
KFBD 
Karadeniz Fen Bilimleri Dergisi, 13(4), 1361-1376, 2023. DOI: 10.31466/kfbd.1275692 

 

Karadeniz Fen Bilimleri Dergisi 
The Black Sea Journal of Sciences 

ISSN (Online): 2564-7377     https://dergipark.org.tr/tr/pub/kfbd 

Araştırma Makalesi / Research Article 

1Giresun University, Faculty of Arts and Science, Department of Mathematics, Giresun, Turkey, hande.akdemir@giresun.edu.tr 

 
1https://orcid.org/0000-0003-3241-1560 

 
*Sorumlu Yazar/Corresponding Author                      Geliş/Received: 02.04.2023             Kabul/Accepted: 11.11.2023
  

A Fuzzy Numerical Simulation-based Heuristic Method for Fully Fuzzy Systems 

of Linear Equations 

 

Hande GÜNAY AKDEMIR1*  

 

 
Abstract 

In this paper, a new method is proposed to find the approximate solutions to fully fuzzy systems of linear equations 

(FFSLEs). The technique integrates a bisection method with Fuzzy Numerical Simulation (FNS). The procedure starts 

with generating single values of fuzzy parameters and solving the resulting crisp problems repeatedly to determine the 

lower and upper bounds of the solutions. After computing the mean lower and upper bound values, the obtained supremum 

and infimum values are considered to be the lower and upper bounds of the solutions, respectively. It is attempted to 

improve solutions by considering an error function related to the sum of the absolute differences between the 

corresponding lower and upper bounds of the left and right sides of the equalities. When very large intervals are obtained 

for the solutions, the bisection algorithm is applied to reduce the error value. The method intends to solve square systems 

of large dimensions for arbitrary fuzzy numbers (FNs) by removing non-negativity confinements of the variables and/or 

coefficients to be more realistic. After the computational method is presented thoroughly, some benchmark examples are 

finally provided.  

Keywords: Approximate solution, Bisection method, Fully fuzzy systems of linear equations, Fuzzy numerical 

simulation. 

 

 

Tam Bulanık Lineer Denklem Sistemleri için Bulanık Sayısal Simülasyon 

Tabanlı Sezgisel Bir Yöntem 

 

Öz 

Bu çalışmada, tam bulanık lineer denklem sistemlerine yaklaşık çözümler bulmak için yeni bir yöntem önerilmiştir. 

Teknik, bir ikiye bölme yöntemini bulanık sayısal simülasyon ile bütünleştirir. Prosedür, bulanık parametrelerin tek 

değerlerinin üretilmesi ve çözümlerin alt ve üst sınırlarının belirlenmesi için ortaya çıkan net problemlerin tekrar tekrar 

çözülmesiyle başlar. Ortalama alt ve üst sınır değerleri hesaplandıktan sonra, elde edilen supremum ve infimum değerler 

sırasıyla çözümlerin alt ve üst sınırları olarak kabul edilir. Eşitliklerin sağ ve sol taraflarının karşılık gelen alt ve üst 

sınırları arasındaki mutlak farkların toplamına ilişkin bir hata fonksiyonu ele alınarak çözümler geliştirilmeye 

çalışılmıştır. Çözümler için çok büyük aralıklar elde edildiğinde, hata değerini azaltmak için ikiye bölme algoritması 

uygulanır. Yöntem, daha gerçekçi olmak için değişkenlerin ve/veya katsayıların negatif olmayan sınırlamalarını 

kaldırarak keyfi bulanık sayılar için büyük boyutlu kare sistemleri çözmeyi amaçlar. Hesaplama yöntemi kapsamlı bir 

şekilde sunulduktan sonra, son olarak bazı kıyaslama örnekleri verilmektedir. 

