
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 16 NO. 2 PAGE 653–664 (2023)
DOI: HTTPS://DOI.ORG/10.36890/IEJG.1263203

A Classification of Parallel Normalized
Biconservative Submanifold in the

Minkowski Space in Arbitrary Dimension
Aykut Kayhan

(Communicated by Bang-Yen Chen)

ABSTRACT

In this paper, we examine PNMCV-MCGL biconservative submanifold in a Minkowski space
En+2
1 with nondiagonalizable shape operator, where PNMCV-MCGL submanifold denotes a

submanifold with parallel normalized mean curvature vector and the mean curvature whose
gradient is lightlike (⟨∇H,∇H⟩ = 0). We obtain some conditions about connection forms, principal
curvatures and some results about them. Then we use them to obtain a classification of such
submanifolds. Finally, we showed that there is no biconservative such submanifold in Minkowski
space of arbitrary dimension.
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1. Introduction

In 1980’s Chen B.Y. introduced a conjecture that "biharmonic submanifolds of Euclidean spaces are minimal"
that would later be named after him. Then many geometers studied on this conjecture and obtained results that
confirm this conjecture. Concerning to the pseudo-Euclidean spaces this conjecture is not satisfied everytime.
In 1990’s Chen B.Y. and Ishikawa S. gave some examples of non-minimal biharmonic submanifolds which are
called proper biharmonic submanifold [5],[6]. Biconservative submanifolds are generalizations of biharmonic
submanifolds such that every biharmonic submanifold is biconservative at the same time but inverse does not
hold generally.

Let x :M → N be an isometric immersion with the mean curvature vector H . Then x is bihamonic if and
only if the following equations

mgrad ∥H∥2 + 4trA∇⊥
· H(·) + 4tr(R̃(·, H)·)T = 0 (1.1)

and
−∆⊥H + trh(AH(·), ·) + tr(R̃(·, H)·)⊥ = 0 (1.2)

are satisfied, where m is the dimension of M and ∆⊥ is the Laplacian associated with ∇⊥. x is said to be
biconservative map if (1.1) is satisfied [13]. A submanifold is said to be biconservative if it has biconservative
map. So biconservative manifolds are much bigger family than bihamonic submanifolds and it has been
studied in many geometers so far ([13],[14],[10],[11]). In [2], Chen gave the definition of parallel normalized
mean curvature vector such that a submanifold is said to have parallel normalized mean curvature vector if the
mean curvature vector is nonzero and the unit vector in the direction of the mean curvature vector is parallel,
i.e. ∇⊥(H/∥H∥) = 0, and he showed that a surface which is isometrically immersed in a Euclidean m-space Em

then it is the minimal surface of Em or minimal surface of a hypersphere of Em or surfaces in an affine 4-space
E4 of Em. Moreover, In [3], Chen obtained some results of such surfaces which is analytic and in 2019 he showed
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that "A biharmonic surface in Em with a parallel normalized mean curvature vector does not exist.". This was an
another solution to Chen’s conjecture. Concerning to the pseudo-Euclidean case, Chen investigated to classify
space-like and Lorentz surfaces with parallel mean curvature vector in Riemannian and indefinite space forms.
Du L. and Zhang J. classified completely such surface by adding pseudo-umbilical property and they showed
that such submanifolds have parallel mean curvature vector field under some geometric conditions [8]. Later
Du L. completely classified such pseudo-umbilical submanifolds and f−biharmonic. A submanifold is said to
f−biharmonic if the left hand side of (1.2) is equal to fH , where f is a function.

In [16] Şen R. and Turgay N. C. obtained some results on the biconservative submanifolds with parallel
normalized mean curvature vector as well as biharmonic ones. In [15], Şen R. studied on biconservative m-
dimensional submanifolds with parallel normalized mean curvature vector field in Em+2 and obtain canonical
forms of the shape operators of such submanifolds. So, it is still open working area of such submanifolds
in pseudo-Euclidean space. In [17], in 2016, Turgay N. C. studied such hypersurface in Minkowski space in
arbitrary dimension for biharmonic ones. He showed that there is no such biharmonic hypersurface with at
most 5 distinct principal curvatures. So biconservative part of the problem about submanifolds with parallel
normalized mean curvature is still open.

