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ABSTRACT

In the published studies, to the best of the authors’ understanding, the grey Taguchi-based 
statistical technique has not been applied for the optimization of combined gas-steam 
power plants. In view of this, seven essential input parameters namely compressor inlet 
air temperature, pressure ratio, fuel temperature, volumetric flow rate of fuel, gas turbine 
maximum temperature, compressor efficiency, an d tu rbine effi ciency are chos en w ith  the 
aim of determining the optimal combination of design variables that maximize the 
net power generation, thermal efficiency, exergetic effciency, and minimize the specific 
fuel consumption. Also, the impact weight of each parameter on output indicators has 
been evaluated. While the Taguchi approach helps to create an orthogonal array of L27 
(3^7), the ANOVA method determines the contribution of each input argument on the 
objective function. Unlike the Taguchi and ANOVA optimization methodology, the grey 
relational analysis is performed to transform the multi-objective function into a 
single objective by way of estimating its grey relational grade. The most favorable 
combination of input parameters is determined as A1B1C1D1E3F3G3 and under this state, 
the optimum values of power generation, thermal efficiency, exergetic efficiency, and 
specific fuel consumption are found to be 259911 kW, 64.9 %, 66.27 %, and 0.1839 kg/
kWh respectively. Moreover, the contribution ratio on the output characteristic of the 
combined cycle is found to be maximum for turbine efficiency (42.41 %) and minimum 
for fuel temperature (0.59 %). The effectiveness of the grey-Taguchi method is 
acknowledged and validated using an artificial neural network technique in MATLAB.
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INTRODUCTION

Presently, in developing countries, economic growth is 
most desirable, and energy is an essential requirement for 
economic growth. The increasing energy demand for eco-
nomic growth is the major issue and challenge that draws 
appreciable attention towards energy conversion systems. 
Combined gas-steam-based power plants provide an effi-
cient and effective technology for the conversion of energy 
resources with high fuel to power efficiency and low envi-
ronmental emissions. Although, renewable energy sources 
cause no or low environmental emissions, they cannot gen-
erate so much electricity to cater for the complete energy 
demand. The latest data released by the International 
Energy Agency (IEA) [1] reveal that the contribution of all 
the renewables taken together to the total worldwide gross 
production of electricity is 25.6 % while the contribution of 
coal-based thermal power plants is 38.2 % and that of nat-
ural gas-based thermal power plants is 23.1 %. Therefore, 
the renewable energy-based power generation systems can-
not completely replace the conventional thermal power 
plants although they are gaining increasing popularity. The 
natural gas-based thermal power plants basically use gas 
turbines to generate power. Combined cycle (CC) is a tech-
nology widely used these days for efficiency augmentation 
of the basic gas turbine plants. The most common CC is 
referred to as the Brayton-Rankine power generating cycle 
that utilizes heat energy of natural gas to produce power 
from two individual cycles. Many researchers conducted 
the performance test of combined cycle-based power 
plants theoretically and experimentally aiming to enhance 
the first and second law efficiency. The exergy method is 
a means to evaluate the energy quality, pinpoint the true 
location and magnitude of actual losses, and determine the 
maximal performance of a system using exergetic efficiency 
and exergy destruction rate [2,3]. Ersayin and Ozgener [4] 
examined the thermodynamic performance behavior of a 
CCPP in terms of energy and exergy efficiencies by utilizing 
the operational statistics collected from the power station 
control unit. Singh and Kaushik [5] performed the exergy-
based assessment of a 135 MW steam-based power plant 
situated at Delhi and assessed the effect of different operat-
ing variables on the performance parameters of the power 
plant through MATLAB simulation. The boiler of the 
plant was identified as the component of maximum exergy 
destruction. Singh [6] assessed thermodynamic irrevers-
ibility in various sections of a high-pressure boiler to find 
out the exact location of the maximum exergy destruction 
in it. In the analysis conducted by Singh and Kaushik [5], 
it was worked out that the low-temperature heat discharg-
ing out from the stack could be utilized to generate addi-
tional power. Singh [7,8] also investigated the possibility 
of utilizing low-grade waste exhaust heat from the cogen-
eration power plant of a sugar factory for running a cold 
storage and for generating power through the Kalina cycle. 