Anahtar Kelimeler: Yaklaşık çözüm, İkiye bölme yöntemi, Tam bulanık lineer denklem sistemleri, Bulanık sayısal 

simülasyon.  
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1. Introduction 

 

Real-world systems are too complex to be defined by exact parameters; hence, imprecision or 

approximation is often involved. When the coefficients of the system are imprecise and only some 

imperfect subjective knowledge about the actual values of the parameters is available, systems of 

simultaneous fuzzy linear equations appear in various areas of science, including analysis, operations 

research, and engineering. The solutions to such systems cannot be found precisely since we face 

fuzziness inherited from the ambiguity of the parameters. Therefore, we consider linear systems 

having a fuzzy vector as the right-hand side, a fuzzy coefficient matrix, and a fuzzy vector of 

unknowns.  

For instance, while designing an engineering system optimally, we must solve systems of 

equations with imprecise variables and parameters resulting from experimental data, expert 

knowledge, and structural uncertainties. In the economic order of quantity models of supply chain 

management, we encounter supply disruption and demand fluctuation due to delays and failures in 

supply as a result of quality issues, machine breakdowns, power cuts, labor strikes, accidents, and 

natural disasters. This makes it necessary to address uncertainty in supply-demand equilibrium 

equations. Other areas of application involve manufacturing model representation, chemical reaction 

balance, electrical network flow problems, income-expenditure equilibrium in economics, and curve 

fitting. 

There exist numerous approaches that efficiently address several important classes of such 

problems. A typical approach to solving problems involving uncertain parameters is to adapt exact 

methods with some modifications. Early studies included the integration of fuzzy arithmetic with 

crisp techniques, for example, decomposition. Some relevant literature to date is given as follows. 

Dehghan and colleagues (Dehghan and Hashemi, 2006; Dehghan et al., 2006; Dehghan et al., 2007) 

investigated approximate non-negative solutions of square systems using extended fuzzy operations 

and several well-known crisp iterative techniques. See also (Ezzati et al., 2012; Kumar et al., 2012; 

Ezzati et al., 2014). Allahviranloo et al. (2011) proposed a method to obtain maximal and minimal 

symmetric solutions, which are not necessarily non-negative, of fully fuzzy linear systems based on 

1-cut expansion. Square systems with arbitrary solutions considering interval arithmetic, 0, and 1-

cuts were examined in (Moloudzadeh et al., 2013; Allahviranloo et al., 2014; Behera and Chakraverty, 

2017). Otadi et al. (2011), Mosleh (2013), and Jeswal and Chakraverty (2019) computed arbitrary 

approximate solutions of square systems with triangular coefficients with fuzzy neural networks. By 

using linear programming with equality constraints, Otadi and Mosleh (2012) and Babbar et al. 

(2013a) studied the nonnegative fuzzy solution to fully fuzzy matrix equations with triangular and 

trapezoidal coefficients, respectively. For the arbitrary triangular solutions of FFSLEs, Babbar et al. 
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(2013b) suggested simple numerical methods based on decomposition. Mosleh and Otadi (2015) and 

Guo et al. (2018) discussed the concept of the fuzzy inverse matrix for LR-type arbitrary fuzzy 

solutions. Strong arbitrary solutions were covered in (Ahlatcioglu et al., 2016; Kocken et al., 2016; 

Albayrak, 2017) for square and non-square systems with triangular and trapezoidal coefficients, using 

mixed integer programming. Both trapezoidal and hexagonal coefficients were taken into account in 

(Ziqan et al., 2022). 

Chanas and Nowakowski (1988) proposed an approach that enables assigning a precise 

numerical value to a fuzzy variable by simulating values of uniform random variables related to the 

fuzzy variable. Rao and Chen (1998) presented a computational methodology based on a search 

algorithm and bisection method for the solution of simultaneous linear equations involving fuzzy 

input parameters. Akdemir and Kocken (2022) constructed an FNS-based bisection procedure for a 

fuzzy linear regression model. The defuzzification-based technique was described in (Allahviranloo 

et al., 2008) for resolving FFSLEs, and its basics were on the ideas of value, ambiguity, and fuzziness. 