In this paper we investigate biconservative n−dimensional submanifold with parallel normalized mean
curvature vector and non-diagonalizable shape operator in arbitrary Minkowski space En+2

1 such that it has
mean curvature vector whose gradient is lightlike. We proved that there is no such submanifold.

2. Preliminaries

Let M be an n-dimensional submanifold of Minkowski space En+2
1 and x :M → En+2

1 be an isometric
immersion. Let ∇⊥ denote its normal connection then a normal vector field η is said to be parallel if ∇⊥

Xη = 0
whenever X is tangent to submanifold.

We put ∇ and ∇̃ for the Levi-Civita connection of M and En+2
1 , respectively. Then

∇̃XY = ∇XY + h(X,Y ) (2.1)
⟨h(X,Y ), N⟩ = ⟨ANX,Y ⟩ (2.2)

respectively, for any vector fields X,Y tangent to M , where h is the second fundamental form and A is the
shape operator. Moreover, the mean curvature vector H of M is defined by

H =
1

n
tr(h) (2.3)

and its norm ∥H∥ = |⟨H,H⟩|1/2 is called the mean curvature of M .
Let R denote the curvature tensor of M . Then, Gauss, Ricci and Codazzi equations are as follows

R(X,Y, Z,W ) = h(X,W )h(Y,Z)− h(X,Z)h(Y,W ), (2.4)
R⊥(X,Y )N = h(X,ANY )− h(ANX,Y ), (2.5)
(∇̄Y h)(X,Z) = (∇̄Xh)(Y,Z). (2.6)

The covariant derivative ∇̄h of h is defined by

(∇̄Xh)(Y, Z) = ∇⊥
Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).

We study on submanifold with nondiagonalizable shape operator. So we need to construct the cannonical
form of the shape operator. To do this we give well-known the following lemma.
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Lemma 2.1. [12] LetM be a Lorentzian surface, p ∈M andA be a symmetric endomorphism of TpM . Then, by choosing
an appropriated base for TpM , A can put into one of the following four canonical forms:

Case (i). A ∼

a1 0
. . .

0 an

 , Case (ii). A ∼


a0 0
−1 a0

a1
. . .

0 an−2



Case (iii). A ∼



a0 0 0
0 a0 1
−1 0 a0

a1
. . .

an−3

 Case (iv). A ∼


a0 b0
−b0 a0

a1
. . .

an−2.


Note that the base field is pseudo-orthonormal in Case (ii) and Case(iii) while it is orthonormal in the other cases. Moreover,
b0 is nonzero.

Let M be a Lorentzian hypersurface. We can choose a pseudo-orthonormal frame {e1, e2, e3 · · · , en} such that

⟨ei, ej⟩ = δij − 1 ⟨ei, eα⟩ = 0 ⟨eα, eβ⟩ = δαβ

where i, j ∈ {1, 2}, α, β ∈ {3, 4, · · · , n}. Then, Levi-Civita Connection ∇ related to M as the following

∇eie1 = ϕie1 +

n∑
b=3

ω1b(ei)eb (2.7)

∇eie2 = −ϕie2 +
n∑

b=3

ω2b(ei)eb (2.8)

∇eieα = ω2α(ei)e1 + ω1α(ei)e2 +

n∑
b=3

ωαb(ei)eb (2.9)

where ϕi = ⟨∇eie2, e1⟩ = −ω12(ei).

Proposition 2.1. Let ψ : (Ω, g) → (En+2
1 , g) be an isometric immersion of Lorentzian manifold of dimension n into

Minkowski space En+2
1 . Then ψ is biconservative if and only if

AN1(∇f) = −nf
2
∇f (2.10)

is satisfied, where N1 is the normalized mean curvature vector and f = ∥H∥ and ∇f is gradient of f .