Madan and Singh [9] utilized the flue gas heat discharg-
ing out from the stack to investigate the performance of a 
low-temperature operated organic Rankine cycle through 
energy and exergy-based analysis. Singh [10] integrated 
a waste heat-operated absorption refrigeration unit with 
the compressor of a 330 MW capacity natural gas-fired 
combined  cycle power plant situated at Delhi to cool the 
incoming air into the two gas turbines. The outcomes indi-
cated that the power generation of the plant increased by 
9440 kW raising the energy efficiency by 1.193 % and exer-
getic efficiency by 1.133 %. In combined cycle power plants, 
the thermodynamic performance and the power generation 
are greatly affected by the gas turbine variables particularly, 
compressor pressure ratio, compressor inlet air tempera-
ture, isentropic efficiencies of compressor and turbine, fuel 
temperature, air/fuel ratio, exhaust temperature of gas tur-
bine, pinch point temperature difference, inlet pressure and 
temperature of steam turbine, steam condition at condenser 
inlet and cooling water flow conditions, stack temperature. 
Although thermodynamic analysis is of great importance, 
the optimization of these power plants is mandatory for the 
continuous growth and development of the power genera-
tion sector. A broad spectrum of research has been carried 
out in literature to analyze and optimize the operation of 
power generation plants. Pan et al.  [11]  proposed a waste 
heat exchanger that includes a supercritical CO2 cycle, an 
organic Rankine cycle, and a vapor absorption refrigeration 
cycle and optimized the integrated system in respect to its 
thermodynamic, economic, and environmental parameters. 
Many researchers performed multi-objective optimization 
of gas-steam cycle applying non-dominated sorting genetic 
algorithm (NSGA-II) optimization technique for augment-
ing thermodynamic performance and minimizing exergo-
economic cost, environmental impact, and heat transfer 
component cost [2,12–18]. Nadir et al. [19] optimized the 
thermodynamic configuration of the heat recovery steam 
generator for maximizing the net specific work output of 
the steam cycle and the net present worth as an objective 
function using the Particle Swarm Optimization technique. 
Even though many research articles have been published on 
the aforementioned optimization techniques, these meth-
ods are overly complex, non-linear, and time-intensive. 
Hence, simple, effective, linear, and less time-consuming 
methods are to be explored to maximize the performance 
curve of the studied system.

Grey relation analysis (GRA) is the most prominent and 
efficient statistical technique that evaluates multiple objec-
tive functions with a minimum number of trials [20,21]. 
Gul et al. [22] conducted an optimization study for a DI-CI 
diesel engine with different combinations of fuel consump-
tion, speed, and load employing the grey-Taguchi method. 
Additionally, the ANOVA technique is applied to scrutinize 
the high impact parameter.  The author in his another work 
[23] also conducted optimization studies on industrial gas 
turbines with different scales of input parameters using 



J Ther Eng, Vol. 9, No. 1, pp. 45–60, January 2023 47

the aforesaid technique. Bademlioglu et al. [24] selected 
nine parameters to perform optimization and evaluated 
the weight of each parameter influencing the performance 
behavior of the organic Rankine cycle using the grey-Tagu-
chi statistical technique. Analogously, the application of the 
grey-Taguchi optimization methodology is widely applied 
in materials and industrial sectors [25–29]. The experimen-
tal findings and the simulated results obtained through the 
artificial neural network (ANN) technique with MATLAB 
software to conduct theoretical studies, e.g., [22] have been 
mostly found to match well with each other which verifies 
and validates the use of this technique. It is a technique that 
develops a highly complex non-linear correlation between 
input variables and output parameters [30,31].

In literature, the grey relational-Taguchi approach has 
been frequently applied to numerous industrial processes 
such as welding, turning, machining, cutting, etc. However, 
no research study is found regarding its application for 
optimizing a combined gas-steam power plant. Therefore, 
in the present work, this technique is chosen to conduct 
multi-objective optimization of a gas-steam-based power 
plant to maximize the net power generation, thermal effi-
ciency and exergetic efficiency and minimize the specific 
fuel consumption simultaneously. In view of this, seven 

essential input parameters namely the compressor inlet 
air temperature, pressure ratio, fuel temperature, volumet-
ric flow rate of fuel, gas turbine maximum temperature, 
compressor efficiency, and turbine efficiency for three dif-
ferent levels are chosen using the grey relational statistical 
technique.  The impact weight of each parameter on per-
formance indicators is then calculated using the analysis 
of variance (ANOVA) method. Furthermore, the best and 
worst combinations of input parameters are defined as a 
result of grey relational analysis, and the results are vali-
dated using the artificial neural network approach.

PLANT DESCRIPTION AND ASSUMPTIONS 

In this work, the operating data of a multi-shaft gas-
steam-based power generation system shown in Fig. 1. are 
collected from the National Capital Power Station, NTPC, 
Dadri that generates 415MW of power. The performance 
specifications of the active CCPP are presented in Table 1. 
The composition of the fuel used is as follows: 94% CH4, 
4% C2H6, 1.2% C3H8, 0.8% C4H10 by volume. The system 
comprises of an air compressor, a fuel-heated chamber, a 
high-temperature gas turbine, a dual pressure exhaust heat 
recovery generator (EHRG), a power generating steam 

Figure 1. Simplified diagram of Gas-steam power generating plant.