In order to determine the multiplicative inverse of a square fuzzy matrix with triangular or trapezoidal 

components, Akdemir (2023) provided a computational approach based on FNS and bisection. 

Considering the given literature, only small-scale problems were mostly included in all studies. 

Calculating the exact solutions may be difficult and impractical, especially for larger dimensions. 

When the problem size and complexity grow, the application of the proposed methods becomes more 

challenging. In such large-scale problems, adopting a computational or heuristic method considering 

approximate solutions can complement and enhance the literature. 

In this study, we propose a two-stage heuristic that solves a large number of systems in the first 

stage using the generated parameters to identify the initial intervals containing the set of possible 

values of the variables required for the execution of the second stage's bisection algorithm. We aim 

to approximate the right-hand side target values by minimizing the dissimilarity between the two 

sides. Once we identify the bounds for the solutions, the bisection procedure allows us to search for 

the appropriate intervals to deal with overestimating and underestimating by narrowing the wide 

initial intervals. Depending on whether the overall error decreases or not, the estimated intervals are 

narrowed with a predetermined number of bisection iterations. There could be asymmetry in the left-

side and right-side narrowing. A significant feature of our algorithm is that it enables us to make use 

of crisp equation-solving software. The approach can be used even in cases when the coefficient 

matrix is crisp. 

The proposed method is a straightforward, two-stage approach that takes advantage of computer 

technology and intertwines predefined, effective, crisp techniques. Scenarios, which are used to 

represent particular realizations, are generated and then replaced in the equations, and the resulting 

crisp systems are solved; thereby, we acquire projections that indicate which intervals contain the 
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solutions. These initial intervals, which are very wide by nature, are narrowed down by the bisection 

method to reduce the error. The method is a procedure that improves the error since it does not ignore 

any term in the multiplication operation, compared to other methods in the literature that provide 

approximate solutions. Even though the multiplication uses the max and min functions, since crisp 

systems are solved, this operation gets simpler.  

The paper is structured as follows: In the following section, we give a brief introduction to 

fuzzy arithmetic and then define FFSLEs. In Section 3, we develop a numerical method for 

calculating the approximate solution to FFSLEs. In Section 4, we provide numerical examples to 

illustrate our methodology. We conclude in Section 5. 

 

2. Materials and Methods 

 

Before explaining the method, we provide some fundamental concepts about FNs. 

 

Definition 2.1. (Fuzzy Set) A set 

 , ( )aa x x x X=   

is said to be a fuzzy set on a universal set X , where the function  : 0,1
a

X →  denotes the 

membership function of a . 

A normal fuzzy subset of the real line, i.e., there exists x   such that ( ) 1,x =  with a 

convex membership function is called a FN. 

 

Definition 2.2. ( LR − type FN) Let  , : 0,1L R + →  be decreasing functions with   

(0) 1, (1) 0, (0) 1, (1) 0,  and ( ), ( ) 1L L R R L x R x= = = =   for 0.x   The FN a  is called LR − type if 

there exist ( ),  , 0 and 0,l r l r      with the membership function:  

, if 

( ) 1, if 

, if 

a

l x
L x l

x l x r

x r
R r x







 − 
  

 


=  


 −  
  

 

where ,     are called left and right spreads (or fuzziness), respectively. Then, we denote 

( ), , , .
LR

a l r  =  Also, La l = −  and Ua r = +  are called lower and upper bounds, respectively.  
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If  ( ) ( ) max 0,1 ,L x R x x= = −  then a  is called a Trapezoidal FN. If 

 ( ) ( ) max 0,1 ,L x R x x= = −  and ,l r=  then we get a Triangular FN. We denote a triangular FN as 

( ), , ,a c  =  where the center Ca c=  is referred to as the most likely value or mode. 

 

2.1. Arithmetic Operations on Fuzzy Numbers 

 

In this section, we review some fuzzy arithmetic operations on triangular FNs. Similar 

definitions can be given for trapezoidal FNs. Since the sets of triangular or trapezoidal FNs are closed 

under these operations, we solely concentrate on these FNs in this study. 

