity of a function f is
defined by

w(f,0) sup{\f u,v) -

(6>0)
Now we have the following result.

P06 Y] V), (% Y) € DU =X+ (v-y)’ 35}

Theorem 5

Let A=(a,,)be a nonnegative RH-
regular summability matrix metho and let
(L,,) be a double sequence of positive

linear operators acting from C(D) into
C(D). Suppose that

a) (e ~ (Al () = (i),

b) (St)(zcm)) _W( f '5mn ) jO(D; 01) ! where
[Lon (@) with
¢(U’V) =0y (U’V) = (U N X)2 +(V_ y)z'

Then we have, for all f e C(D),
(s ) cLy) (ALmn( ))jf(D;U)a

where
a(xy)= max{|aoxy||alxy||c;0xyalxy|} loi (x, y)| >0

o; (X, y) is unbounded,

and i=0,1.
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Proof.

Let feCD) |y (ED e

lilnearity and positivity of the operators

Lmn '
forall (m,n)eN’and §,, >0, we have
z jkmn mn(f Xy)—f(X y)‘
(m,n)eN?
< z ajkanmn( f (U,V)— f(X, y)|;X, y)
(m,n)eN?
+|f(xly)| z jkmn mn(f Xy)_f ( )
(m,n)eN?
u—X)” +(v
< Y Ayl @D, 8y y)
(m,n)eN? S
+|f(X,y)| Z jkmn mn(f X, y) ( ,Y)
(m,n)eN?
W f o
( ) kan mn ((U X) + (V y) i X, y)
(m,n)eN?
+W(fr5) a]kmn mn(f X, y)
(m,n)eN?
+|f(X, y)l a]kmn mn(f X, y)_ f (va)
(m.n)eN?
W f o
( ) kan mn ((U X) + (V y) i X, y)
(m,n)eN?
+W(f15) jkmn mn(f X y) ( )
(m,n)eN?
+W(f1§)+M Z ajkanmn(fO;le)_fo(X’y)
(m,n)eN?
where

M = ” f ”C(D) and 5 = 5mn =
This yields that
Z a'jkmn mn(f Xy)—f(X y)‘

" Lmn ((p)”cw) )

sup (m,n)eN?
(x.y)eD o (% Y) ‘
a'anmn(f ;le)_ f (X!y)
o) e °
< sup sup
(x,y)eD 0'1(X y) (x,y)eD ao(x,y)
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Z Qajkanmn(fo; X, y) - fo (Xv y)

m,n)eN

M (

! (38)23 o (%, )|

+2 sup (f m) 9
(x,y)eD O'l X, y)|

Now given g>0, define the following

sets:
z jkmn mn(f Xy)—f(X y)

(m,n)eN?
a(x¥)

K :={(m,n)eN?: sup

(x,y)eD

Z Jkmn mn(f X, y) (X y)

(m,n)eN?
0 (Xv y)

w(f,d,,)

K, =1 (m,n) e N*: sup ‘0 m y)‘ sup
1 (0y)e

K, ={(m,n) e N*: sup w(f, o, )>f
(x,y)eD |0, l(X y)| 6

Z kanl‘mn(fo;xl y)_ fO(X, Y)

(mn)e eN?
C’o(xvy)

&

m,n)eN?: su >t
=1(m,n) e IO o

(xy

It follows from (9) that
Kc O K;.
Also, defining 7

{(m n)eN?:

o (xy) \3

Z ajkmn mn(f X y) f (X y)

)eN?

WL 8) g}

(>< y)eD

>

=4(m,n) e N*: sup
(x.y)eD O'O(X* y)

£
1

We have
K, K, UK,

which yields
Kc 0 K;.

Therefore, using (a) and (b), we get

Z jkmn mn(f X, y) f(X, y)

m,n)eN?
o(xy)

P- I|mi (mn)eN’: sup |

Kk (xY)eD

So, the proof is completed.

2¢

>¢
3
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