J Ther Eng, Vol. 9, No. 1, pp. 45–60, January 202348

 m min ex = ∑∑  (1)

 E E m h m hQ W ex inex in
   − = − ∑∑  (2)

 m X m X Xin Q ex W Din ex
    ψ ψ+ = + +∑∑  (3)

The rate of flow of exergy X̂Q due to heat transfer Q̂i 
at temperature T and that due to work transfer Ŵ can be 
defined as

 X
T
T

QQ i
 = −( )1 0

 (4)

 X WW
 =  (5)

The total specific exergy Ψtot comprises physical, chemi-
cal, kinetic and potential exergies 

 ψ ψtot ch Eh h T s s
c

g Z= − − − + + +( ) ( )0 0 0

2

02
 (6)

Neglecting kinetic and potential exergies, it can be writ-
ten as:

 ψ ψ ψtot phy ch= +  (7)

Physical Exergy
The maximum reversible work is gained in a physical pro-

cess when a substance flows from its initial condition to the 
atmospheric condition involving thermal interaction only [32].

For water and steam,

 ψ ph h h T s s= − − −( ) ( )0 0 0  (8)

For the mixture of ideal gases,

  ψ ψ
ph i p

i

m

T T x c RT P P= − +
=
∑( ) ln0 0 0

1

  (9)

where R stands as the characteristic gas constant, T0 is 
the ambient temperature, x is the mole fraction, c p

Ψ  is the 
specific molar heat capacity of exergy and P0 is the ambient 
pressure.

For fuel,
The physical exergy of fuel at the environmental state 

(P0, T0) is zero. However, if the fuel flows into the combus-
tion zone at some other condition, its physical exergy needs 
to be taken into ccount.

Chemical exergy
The maximum reversible work is gained when a sub-

stance flows from atmospheric condition to the dead state 
involving reaction and transfer of heat with the environ-
ment alone [32].

turbine (HP & LP), a water-cooled condenser, feedwater 
pumps and a deaerator. The high-pressure air and fuel com-
bine in the chamber to produce high-temperature products 
that expand in the turbine to generate shaft work. Both gas 
turbine and air compressor are linked with common shaft.  
The high-temperature exhaust gases of the turbine are used 
by the recovery generator to deliver steam which is further 
used to drive steam turbine for power generation in com-
bined cycle. The low-temperature combustion products are 
then disposed into the environment through the stack. The 
low-temperature wet steam departing from LP turbine is 
condensed in a water-cooled condenser and the condensate 
is pumped back to the boiler by the feedwater pump via a 
deaerator. The temperature of the low-grade heat discharg-
ing out from the stack is 100oC.

Following assumptions are used in the present work.
•	 Steady-state condition is assumed for energy and 

exergy flow.
•	 Potential and kinetic energies of the fluid at entry and 

exit of a plant component are neglected.
•	 All gases are assumed as ideal.  
•	 The combustion of fuel takes place at constant pres-

sure with no heat transfer to or from the surrounding. 
•	 The working fluids for the topping and the bottom-

ing cycles are the combustion gases and water/steam 
respectively.

•	 The expansion and the compression of fluid in the 
steam turbine and pumps are reversible adiabatic 
processes.

•	 Specific heat is a function of temperature only.
•	 Specific heat ratios for both air and combustion gases 

are taken as 1.4.

SYSTEM MODELLING

Mass, Energy, and Exergy Balance
Applying steady state energy equation to a control vol-

ume under given conditions, the mass, energy, and exergy 
balances can be defined as [5]

Table 1. Performance specification of active CCPP

Input Data Value Units

Capacity 415 MW
Gas Turbine Power Output 131*2 MW
Steam Turbine Power Output 154 MW
Combined Cycle Efficiency 48.33 %
Maximum Temperature of Gas Turbine 1333.2 K
Compressor Pressure Ratio 10.2 -
Condensate Extraction Pump Power 270 kJ/s
Power Utilized by HP BFW Pump 1510 kJ/s
Power Utilized by LP BFW Pump 420 kJ/s
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c T T Tp CO , . . . .2 19 8 7 344 10 5 602 10 1 715 102 5 2 8 3= + × − × + ×− − −  (20)

The sensible heat of enthalpy (kJ/s) can be defined as [10]
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where, i = number of component, ni
  is the molar flow 

rate of the ith component (kmol/s) and c p i ,  is the molar 
physical enthalpy (kJ/kmol) of the ith component.

Exit Temperatures of Air Compressor and Gas Turbine
The compressor exit temperature can be calculated by [10]
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The gas turbine exit temperature can be calculated by [10]
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where Tg1, Tg3, ηc and ηt are the compressor inlet air tem-
perature, turbine inlet temperature, compressor efficiency, 
and turbine efficiency, respectively. The values of specific 
heat ratio for air and combustion gases are approximated to 
be equal and taken as 1.4.