Let ( )1 1 1, ,a c  =  and ( )2 2 2, ,b c  =  be two triangular FNs, and ,  then we have: 

• Addition 

( )1 2 1 2 1 2, , ,a b c c    + = + + +  

• Multiplication 

( ), , ,a b c   =                  (1) 

 

where the center, lower and upper bounds are: 

( ) 1 2 ,
C

a b c c c = =                   

( ) ( )( ) ( )( ) ( )( ) ( )( ) 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 min , , , ,
L

a b c c c c c c c c c         = − = − − − + + − + +  

( ) ( )( ) ( )( ) ( )( ) ( )( ) 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 max , , , ,
U

a b c c c c c c c c c         = + = − − − + + − + +  

respectively. 

• Scalar Multiplication 

( )

( )
1 1 1

1 1 1

, , , if 0

, , , if 0.

c
a

c

   


   


= 

− − 
 

 

2.2. Fully Fuzzy Linear Systems 

 

We are interested in finding the approximate solutions of a square linear system whose 

coefficient matrix, unknowns, and the right-hand sides are all arbitrary triangular fuzzy numbers. To 

avoid confusion, it is worth mentioning that the fuzzy parameters involved in FFSLEs are assumed 

to be mutually independent. 
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Consider a square fuzzy coefficient matrix ( ) ,ij n n
A a


=  such that ( ), ,A A M N=  consisting of 

a center ( ) ,n n

ijA a =   left spread ( ) 0,ijM =   and right spread ( ) 0,ijN =   which are crisp 

matrices with appropriate dimensions; and a fuzzy right-hand side vector ( )
1
,i

n
b b


=  represented by 

( ), ,b b h g=  with the crisp vectors of centers ,nb  and non-negative spreads , ;nh g  and a fuzzy 

unknown vector ( )
1
,j n

x x


=  such that ( ), ,x x y z=  with the crisp vectors of centers ,nx  and 

non-negative spreads , .ny z  Then, n n  FFSLE is of the form: 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

 

.

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

 +  + +  =

 +  + +  =

 +  + +  =

          (2) 

 

The matrix form of System (2) is as follows: 

.A x b =  

With the assumption that each element of fuzzy matrices is non-negative and A  is invertible, 

Dehghan et al. (2006) characterized the approximate solution as the solution of the following system: 

,

,

Ax b

Ay Mx g

Az Nx h

=


+ =
 + =

 

with the help of approximate formulas for the extended multiplication operation, since the 

multiplication operator in Equation (1) cannot be expressed analytically.  

We consider the approximate solution that is intended to minimize the following total error 

function: 

1 ,

n

ir

i r L U

error e
= =

=               (3) 

where ( ) ( )
1

, 1, , , , .
n

ir ij j ir r
j

e a x b i n r L U
=

=  − = =  

We must emphasize that we use the multiplication operator given in Equation (1), and aim to 

obtain two close (or similar) FNs on both sides of the equalities as much as possible. 
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3. Proposed Heuristic 

 

Our algorithm is a two-stage approach, given in Subsections 3.1 and 3.2. In the first stage, the 

lower and upper bounds of the solutions are estimated, and the corresponding spread-based errors are 

computed. For each equation, the errors that occurred in right and left spreads are taken into 

consideration independently. Then, starting with the spread having the highest inaccuracy, the new 

value of this width is assumed to be equal to half of the previous value. Depending on whether the 

total error value improves or not, the original spread is narrowed to a certain extent with a prescribed 

number of bisection iterations. The optimal narrowing is one that minimizes the total error value. 

After that, moving on to the spread with the second largest error, the bisection procedure is repeated. 

The process is completed when the errors in all spreads are reduced. Therefore, the bisection 

algorithm is performed 2n  times per system. The errors are updated in the case of calibration of 

intervals belonging to the solutions in any iteration. 