From now on we abbreviate submanifold with mean curvature whose gradient is lightlike as MCGL
submanifold.

3. MCGL Submanifolds with Codimension 2 In En+2
1

In this section we examine the submanifolds of codimension-2. It means M has two normal vectors and so
two shape operators. we study on submanifolds with nondiagonalizable shape operator. So it is more difficult
than hypersurface case. Definition of submanifolds with parallel normalized mean curvature vector has been
given in introduction. So, from now on we abbreviate such submanifold as PNMCV submanifold.

Before we proceed we would like to emphasis that we choose the mean curvature vector as H = fN1 then
we have ∇⊥N2 = 0 since H is parallel normalized mean curvature vector.
Remark 3.1. Note that ∇f is proportional to only e1 or e2 since if ∇f = ae1 + be2 for non-zero funtions a, b then
⟨∇f,∇f⟩ = −2ab ̸= 0 and ∇f would not be lightlike.

Now, consider case(iv) in Lemma 2.1. If ∇f is proportional e1 or e2 by Remark 3.1 then b0 would be zero.
So, the rest of the problem is to examine the cases of the shape operators depending on N1 which is equal the
case(ii) and case(iii) in Lemma 2.1, seperately. we examine these matrices in the subsections named by Case 1
and Case 2, respectively.
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3.1. Case1

Firstly we inqury the structure of the shape operators of M . By Lemma 2.1 we have two matrices as the
following:

AN1
=


k1 1

k1
k3

. . .
kn

 (3.1)

AN2 =


l1 a1
a2 l2

l3
. . .

ln

 . (3.2)

Then, one can get easily the second fundamental form as follows;

h(e1, e1) = −a2N2, h(e1, e2) = −k1N1 − l1N2, h(e2, e2) = −N1 − a1N2. (3.3)

So, we use the Ricci equation (2.5) to find a1, a2.

R⊥(e1, e2)N2 = h(e1, AN2
e2)− h(AN2

e1, e2)

0 = a1h(e1, e1) + (l2 − l1)h(e1, e2)− a2h(e2, e2).

Direct calculations give
0 = (l2 − l1)l1N2 + (k1(l2 − l1)− a2)N1.

It is obvious that a2 = 0 and if l1 ̸= 0 then l1 = l2. Then the matrix (3.2) becomes

AN2
=


l1 φ

l1
l3

. . .
ln

 (3.4)

and the second fundamental form (3.3) becomes

h(e1, e1) = 0, h(e1, e2) = −k1N1 − l1N2, h(e2, e2) = −N1 − φN2.

So, we can choose ∇f is proportional to e1 by Remark 3.1. So we have

e2(f) ̸= 0, ei(f) = 0, ∇f = −e2(f)e1 (3.5)

where i = 1, 3, · · · , n. Moreover, by (2.10) we have

−2k1 = nf. (3.6)

Consider distinct princial curvaturesK1,K2, · · · ,Kp with its multiplicities v1, v2, · · · , vp and L1, L2, · · · , Lq with
its multiplicities u1, u2, · · · , uq as in the previous section then we have

v2K2 + v3K3 + · · ·+ vpKp = −(2 + v1)K1 (3.7)
u2L2 + u3L3 + · · ·+ uqLq = −u1L1 (3.8)

Now we use the Codazzi equation (2.6)
• The triplet (e1, eα, eα) gives

e1(kα) = ψα(k1 − kα) (3.9)
e1(lα) = ψα(l1 − lα) (3.10)
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• The triplet (e2, eα, eα) gives

e2(kα) = Φα(k1 − kα) + ψα (3.11)
e2(lα) = Φα(l1 − lα) + ψαφ (3.12)

• The triplet (e1, eα, eβ) gives

ωαβ(e1)(kα − kβ) = ω1β(eα)(k1 − kβ) (3.13)
ωαβ(e1)(lα − lβ) = ω1β(eα)(l1 − β) (3.14)