Performance Parameters
The net power generation (kW) of the combined cycle 

can be expressed as

W W W W W W Wcc t gas c air t st CEP HPFP LPFP p wate
      = − + − − −( ) ( ( ), , , , rr )   (25)

The specific fuel consumption (SFC) can be expressed as
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m
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f
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=
3600


,

 (26)

The overall energy efficiency of the combined cycle 
plant can be expressed as 

  ηI CC
W
E
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, =
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

 (27)

The overall exergy efficiency of the combined cycle 
plant can be expressed as

   ηII CC
W
X
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f

, =




 (28)

For Air,
Air mainly comprises of N2, O2, CO2, H2O and Ar which 

are in their elemental state. There is no shift in its chemi-
cal composition. Hence, there is no change in the chemical 
exergy [32] of air.

For a mixture of gases,
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m
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 (10)

Combustion Process
The volumetric composition of natural gas considered 

is as follows:

Fuel component CH4 C2H6 C3H8 C4H10 N2

% by volume 94 4 1.2 0.78 0.02

The actual composition of air by volume is calculated at 
an ambient state (P0=100900 Pa, T0=307.15 K, RH= 36 %) 
on the day of data collection using the procedure described 
in [33]

Air component O2 N2 H2O(g) CO2 Ar
% by volume 20.55 76.61 1.89 0.03081 0.92

The Air to fuel ratio by mass may be expressed as 

 ( / )A F
n M
n Mmass

a a

f f

=
×
×  (11)

where n stands for number of moles, M is molecular 
mass, subscript a and f stands for air and fuel.

The rate of heat generation by fuel in kJ/kmol of fuel is 
given as [34]

E N h h h N h h hcf PP f P T RR f R T= − + − − + −

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∑ ∑

.
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Following equations are taken from [10] to calculate the 
specific molar heat capacity c p a ,  (kJ/kmol-K) for the fuel 
and other gases, where T is the temperature in K.

c T T Tp CH , . . . .4 19 25 5 213 10 1 197 10 1 132 102 5 2 8 3= + × + × − ×− − −   (13)

c T T Tp C H , . . . .2 6 5 409 17 81 10 6 938 10 8 713 102 5 2 8 3= + × + × + ×− − −  (14)

c T T Tp C H , . . . .3 8 4 224 30 63 10 15 86 10 3 215 102 5 2 8 3= + × + × + ×− − −   (15)

c T T Tp C H , . . . .4 10 9 487 33 13 10 1 108 10 28 22 102 5 2 8 3= + × − × − ×− − −   (16)

c T T Tp N , . . . .2 31 5 1 357 10 2 68 10 1 168 102 5 2 8 3= − × + × − ×− − −  (17)

c T T Tp O , . . . .2 28 11 0 000368 10 1 746 10 1 065 102 5 2 8 3= − × + × − ×− − −  (18)

  c p Ar , .= 20 8  (19)
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Smaller is better
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Furthermore, the grey relational coefficient (GRC) 
establishes the correlation between actual and comparable 
series, which is formulated as,

 ψ
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i

=
+

+
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∆ ∆

min max
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The grey relational grade (GRG) is then computed as 
the average of GRC values of all the parameters and can be 
expressed as

 GRG
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y
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y

n
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Analysis of Variance (ANOVA)
The significant contribution of each input parameter 

on the response variable can be determined by calculating 
the contribution ratio using the ANOVA approach. It has 
been proved in the literature that the higher the F-value of 
the input parameter, the more is the impact on the output 
variable. 

 Contribution ratio (%) = 
( )
( )
SS
SS

f

t
 (35)

where SSf refers to sum of square of each input parameter 
and SSt refers to the total sum of square of all the input 
parameters.

OPTIMIZATION METHODOLOGY

The methodology involves four steps:
•	 Develop a design of experiment (DOE) by selecting 

different levels and the input factor. For the present 
study, the number of levels opted are three and the 
input parameters are seven, hence, L27 (3^7) orthog-
onal array has been chosen for the design summary 
using the Taguchi method.

•	 In the second step, input experimental data and 
desired output are collected.

•	 Apply the optimization technique.
•	 In the end, output results are validated using the arti-

ficial neural network (ANN) approach

Taguchi Analysis
The Taguchi technique, first explained by Dr. Genichi 

Taguchi, is an effective statistical method extensively 
adopted in engineering systems to perform optimization 
using an orthogonal array table with a minimum count of 
experiments. This approach investigates the effect of con-
sidered design parameters on the different response vari-
ables using Signal-to-Noise (S/N) analysis. 

Grey Relational analysis
This approach evaluates and categorizes the most effec-

tive input parameter that gives the best response to the 
variation. Table 2 describes the list of input parameters with 
different levels and the response variables. For this, the the-
oretical response data should be normalized with Larger is 
better, smaller is better, and nominal is better. The present 
study maximizes the net power generation, thermal effi-
ciency and exergetic efficiency and minimizes the specific 
fuel consumption. The ‘Larger is better’ and the ‘Smaller is 
better’ are described in Eq (31) and (32) respectively.