 

3.1. Fuzzy Numerical Simulation 

 

The foundation of our algorithm is based on the generation of single values of FNs. When we 

solve the crisp problems, obtained by substituting the generated values of the fuzzy parameters in the 

system of equations, we can estimate the intervals in which the solutions are located. It is obvious 

that this process needs to be repeated too many times in order to provide meaningful results. The 

literature contains a wide variety of efficient techniques for solving crisp equation systems. Therefore, 

we attempt to make use of these non-fuzzy techniques to provide better approximations. Any desired 

equation-solving method can be used in the intermediate steps of the algorithm.  

Now let us review the FNS technique we will use to generate single values of parameters. To 

simulate a single value of a fuzzy coefficient using FNS (Chanas and Nowakowski, 1998), we first 

generate two independent random numbers, u  and v  from the uniform distribution. Considering the 

values of v  and (1 )v−  as weights, the convex combination or weighted arithmetic average of the 

endpoints of the u− cut interval can then be used to replicate samples of the parameters. For a 

triangular coefficient  ( ), ,ij ij ij ija a  =  in System (2), the following equation is derived to generate 

samples: 

( ) ( ) ( )1 1 1 ,ij ij ij ij ij ij ij ij ija v a u v a u    = − − + − + −
   

 

where ( ), 1, , , , 0,1ij iji j n u v U=   are independent.  

Similarly, for a triangular right-hand side (or target) value ( ), ,i i i ib b h g=  in System (2), 
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( ) ( ) ( )1 1 1 ,i i i i i i i i ib V b U h V b U g= − − + − + −        

such that 1, , ,i n=  ( ), 0,1i iU V U  and independent. A similar procedure can be applied to 

trapezoidal coefficients and targets. 

The center values of the solutions Cx  are considered to be solutions of the 1-cut system: 

.Ax b=  

When the simulated ija  and 
ib  coefficients are plugged into a large number of systems and 

these systems are solved, a wide range of potential values is obtained for each unknown. For any 

unknown, it is regarded as a potential value for the lower (upper) bound if the potential value from 

the solution of the system of crisp equations is less (greater) than the center value. These 

corresponding potential values are first averaged, and then the supremum and infimum of these large 

numbers of averages are calculated for the lower and upper bounds, respectively. This part of the 

process is summarized in the following pseudo-code: 

 

Function FNSbasedProcedureForBounds 

Input: , , , , ,A M N b h g  and large numbers ,T K  

Output: , , , , 1, , , ,C L U irx x x e i n r L U= =  

(1)  Solve the 1-cut system ,Ax b=  and set :Cx x=  

(2)  for 1t =  to T  do 

(3)  for 1k =  to K  do 

(4)  Generate ,A b   

(5)  Solve the crisp system ,Ax b=  and store k

jx  for all 1, ,j n=  

(6)  end for 

(7)  Store the mean value of the k

jx ’s less (or similarly greater) than ( )j C
x  in ( ) ( ) (or ),

t t

j jL U
x x  

for all 1, ,j n=  

(8)  end for 

(9)  Set ( ) ( )max
t

j jL Lt
x x=  and ( ) ( )min

t

j jU Ut
x x=   for all 1, ,j n=  

(10)  For the attained solution, set , 1, , , ,ire i n r L U= =  as in Equation (3)  

end Function 

This stage of our algorithm is similar to the search algorithm in (Rao and Chen, 1998). In Step 

9, in the computation of the lower (similarly upper) bound of the solutions, the union of the nested 

( ), Lx−  ( ( ), ,Ux   respectively) intervals is considered. 