• The triplet (eα, eβ , e1) gives

ω1β(eα)(k1 − kβ) = ω1α(eβ)(k1 − kα) (3.15)
ω1β(eα)(l1 − lβ) = ω1α(eβ)(l1 − α) (3.16)

Moreover; by (3.5) we have [eα, eβ ](k1) = 0. So

ω1α(eβ) = ω1β(eα) (3.17)

by subsituiting (3.17) into (3.15) and (3.13), we get

w1α(eβ) = ω1β(eα) = 0 (3.18)

for kα ̸= kβ . Further if k1 ̸= kα = kβ then ωαβ(e1) = 0.
• The triplet (e2, eα, eβ) implies

(kα − kβ)ωαβ(e2) = (k1 − kβ)ω2β(eα) (3.19)
(lα − lβ)ωαβ(e2) = (l1 − lβ)ω2β(eα). (3.20)

• The triplet (eα, eβ , e2) implies
(k1 − kβ)ω2β(eα) = (k1 − kα)ω2α(eβ). (3.21)

By combining (3.19) and (3.21), suppose that k1 ̸= kα = kβ , we see that

ω2α(eβ) = ω2β(eα) = 0. (3.22)

• The triplet (eα, e1, e1) implies
ω1α(e1) = 0 (3.23)

• The triplet (e2, e1, e1) gives
e1(l1) = 0 (3.24)

• The triplet (eα, e1, e2) gives
ω2α(e1)(k1 − kα) = 0

and by k1 ̸= kα then we have
ω2α(e1) = 0 (3.25)

Now we use Gauss equations (2.4)
R(eα, e1, e2, eα) = −k1kα − l1lα. (3.26)

we make some calculation on (3.26).

⟨∇eα∇e1e2⟩ = ⟨∇eα(−ϕ1e2 +
n∑

b=3

ω2b(e1)eb, eα)⟩ (3.27a)

= −ϕ1Φα + eα(ω2α(e1)) +

n∑
α̸=b=3

ω2b(e1)ωbα(eα) (3.27b)

⟨∇e1∇eαe2⟩ = ⟨e1(−ϕαe2 +
n∑

b=3

ω2b(eα)eb), eα⟩ (3.27c)

= −ϕαω2α(e1) + e1(Φα) +

n∑
α̸=b=3

ω2b(eα)ωbα(e1) (3.27d)

⟨∇[eα,e1]e2, eα⟩ = (ϕα − ω2α(e1))ω2α(e1) (3.27e)
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Under the consideration (3.18) and (3.22) with its contractions, one can obtain

n∑
α̸=b=3

ω2b(eα)ωbα(e1) = 0.

In addition to this result, k1 ̸= kα turns (3.26) into

e1(Φα) + Φα(ϕ1 + ψα) = k1kα + l1lα (3.28)

since (3.25). Moreover, R(eα, e1, e1, eα) = 0 gives

e1(ψα) = ψα(ϕ1 − ψα). (3.29)

Now consider equalities (3.7) and (3.8). By using (3.5), (3.6), (3.9), (3.10), (3.24) and (3.29), if we deriviate (3.7)
p times and (3.8) q times we have following two matrices, respectively

ψ2 ψ3 · · · ψp

ψ2
2 ψ2

3 · · · ψ2
p

...
...

. . .
...

ψp
2 ψp

3 · · · ψp
p



v2(K1 −K2)
v3(K1 −K3)

...
vp(K1 −Kp)

 =


0
0
...
0

 , (3.30)


ψ2 ψ3 · · · ψq

ψ2
2 ψ2

3 · · · ψ2
q

...
...

. . .
...

ψq
1 ψq

2 · · · ψq
q



u2(L1 − L2)
u3(L1 − L3)

...
uq(L1 − Lq)

 =


0
0
...
0

 . (3.31)

Before proceed, we would like to notice that we examine what kind of contradiction gives us the fact that all
ψα’s are zero. Thus we shall give the following Lemma.