Larger is better

 y f
x f x f

x f x fi
i i

n

i
n

i
n( )

( ) min ( )
max ( ) min ( )

=
−

−   (31)

Table 2. Description of input parameters with different levels

Input Parameters Code No. of Levels Response Variables

1 2 3

Compressor inlet air temperature (K) A 307.15 305.15 303.15 Specific fuel consumption (SFC);
Pressure ratio (rp) B 10.2 11.5 13 Net Power generation;
Fuel temperature (K) C 309.15 312.15 315.15 Thermal efficiency;
Fuel temperature (m3/hr) D 40444 40861 40664 Exergetic Efficiency;
Gas Turbine maximum temperature (K) E 1327.2 1450 1550  
Compressor efficiency (ηcom) (%) F 88 90 92  
Turbine efficiency (ηtur) (%) G 77 79 82  

α
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efficacy of the optimum combination can be validated and 
authenticated. This will provide optimum values of input 
parameters to the design engineer and the operators of 
the power plant.

RESULTS AND DISCUSSION

Under this segment, the GRA is implemented to opti-
mize the multi-response variable by calculating its grey 
relational coefficient and converting them into a single 
response value by evaluating its grey relational grade, an 
illustration of which is explained in the above section. 
Thereafter, the contribution and impact of each parameter 
are analyzed using the ANOVA method. In the end, the 

The working procedure of ANN is equivalent to the 
human brain neuron network. Each neuron retrieves and 
saves the experimental observations during its training 
session. Then the neuron network is trained and simu-
lated with the optimal group of variables of the grey 
Taguchi-based analysis. Neurons are associated with 
one another by their synaptic weights that function as 
per the nature of activation function such as logsis tan-
sig or purelin to assess the needed outcome for a given 
input argument [35]. In MATLAB, the ‘nntool’ command 
builds, train and simulate an ANN that will help to vali-
date the best possible collection of input factors obtained 
from the grey relational grade. If the expected and opti-
mum experimental values are close to each other, then the 

Table 3. Orthogonal Array-based experimental results of output response

Runs Orthogonal Array Design Output Response

A B C D E F G WCC (kW) ηth ηex SFC (kg/kWh)

(%) (%)

1 1 1 1 1 1 1 1 212471 53.738 54.175 0.26990
2 1 1 1 1 2 2 2 245501 61.719 62.597 0.20368
3 1 1 1 1 3 3 3 259911 64.994 66.271 0.18398
4 1 2 2 2 1 1 1 221311 55.936 56.956 0.24845
5 1 2 2 2 2 2 2 239001 60.029 61.509 0.21414
6 1 2 2 2 3 3 3 254461 63.603 65.487 0.19108
7 1 3 3 3 1 1 1 210301 53.806 32.111 0.27202
8 1 3 3 3 2 2 2 229651 58.525 35.066 0.22770
9 1 3 3 3 3 3 3 246341 62.463 37.614 0.19964
10 2 1 2 3 1 2 3 249641 63.401 64.996 0.19677
11 2 1 2 3 2 3 1 240891 60.802 62.718 0.21001
12 2 1 2 3 3 1 2 246621 61.939 64.210 0.20114
13 2 2 3 1 1 2 3 240041 61.868 64.067 0.20825
14 2 2 3 1 2 3 1 232591 59.576 62.078 0.22099
15 2 2 3 1 3 1 2 238621 60.828 63.688 0.21056
16 2 3 1 2 1 2 3 234966 58.826 59.323 0.22325
17 2 3 1 2 2 3 1 228781 56.911 57.761 0.23496
18 2 3 1 2 3 1 2 235541 58.308 59.468 0.22222
19 3 1 3 2 1 3 2 241451 61.615 64.239 0.20812
20 3 1 3 2 2 1 3 252841 64.106 67.269 0.19142
21 3 1 3 2 3 2 1 239841 60.488 63.811 0.21072
22 3 2 1 3 1 3 2 235571 59.284 60.557 0.22109
23 3 2 1 3 2 1 3 248291 62.054 63.826 0.20063
24 3 2 1 3 3 2 1 237851 59.137 61.143 0.21712
25 3 3 2 1 1 3 2 225341 57.548 59.399 0.23725
26 3 3 2 1 2 1 3 238871 60.615 62.965 0.21217
27 3 3 2 1 3 2 1 229361 57.902 60.459 0.22920
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However, the overall thermal efficiency increases with a 
higher compression ratio [37,38]. Increasing the fuel tem-
perature reduces the fuel consumption rate required for 
the same gas turbine inlet temperature and thereby reduces 
the power output of the cycle. But, the overall thermal effi-
ciency increases with an increase in the temperature of 
the fuel. The isentropic efficiency describes the efficacy of 
the turbine and compressor and affects the overall perfor-
mance of the system [39]. 