Karadeniz Fen Bilimleri Dergisi 13(4), 1361-1376, 2023 1369 

To summarize, at this stage, the generated K crisp systems are solved, and the values less and 

greater than the center value are stored separately. The average of the obtained values is taken 

independently, and all these processes are repeated T times. The greatest of the T average values is 

the output value for the left endpoint, i.e., the lower bound of the solution interval. Similarly, the 

output value for the right endpoint, i.e., the upper bound, is the lowest of the averages of values larger 

than the center value. The errors for the approximate solution, which measure how similar the left 

and right extremes for the left and right sides of each row of equations are, are also noted. In the next 

stage, bisection operations will be performed starting from the row and the bound with the largest 

error. 

 

3.2. Bisection Method 

 

The bisection algorithm is applied to the spreads in accordance with the order in which 

, 1, , , ,ire i n r L U= =  values are listed in descending order. This ranking will be determined once 

at the beginning of the process and will remain the same until the end of the algorithm. A one-to-one 

mapping between rows and columns is considered. For instance, an update at the upper range of jx  

results from an error related to the upper range of the thi  equation such that i j= . The following 

procedure is applied ( )2n − times, since 1, , , , .p n s L U= =  Here, M is the parameter that indicates 

how many bisections will be done. 

 

Function Bisection ( ),p s  

Input: , , ,C L Ux x x  , 1, , , ,ire i n r L U= =  and bisection repetitions M  

Output: error  and ( )p s
x   

(1) Initiate 0, 1L Uh h= =  (If pse  is relatively much larger than the other error values, then 

initiate 0.5, 1L Uh h= =  to accelerate the procedure) 

(2)    Set 1,m =  ( ) ( )
,

:
new

p ps m s
x x=  and :merror error=  computed using Equation (3) 

(3)    for 2m=  to M  do 

(4)    ( ): / 2L Uh h h= +   

(5)    ( ) ( ) ( )( )
,

: 1
new

p p ps m C s
x h x h x= + −  
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(6)    Update error  using the new value ( )
,

new

p s m
x  for ( )p s

x  and store it in merror  

(7)    If 
( )1m m

error error
−

  then  

(8)    :Lh h=   

(9)     else  

(10) :Uh h=   

(11) end if  

(12) end for 

(13)   Return ( ) ( )
,

:
new

p ps s
x x


=  such that  , 1, ,error M   is the minimum error i.e., 

 1, ,
min m

m M
error error


=  

(14)   Update error  

end Function 

 

At this stage, bisections will be done for all rows and spreads with positive error values. Even if the 

bisection operations are performed a given number of times, let us say M, the excess bisections are 

undone if the error gets worse. 

 

4. Findings and Discussion 

 

All computational experiments were performed using MATLAB R2018a on a computer with 

an Intel Core i5-7400 CPU (3.00 GHz) and 4 GB of RAM running MS Windows 10 Pro. In our 

calculations, we assume that 1000, 20.T K M= = =  As a pseudo-random generator, we use the 

MATLAB function “rand”. To demonstrate the methodology proposed in this paper, we consider the 

following examples: 

 

Example 4.1 Our first example is Test 3.2 from (Dehghan et al., 2006). Consider the following 

FFSLE of size 2 2 : 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2

5,1,1 ( , , ) 6,1,2 ( , , ) 50,10,17

7,1,0 ( , , ) 4,0,1 ( , , ) 48,5,7

x y z x y z

x y z x y z

 +  =

 +  =
 

After implementing the first stage of our algorithm, the relevant error values measuring the initial 

lower and upper bound dissimilarities of the left and right sides of the equations are computed as 
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follows: 1 9.0889,Le =  1 14.2831,Ue =  2 10.0483,Le = 2 11.5687.Ue =  Thus, in the second stage, the 

bisection algorithm is applied sequentially to the intervals:  

( ) ( )1 1, ,
C U

x x    ( ) ( )2 2, ,
C U

x x    ( ) ( )2 2, ,
L C

x x    and ( ) ( )1 1, ,
L C

x x    

respectively.  