Lemma 3.1. For k1 ̸= kα, if ψα = 0 then k1kα = −l1lα, where α = 3, 4, · · · , n.

Proof. By taking a deriviation of (3.11) along e1, we have

[e1, e2]kα = e1(Φα)(k1 − kα)

Notice that we can use the Lie bracket i.e. [e1, e2](kα) = e1e2(kα) since e1(kα) = 0. So,

−ϕ1e2(kα) = e1(Φα)(k1 − kα)

−ϕ1Φα(k1 − kα) = e1(Φα)(k1 − kα)

by simplifying with (k1 − kα), we have
−ϕ1Φα = e1(Φα) (3.32)

By subsituiting (3.32) into the Gauss equation (3.28) then we get the result that we want to show.
Remark 3.2. The indice α begins from 2 for capitalKα while beginning from 3 for lowercase kα due to the matrix
(3.1). Because some principal curvatures may be the same for some α′s for kα, but it is not valid forKα. Because
kα’s are just principal curvatures, but Kα’s are distinct principal curvatures.

Lemma 3.2. There is no biconservative PVMCV-MCGL submanifold in En+2
1 with the shape operator given in (3.1)

with two distinct principal curvatures.

Proof. Assume that AN1 has two distinct principal curvatures K1,K2 then (3.7) becomes

v2K2 = −(2 + v1)K1. (3.33)

Before we proceed, we would like to notice that taking a derivative (3.33) along e1 gives ψ2 = 0. Because all ψα

are equal to ψ2, Lemma 3.1 gives K1K2 = −l1lα and K1K2 = −l1lβ . So, we have l1lα = l1lβ . Notice that if l1 = 0
then K1K2 = 0 and this means K1 = 0 since (3.87) which yields a contradiction. It follows lα = lβ . So, AN2

has
two distinct principal curvatures as well. Then (3.8) becomes

u2L2 = −u1L1. (3.34)
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In addititon, we have K1K2 = −L1L2 by Lemma 3.1. Multiplying (3.33) and (3.34) by K1 and L1 seperately and
some direct calculations give

0 =
2 + v1
v2

K2
1 +

u1
u2
L2
1 (3.35)

which yields a contradiction since then K1 would be zero and it follows H is zero.

Lemma 3.3. For α = 2, 3, . . . , n, if all ψα = 0 then AN1 and AN2 has the same number of principle curvatures which is
equal to zero, i.e. p = q.

Proof. Firstly notice that k1 ̸= 0. Assume that all ψα = 0 then we have k1kα = −l1lα and k1kβ = −l1lβ for
distinct α, β and 3 ≤ α, β ≤ n. If l1 = 0 then kα = kβ and p = 2. Applying Lemma 3.2 gives a contradiction. If
l1 ̸= 0 then it is obviously obtained that

kα = kβ ⇔ lα = lβ .

This implies p = q.
Now one can give the following lemma

Lemma 3.4. If (3.30) is satisfied then all ψα = 0, where α = 2, . . . , p.

Proof. For p = 2 case has been shown in Lemma 3.2.
Assume that for p = r if the equation

r∑
α=2

ψαvα(K1 −Kα) = 0 (3.36)

is satisfied then ψ2 = · · · = ψr = 0. Now we shall show for p = r + 1. Then one can say

r+1∑
α=2

ψαvα(K1 −Kα) = 0 (3.37)

So
r∑

α=2

ψαvα(K1 −Kα) + ψr+1vr+1(K1 −Kr+1) = 0 (3.38)

The first term in the left hand side of (3.38) is equal to zero by acceptance. So this gives ψr+1 = 0 since K1 and
Kr+1 are distinct principle curvatures and vr+1 is multiplicity.

Theorem 3.1. There is no PNMCV-MCGL submanifold in Minkowski space En+2
1 with the shape operator given in (3.1)

and (3.2).