Grey Taguchi Analysis
Normalization of output response

The comparative analysis for different response variables 
cannot be made as they are assigned with different dimen-
sions. So, it is important to alter them in dimensionless quan-
tity and hence normalization for output response data was 
performed for the objective function as mentioned in Table 4. 
The value of normalized data lies between 0 and 1 and values 
closer to 1 suggest better performance characteristics [40]

Computation of Grey Relational Coefficient (GRC) and 
Grey Relational Grade (GRG)

Subsequently, a quality loss function (QLF) or deviation 
of response variables from actual series is evaluated which 
is a measure of the variation of actual from comparable 
series. The smaller the value of QLF, the closer is the ideal 
approach condition with the minimum loss [41]. The GRC 
can be determined using the QLF and develops correlation 
among actual and comparable series. The transformation of 
the multi-objective function into a single response variable 

performance parameters of the considered system are vali-
dated based on a neural network technique.

Formation of Output Response Using OA
Firstly, an orthogonal array (OA) of L27 (37) was 

designed to conduct experimentation in Minitab. There is a 
total of 27 experimental runs by taking seven input param-
eters namely, compressor inlet air temperature (A), pres-
sure ratio (B.), inlet fuel temperature (C), the volumetric 
flow rate of fuel (D), inlet gas temperature (E), compres-
sor isentropic efficiency (F), turbine isentropic efficiency 
(G) and 3 different levels to organize the output response 
namely, the net power generation (Wcc), energy efficiency 
(ηen), exergy efficiency (ηex), and specific fuel consumption 
(SFC) as stated in Table 3.

From the experimentation results, it is noted that the 
decrease in compressor inlet air temperature decreases 
the power consumed by the compressor, increases the 
power developed by the turbine and hence, increases the 
net power output of the gas turbine cycle. The reason for 
the increase in power developed by the turbine with lower 
compressor inlet air temperature being that a decrease in 
air temperature increases the density of air and conse-
quently, increases the mass flow rate [36]. The increase in 
net power output with the same fuel flow rate decreases the 
specific fuel consumption. On the other hand, compres-
sor pressure ratio has an adverse efect on the net power 
output. When the compressor pressure ratio increases with 
an increase in turbine inlet temperature, the net power 
output decreases due to increase in the compressor work. 

Table 4. Normalization of output response

Runs Normalization of Output response Runs Normalization of Output response

Larger is better Smaller is better   Larger is better Smaller is better

WCC ηth ηex SFC   WCC ηth ηex SFC

1 0.04374 0.00000 0.62756 0.02400 15 0.57085 0.62985 0.89813 0.69808
2 0.70953 0.70906 0.86711 0.77628 16 0.49718 0.45201 0.77397 0.55396
3 1.00000 1.00000 0.97162 1.00000 17 0.37251 0.28184 0.72956 0.42092
4 0.22193 0.19525 0.70666 0.26775 18 0.50877 0.40598 0.77810 0.56566
5 0.57851 0.55892 0.83615 0.65744 19 0.62790 0.69980 0.91381 0.72580
6 0.89014 0.87638 0.94932 0.91937 20 0.85749 0.92112 1.00000 0.91549
7 0.00000 0.00601 0.00000 0.00000 21 0.59544 0.59967 0.90162 0.69629
8 0.39004 0.42524 0.08404 0.50344 22 0.50937 0.49270 0.80907 0.57843
9 0.72647 0.77512 0.15652 0.82214 23 0.76577 0.73881 0.90208 0.81093
10 0.79299 0.85846 0.93535 0.85479 24 0.55533 0.47968 0.82574 0.62353
11 0.61661 0.62755 0.87055 0.70436 25 0.30317 0.33847 0.77614 0.39491
12 0.73211 0.72855 0.91298 0.80506 26 0.57589 0.61094 0.87758 0.67982
13 0.59948 0.72226 0.90891 0.72438 27 0.38420 0.36990 0.80628 0.48635
14 0.44931 0.51865 0.85235 0.57958          
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is done with the help of gray relational grade (GRG) [42]. 
With reference to OA and GRC values, the GRG and rank 
for different experiments can be evaluated using Eq. (34) 
and demonstrated in Table 5.  Higher count of GRG implies 
that input conditions and output responses are close to an 
optimal solution.