To give more details, before bisection operations, the first stage of the algorithm gives the initial 

intervals as ( ) ( )  1 1, 2.9367,4.8513 ,
L U

x x  =   ( ) ( )  2 2, 3.8329,6.5219 ,
L U

x x  =   and the initial error 

as 44.9889. The solution of the 1-cut system is ( ) ( )1 24, 5.
C C

x x= =  At this stage, 1000000T K =  

crisp systems are solved in two nested loops, and thus several realizations are covered. Since this 

error value is quite large, the second stage has started in order to narrow those too-wide spreads. Refer 

to Table 1 for the solutions and corresponding errors after bisection operations. In this example, a 

system with an exact solution is considered. The method produces a solution with a lower error value 

compared to the error of the previously proposed approximate solution; thus, there is an improvement 

in the error.  

 

Table 1. Solutions of Example 4.1 

 Approximate solution 

reported in (Dehghan et 

al., 2006) 

Approximate solution using 

proposed method 

Exact solution reported in 

(Allahviranloo and 

Mikaeilvand, 2011) 

1 1 1( , , )x y z  (4,1/11,0)  (4,0.1661,1.6238e 06)−  (4,1/14,1/ 26)  
2 2 2( , , )x y z  (5,1/11,1/ 2)  (5,2.2261e 06,0.3805)−  (5,1/7,9/ 26)  

error  1.7727  0.4800  0.0000  

 

Example 4.2 Our second example is Test 4.1 from (Dehghan et al., 2006). Consider the following 

FFSLE of size 3 3 : 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

4,3,2 ( , , ) 5,2,1 ( , , ) 3,0,3 ( , , ) 71,54,76

7,4,3 ( , , ) 10,6,5 ( , , ) 2,1,1 ( , , ) 118,115,129

6,2,2 ( , , ) 7,1,2 ( , , ) 15,5,4 ( , , ) 155,89,151

x y z x y z x y z

x y z x y z x y z

x y z x y z x y z

 +  +  =

 +  +  =

 +  +  =

 

Refer to Table 2 for the solutions and corresponding errors. This example takes into account a 

different-sized system with no exact solution, and it is observed that the error decreased again. 

 

Table 2. Solutions of Example 4.2 

 Approximate solution reported in 

(Dehghan et al., 2006) 

Approximate solution using proposed 

method 

Exact 

solution  

1 1 1( , , )x y z  (4,2,2)  (4,7.3355,7.4337)  

N/A 
2 2 2( , , )x y z  (8,3,5)  (8,4.1054e 05,3.9242e 05)− −  

3 3 3( , , )x y z  (5,1,4)  (5,6.4508e 06,6.7129e 06)− −  

error  137  58.2116  
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Example 4.3 Our next example is Example 4.9 from (Kumar et al., 2013). Consider the following 

FFSLE of size 2 2 : 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2

3,2,3 ( , , ) 2,1,1 ( , , ) 5,16,17

4,1,2 ( , , ) 4,2,1 ( , , ) 4,12,22

x y z x y z

x y z x y z

 + −  =

−  +  = −
 

Refer to Table 3 for the solutions and corresponding errors. A small error value is obtained for 

this case with negative coefficients. 

 

Table 3. Solutions of Example 4.3 

 Approximate solution using proposed 

method 

Exact solution reported in (Kumar et al., 

2013) 

1 1 1( , , )x y z  (3,3.9123,0.9185)  (3,2,1)  

2 2 2( , , )x y z  (2,1.7025e 05,2.1115e 05)− −  (2,0,2)  

error  4.8084  0.0000  

 

Example 4.4 Our next example is Example 4.17 from (Kumar et al., 2013). Consider the following 

FFSLE of size 2 2 : 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2

2,0,1 ( , , ) 2,0,2 ( , , ) 6,5,9

1,0,1 ( , , ) 2,1,1 ( , , ) 5,5,6

x y z x y z

x y z x y z

 +  =

 +  =
 

Refer to Table 4 for the solutions and corresponding errors. Although the method does not 

produce exact solutions, it is effective in generating approximate solutions with a relatively small 

error. 