Proof. Firstly we prove that multiplicities of distinct principal curvatures Kα and Lα are equal, i.e. uα = vα
for every α = 2, . . . , p. By Lemma 3.4 and 3.1 one can say K1Kα = −L1Lα. Now assume that uα ̸= vα then there
is some integers a, r such that

ka = ka+1 = · · · = ka+r−1 = Kα, ka+r = Kα+1 (3.39)
la = la+1 = · · · = la+r−1 = la+r = Lα (3.40)

So, by Lemma 3.1, we have

k1ka+r = −l1la+r (3.41)
K1Kα+1 = −L1Lα. (3.42)

By Lemma 3.4 and 3.1 the equation (3.42) gives

−K1Kα+1 = −K1Kα. (3.43)

The equation (3.43) is satisfied than either K1 = 0 or Kα = Kα+1. Now (3.7) and (3.8) becomes

p∑
i=2

viKi = −(2 + v1)K1 (3.44)

p∑
i=2

viLi = −u1L1 (3.45)
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By multiplying (3.44) and (3.45) byK1 and L1, seperately and using Lemma 3.4, we have the following equality

0 = −(2 + v1)K
2
1 − u1L

2
1. (3.46)

It gives K1 = 0 which yields a contradiction.

3.2. Case 2:

We inqury the structure of the shape operators of M . By Lemma 2.1 we have two matrices as the following:

AN1 =



k1
k1 1

−1 k1
k4

. . .
kn

 (3.47)

AN2 =



l1 a b
d l2 c
e ã l3

l4
. . .

ln

 . (3.48)

Then, one can get easily then second fundamental form as follows;

h(e1, e1) = −dN2 , h(e1, e2) = −k1N1 − l1N2 , h(e1, e3) = −N1 + eN2 (3.49a)
h(e2, e2) = −aN2 , h(e2, e3) = ãN2 , h(e3, e3) = k1N1 + l3N2 (3.49b)

Consider (2.2),
• ⟨AN2e3, e2⟩ = ⟨N2, h(e3, e2)⟩ gives

−b = ã (3.50)

• ⟨AN2e1, e3⟩ = ⟨N2, h(e1, e3)⟩ gives
−c = e (3.51)

• ⟨AN2e2, e1⟩ = ⟨N2, h(e2, e1)⟩ gives
l1 = l2 (3.52)

Now, we choose the mean curvature vector as in the Case 1. Then we have ∇⊥N2 = 0 again and f = ∥H∥. So,
we use the Ricci equation 2.5 to find a, b, c, d, ã.

R⊥(e1, e2)N2 = h(e1, AN2
e2)− h(AN2

e1, e2)

0 = ãh(e1, e3) + (l2 − l1)h(e1, e2) + ah(e1, e1)− dh(e2, e2)− eh(e3, e2).

Direct calculations give
0 = (−ã+ (l1 − l2)k1)N1 + (l1 − l2)l1N2

and so
ã = 0. (3.53)

Now

R⊥(e1, e3)N2 = h(e1, AN2e3)− h(AN2e1, e3)

0 = ch(e1, e2) + (l3 − l1)h(e1, e3)− dh(e2, e3)− eh(e3, e3).

Direct calculations and (3.51) give
l1 = l3 (3.54)

Now

R⊥(e2, e3)N2 = h(e2, AN2
e3)− h(AN2

e2, e3)

0 = (l3 − l2)h(e2, e3) + ch(e2, e2)− ah(e1, e3).
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Direct calculations give
a = 0 (3.55)

Now the second fundamental forms (3.49) becomes

h(e1, e1) = −dN2 , h(e1, e2) = −k1N1 − l1N2 = −h(e3, e3), (3.56a)
h(e1, e3) = −N1 − cN2, h(e2, e2) = 0 = h(e2, e3), (3.56b)

h(eα, eα) = kαN1 + lαN2, (3.56c)
h(eα, eβ) = 0 for α ̸= β. (3.56d)