Optimal combinations of parameters
The most favorable association of input parameters is 

analyzed from GRG values for each experiment. The higher 
value of grade ensures closer to optimality. The graphical 
representation of GRG for different experiment runs is pre-
sented in Fig. 2. and indicates the impact and influence of 
each parameter on output results. Fig. 2. reveals that Case 3 
and Case 7 have the highest and lowest value of GRG among 
27 runs. Taking into account all combinations, the optimum 
input conditions for the most favorable performance of a 

Table 5. Estimation of parameters of Grey relational-Taguchi method

Runs Quality Loss function (∆) Gray Relational Coefficient (ζ = 0.5) Grade (GRG) Rank

  WCC ηth ηth SFC WCC ηth ηth SFC    

1 0.95626 1.00000 0.37243 0.97600 0.34335 0.33333 0.57311 0.33875 0.39714 26
2 0.29047 0.29094 0.13289 0.22372 0.63254 0.63216 0.79003 0.69088 0.68640 7
3 0.00000 0.00000 0.02838 0.00000 1.00000 1.00000 0.94629 1.00000 0.98657 1
4 0.77807 0.80475 0.29334 0.73225 0.39122 0.38322 0.63025 0.40576 0.45261 24
5 0.42149 0.44108 0.16385 0.34256 0.54260 0.53130 0.75319 0.59343 0.60513 15
6 0.10986 0.12363 0.05068 0.08064 0.81986 0.80176 0.90797 0.86113 0.00000 3
7 1.00000 0.99399 1.00000 1.00000 0.33333 0.33467 0.33333 0.33333 0.33367 27
8 0.60996 0.57476 0.91596 0.49656 0.45047 0.46522 0.35312 0.50173 0.44263 25
9 0.27353 0.22488 0.84348 0.17787 0.64638 0.68977 0.37217 0.73761 0.61148 14
10 0.20702 0.14154 0.06465 0.14521 0.70720 0.77938 0.88550 0.77495 0.78675 4
11 0.38339 0.37245 0.12945 0.29564 0.56600 0.57310 0.79434 0.62842 0.64047 12
12 0.26789 0.27146 0.08702 0.19494 0.65114 0.64813 0.85176 0.71949 0.71763 6
13 0.40052 0.27774 0.09109 0.27562 0.55523 0.64289 0.84589 0.64465 0.67216 9
14 0.55070 0.48135 0.14765 0.42042 0.47588 0.50950 0.77203 0.54323 0.57516 17
15 0.42915 0.37015 0.10187 0.30192 0.53813 0.57461 0.83074 0.62351 0.64175 10
16 0.50282 0.54799 0.22603 0.44604 0.49859 0.47710 0.68868 0.52852 0.54822 19
17 0.62749 0.71816 0.27044 0.57908 0.44346 0.41046 0.64898 0.46336 0.49156 23
18 0.49123 0.59402 0.22190 0.43434 0.50442 0.45703 0.69262 0.53514 0.54730 20
19 0.37210 0.30020 0.08619 0.27420 0.57333 0.62484 0.85296 0.64583 0.67424 8
20 0.14251 0.07888 0.00000 0.08451 0.77820 0.86373 1.00000 0.85542 0.87434 2
21 0.40456 0.40033 0.09838 0.30371 0.55276 0.55535 0.83560 0.62211 0.64145 11
22 0.49063 0.50730 0.19093 0.42157 0.50473 0.49638 0.72367 0.54255 0.56683 18
23 0.23423 0.26119 0.09792 0.18907 0.68099 0.65686 0.83623 0.72562 0.72493 5
24 0.44467 0.52032 0.17426 0.37647 0.52929 0.49004 0.74156 0.57047 0.58284 16
25 0.69684 0.66153 0.22386 0.60509 0.41777 0.43047 0.69074 0.45245 0.49786 22
26 0.42411 0.38907 0.12242 0.32019 0.54106 0.56239 0.80332 0.60962 0.62910 13
27 0.61580 0.63010 0.19372 0.51365 0.44811 0.44244 0.72076 0.49327 0.52614 21

Figure 2. Variation of grey relational grade for different 
number of runs.
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with conditions as follow, compressor inlet air temperature 
= 307.15 K, pressure ratio = 13, fuel temperature = 315.15 K, 
volumetric flow rate of fuel = 40664 m3/hr, gas turbine max-
imum temperature =1327.15 K, compressor efficiency = 88 
%, turbine efficiency = 77 % respectively. The net power 
generated, thermal efficiency, exergetic efficiency, and spe-
cific fuel consumption at this state are 259911 kW, 64.9 %, 
66.27 %, 0.1839 kg/kWh and 210301 kW, 53.8 %, 32.1 %, 
0.2720 kg/kWh, respectively.

Response table is developed for different factors using 
GRG to pinpoint the impact of all parameters on the 
response variable as displayed in Table 6. The arrangement 
of precedence of input parameters for the optimum perfor-
mance of the system is G> B>E>F>A>D>C. The maximum 
and minimum response of parameters for different levels 
are shown in Fig. 3. 