 

Table 4. Solutions of Example 4.4 

 Approximate solution using proposed 

method 

Exact solution reported in (Kumar et al., 

2013) 

1 1 1( , , )x y z  (1,1.2669e 05,1.2493e 05)− −  (1,2,0)  

2 2 2( , , )x y z  (2,2.4874,0.9742)  (2,0,1)  

error  1.5928  0.0000  

 

Example 4.5 Our next example is Example 18 from (Allahviranloo et al., 2013). Consider the 

following FFSLE of size 2 2 : 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2

3,2,2 ( , , ) 2,1,0 ( , , ) 8,3,2

1,0,2 ( , , ) 4,1,1 ( , , ) 6,4,6

x y z x y z

x y z x y z

 +  =

 +  =
 

Refer to Table 5 for the solutions and corresponding errors. It has also been observed that the 

error is improved compared to existing methods. 
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Table 5. Solutions of Example 4.5 

 
Approximate solution using 

proposed method 

Approximate solution 

reported in (Allahviranloo 

et al., 2013) 

Alternative approximate 

solution reported in 

(Allahviranloo et al., 

2013) 

1 1 1( , , )x y z  (2,0.4346,1.5731e 06)−  (2,2/5,1/8)  (2,1,2/5)  
2 2 2( , , )x y z  (1,0.6399,0.2102)  (1,2 /5,1/8)  (1,1,3/11)  
error  6.1915  7.0750  11.1091 

 

Example 4.6 Our last example is Test 4.1 from (Dehghan and Hashemi, 2006). Consider the FFSLE 

of size 3 3  with the following matrices: 

 

 

 

19 12 6

2 4 1.5 , 1897 434.5 535.5 ,

2 2 4.5

1 1.5 0.5

0.1 0.1 0.2 , 427.7 76.2 88.3 ,

0.1 0.1 0.1

1 1.5 0.2

0.1 0.4 0.2 , 526.2 109.3 131.9 .

0.2 0.3 0.1

T

T

T

A b

M h

N g

 
 

= =
 
  

 
 

= =
 
  

 
 

= =
 
  

 

Refer to Table 6 for the solutions and corresponding errors. For this problem, we take the first 

Lh  as 0.5  to speed up the process. In this case, there is an improvement in the error. 

 

Table 6. Solutions of Example 4.6 

 Approximate solution 

reported in (Dehghan and 

Hashemi, 2006) 

Approximate solution 

reported in (Ezzati et al., 

2014) 

Approximate solution 

using proposed method 

1 1 1( , , )x y z  (37.0000,7.0000,13.3016)  (37.9237,10.1207,10.1207)  (37.0000,9.6825,10.8616)  

2 2 2( , , )x y z  (62.0000,5.5000,4.5794)  (61.8675,5.0181,5.0181)  (62.0000,4.4591,7.5356)  

3 3 3( , , )x y z  (75.0000,10.2000,13.9196)  (75.5411,12.0458,12.0458)  (75,7.0935,8.4877)  

error  70.2364  52.4729  51.5282  

 

 

5. Conclusions and Recommendations 

 

We present an approach to compute approximate solutions of FFSLEs, where components are 

triangular FNs. The proposed numerical method appears as a strong alternative when exact solutions 

of large dimension systems of equations whose parameters cannot be given as precise numbers cannot 

be obtained. This method first solves a large number of possible equations and then obtains very large 

ranges of solutions. After that, it tries to reduce the error by narrowing these ranges. The algorithm is 
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implemented and successfully tested by solving numerous benchmark problems. At first glance, it 

appears that our algorithm reduces the total error of the approximate solutions obtained with the 

existing techniques. Also, we can safely assume that a large total error value will occur with our 

algorithm when FFSLEs have no solution.  

Under certain conditions, the proposed methodology can be extended to intuitionistic systems 

by applying it to two separate systems. Additional application areas include dual, non-linear, and 

matrix equation systems. Extensions to the other cases are reserved for future research.   
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