Subsituiting (3.50), (3.51), (3.52), (3.53), (3.54) and (3.55) into (3.48), we have

AN2 =



l1 0 0
d l1 c
−c 0 l1

l4
. . .

ln

 . (3.57)

Note that ∇f is proportional to e2. So we have

e1(f) ̸= 0, ei(f) = 0, ∇f = −e1(f)e2 (3.58)

where i = 2, 3, · · · , n. Moreover, by (2.10) we have

−2k1 = nf. (3.59)

Note that [e2, eα](k1) = e2eα(k1)− eαe2(k1). By (3.59) one can say

[e2, eα](k1) = 0 (3.60)

So, the same process gives
[e2, e3](k1) = [eα, eβ ](k1) = [e3, eα](k1) = 0. (3.61)

Equations (3.60) and (3.61) give

ω2α(e2) = ω23(e2) = 0, (3.62)
ω2β(eα) = ω2α(eβ), (3.63)
ω2α(e3) = ω23(eα), (3.64)

where α, β = 4, 5, . . . , n.
Now we use the Codazzi equation (2.6)

• The triplet X = e2, Y = Z = eα gives

e2(kα) = Φα(k1 − kα) (3.65)
e2(lα) = Φα(l1 − lα) (3.66)

,where Φα = ω2α(eα).
• The triplet X = e1, Y = eα, Z = eα gives

e1(kα) = ψα(k1 − kα) + ωα3(eα) (3.67)

• For α ̸= β, the triplet X = eβ , Y = eα, Z = eα gives

eβ(kα) = ωβα(eα)(kβ − kα). (3.68)

Notice that for some α with k1 = kα ̸= kβ we have

ωβα(eα) = 0 (3.69)
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since (3.58).
• For α ̸= β, the triplet X = e2, Y = eβ , Z = eα gives

ωαβ(e2)(kα − kβ) = −ω2α(eβ)(kα − k1) (3.70)
ωαβ(e2)(lα − lβ) = −ω2α(eβ)(lα − l1) (3.71)

• For α ̸= β, the triplet X = eα, Y = e2, Z = eβ gives

ω2β(eα)(k1 − kβ) = ωαβ(e2)(kα − kβ) (3.72)
ω2β(eα)(l1 − lβ) = ωαβ(e2)(lα − lβ) (3.73)

By combining (3.72) and (3.70) we get

ω2β(eα)(k1 − kβ) = ω2α(eβ)(k1 − kα) (3.74)

Subsituiting (3.63) into (3.74) gives ω2α(eβ) = 0. So we have

k1 ̸= kα = kβ ⇒ ω2β(eα) = ω2α(eβ) = 0 (3.75a)
kα ̸= kβ ⇒ ω2β(eα) = ω2α(eβ) = ωαβ(e2) = 0 (3.75b)

• Under the result of (3.75), the triplet X = e3, Y = eα, Z = eβ and X = e3, Y = eβ , Z = eα give

ωαβ(e3)(kα − kβ) = ω3β(eα)(k1 − kβ) = ω3α(eβ)(k1 − kα) (3.76)

• The triplet X = e1, Y = eα, Z = eβ and X = e1, Y = eβ , Z = eα give

ωαβ(e1)(kα − kβ) = ω1β(eα)(k1 − kβ) + ωβ3(eα) = ω1α(eβ)(k1 − kα) + ωα3(eβ) (3.77)

By combining (3.76) and (3.77), one can say easily, for k1 ̸= kα = kβ ,

ω3β(eα) = ω1β(eα) = 0 (3.78)

• The triplet X = e2, Y = e1, Z = e2 gives
e2(l1) = 0 (3.79)

• The triplet X = e2, Y = e1, Z = e3 gives
ϕ2 = 0 (3.80)

• Triplets (eα, e2, e3), (e2, e3, eα) and (eα, e1, e2), (eα, e2, e1) give

ω3α(e2)(k1 − kα) = 0 = ω2α(e3)(k1 − kα)