Analysis of Variance (ANOVA)
Applying the ANOVA method, the significant contribu-

tion of each parameter is examined and analyzed based on 
multiple objective functions as displayed in Table 7 [43,44]. 
It can be seen from the findings that the impact of turbine 
efficiency on the performance characteristic is maximum 
with a contribution ratio of 42.41 %, followed by pressure 
ratio (31.69 %), gas turbine maximum temperature (13.99 %), 
compressor efficiency (3.43 %), compressor inlet air tem-
perature (1.33 %), the volumetric flow rate of fuel (0.81 %) 
and fuel temperature (0.59 %) which are in accord with the 
response table using GRG. The literature [45,46] reveals 
that if the probability (P-value) of any parameter is less than 
0.05, the parameter is significant. In the results, the P-value 
for turbine efficiency and pressure ratio is 0.000, hence con-
tributes maximum.

It is clearly understandable from the ANOVA findings 
that turbine efficiency is the most important parameter to 
be considered for the performance of the CC.  The effect 
of turbine efficiency on system performance has also been 

combined gas-steam plant are determined as compressor 
inlet air temperature = 307.15 K, pressure ratio = 10.2, fuel 
temperature = 309.15 K, volumetric flow rate of fuel =40444 
m3/hr, gas turbine maximum temperature =1550 K, com-
pressor efficiency = 92 %, turbine efficiency = 82 %. Under 
this condition (A1B1C1D1E3F3G3), the optimum power gen-
erated, thermal efficiency, exergetic efficiency, and specific 
fuel consumption comes out to be 259911 kW, 64.9 %, 66.27 
%, and 0.1839 kg/kWh respectively. Furthermore, the con-
dition A1B3C3D3E1F1G1 minimizes the system performance 

Table 6. Grey relational grade-based response table

Level A B C D E F G

1 -4.997 -3.188 -4.494 -4.353 -5.512 -4.933 -5.934
2 -4.174 -4.134 -4.131 -4.195 -4.171 -4.399 -4.566
3 -4.058 -5.908 -4.604 -4.682 -3.547 -3.898 -2.730
Delta 0.939 2.720 0.473 0.487 1.965 1.035 3.205
Rank 5 2 7 6 3 4 1

Figure 3. Multiple response characteristic for different 
input parameters level.

Table 7. Contribution of each parameter on output variables using grey relational grade

Parameters DF Adj SS Adj MS F-Value P-Value Contribution Ratio (%)

Compressor inlet air temperature 2 0.00746 0.00373 1.400 0.284 1.33415
Pressure ratio 2 0.17716 0.08858 33.250 0.000 31.69150
Fuel Temperature 2 0.00332 0.00166 0.620 0.553 0.59355
Volumetric flow rate of fuel 2 0.00455 0.00227 0.850 0.450 0.81341
Gas turbine inlet temperature 2 0.07823 0.03912 14.690 0.001 13.99515
Compressor efficiency 2 0.01922 0.00961 3.610 0.059 3.43805
Turbine efficiency 2 0.23711 0.11856 44.510 0.000 42.41621
Error 12 0.03196 0.00266    
Total 26 0.55901     
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Figure 4. Modelling and Training using Artificial Neural Network Technique.
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(7 neurons), hidden layer (10 neurons) and output layer (4 
neurons) as shown in Fig. 4. The selection of neurons for 
the hidden layer is undertaken using the trial-and-error 
method. In the hidden layer, the number of neurons can 
be changed in the course of training until TANSIG (tan-
gent sigmoid) reduces the mean square error to 0.0527. 
The coefficient of Regression (R) measures the degree of 
deviation of predicted and actual values as depicted in Fig. 
5 and reveals that the data of predicted values are closely 
related to the grey Taguchi results. Furthermore, it turns 
out from Fig. 6 that the optimal output response for the 
ANN criterion is obtained at epoch 3. Also, Fig 7. com-
pares the output result obtained from grey Taguchi and 
ANN method with GRG as target parameter and indicates 
that the results obtained from both the methods show 
optimality at Run 3. This validates the potential and effec-
tiveness of the grey Taguchi analysis and neural network 
procedure.

studied by Siddiqui and Dincer [47], and Ibrahim and 
Rahman [48] and reveals that higher lefficiency of the tur-
bine increases the power and thermodynamic efficiency of 
the overall system. It is also obvious from the results that 
fuel parameters are less important while considering the 
multiple responses of the system.

Validation of Grey-Taguchi analysis results using 
Artificial neural network (ANN)

Finally, the neural network simulating methodology is 
opted to verify and validate the optimal response obtained 
by the Grey-Taguchi method. Numerous researchers 
[31,49–51] use this technique for the validation of output 
results of engineering applications. With the aid of the 
‘nntool’ command and importing input and target param-
eters from Table 2, the ANN model is created, trained, and 
simulated using the feed-forward backprop technique with 
the number of neurons layers to be 3 namely, input layers 

Figure 5. Regression plot for Neural Network.
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Figure 7. Comparison of output results based on Grey relational grade.

Figure 6. Performance plot for optimal conditions.
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