ω23(eα) = ω2α(e1)(k1 − kα) = ωα3(e2)− ω1α(e2)(k1 − kα),

respectively, So, for k1 ̸= kα, we have

ω3α(e2) = ω2α(e3) = ω23(eα) = 0 (3.81)
ω2α(e1) = ωα2(e1) = ω1α(e2) = 0, (3.82)

respectively. Further, notice that (3.81) also holds for k1 = kα. Now we use Gauss equations (2.4) by considering
(3.70),(3.72), (3.80) and (3.82).

R(eα, e1, e2, eα) = −(k1kα + l1lα) (3.83)

One can obtain, for k1 ̸= kα,
e1(Φα) + Φα(ϕ1 + ψα) = k1kα + l1lα (3.84)

Lemma 3.5. For k1 ̸= kα, if Φα = 0 then k1kα = −l1lα, where α = 4, , 5 · · · , n.

Proof. Putting Φα = 0 into (3.84) gives the result that we want to show.
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Now consider distinct principal curvatures K1,K2, · · · ,Kp with its multiplicities v1, v2, · · · , vp and
L1, L2, · · · , Lq with its multiplicities u1, u2, · · · , uq as in the previous section then we have (3.7) and (3.8) again.
When taking a derivative of (3.7) and (3.8) alon e2, p times and q times, respectively, one can get the following
matrices; 

Φ2 Φ3 · · · Φp

Φ2
2 Φ2

3 · · · Φ2
p

...
...

. . .
...

Φp
2 Φp

3 · · · Φp
p



v2(K1 −K2)
v3(K1 −K3)

...
vp(K1 −Kp)

 =


0
0
...
0

 , (3.85)


Φ2 Φ3 · · · Φq

Φ2
2 Φ2

3 · · · Φ2
q

...
...

. . .
...

Φq
1 Φq

2 · · · Φq
q



u2(L1 − L2)
u3(L1 − L3)

...
uq(L1 − Lq)

 =


0
0
...
0

 . (3.86)

Remark 3.3. The indice α starts at 2 for capital Kα while starting at 4 for lowercase kα due to the matrix (3.47).
The rest of this remark is the same with Remark 3.2.

Remark 3.4. Note that the using the method of Gauss equation for which we use to find a contradiction has not
changed for the shape operator (3.47) either. So we obtain the same of Lemma 3.3. With the same logic, it is
enough to prove that absence condition for p = 2 to obtain the same of Lemma 3.2, Lemma 3.4 and Theorem
3.1.

So we can give the following Lemma.

Lemma 3.6. There is no biconservative PVMCV-MCGL submanifold in En+2
1 with two distinct principal curvatures .

Proof. Assume that AN1
given in (3.47) has two distinct principal curvatures K1,K2 then AN2

given in (3.48)
has two distinct principal curvatures L1, L2 by Lemma 3.3. Consider (3.7) and (3.8), we have

v2K2 = −(2 + v1)K1 (3.87)
u2L2 = −u1L1 (3.88)

Taking a derivative (3.87) along e2 give Φ2 = 0. It follows K1K2 = −L1L2 by Lemma 3.1. Multiplying (3.87) and
(3.88) by K1 and L1, respectively and some direct calculations give

0 =
2 + v1
v2

K2
1 +

u1
u2
L2
1 (3.89)

which yields a contradiction since then K1 would be zero and it follows H is zero.
So one can prove easily that every elements Φα of the matrix (3.85) being zero with the help of induction and

then get easily the same of Lemma 3.4 for Φα. Moreover, one can give the following final theorem whose proof
is the same of Theorem 3.1 since it depends on the condition K1Kα + L1Lα is zero which is satisfied for the
shape operator given in (3.47) either.

Theorem 3.2. There is no PNMCV-MCGL submanifold in Minkowski space En+2
1 with nondiagonalizable shape

operator.
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