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Abstract 

 
Robotic swarms have been modeled in a myriad of ways. One property of the swarms is their multitude. 

As their numbers increase to uncountable numbers, the thermostatistical mechanics may come into play. 

Authors took advantage of this fact so as to generate global statistics for the swarm. Three distinct 

ensembles are explained and formulated. When isolated, the swarms behave as if microcanonical 

ensemble reigns. But when a predator or a prey appears, transitions are observed depending on the 

conditions. Therefore, both the formulations and the transitions are all contingent. Finally, observed 

probabilities were discussed. 
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Sürüler Probleminin Topluluk Bağlamı Açısından Modellenmesi 

 

Öz 

 
Sürü robotları yüzlerce farklı şekilde modellenmiştir. Kalabalık olmaları sürülerin bir özelliğidir. 

Sayılamayacak kadar çok sayıya ulaştıklarında, termo-istatiksel mekanik devreye girebilir. Yazarlar bu 

avantajı kullanarak sürü robotları için evrensel istatistik oluşturmak istediler. Üç temel topluluk açıklandı 

ve formüle edildi. Sürüler izole edildiklerinde mikrokanonik uyum ortama hakim olurken, ortama av veya 

avcı girişi olur ise, duruma bağlı olarak değişimler gözlemlenir. Bu yüzden formulasyonlar ve geçişler 

şarta bağlıdır. Son olarak gözlemlenen olasılıklar tartışıldı.  

 
Anahtar Kelimeler: Sürü modellemesi, İstatistiksel fizik, Genel uyumlar, Robotik 
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1. INTRODUCTION 
 

Swarms so far have been modeled through a 

multitude of techniques in literature. These 

techniques range from stability analyses to 

modeling biological inspired swarms, and particle 

swarm optimization. To exemplify, Rauch, 

Millanos, and Chialvo have studied pattern 

formation by mean-field stability analysis [1]. 

They generated a Langevin like equation for 

motion of particles. Another modeling study 

published by Matinoli, Easton, and Agassaunon 

mentions distributed control of robots in a case 

study of collaboratively completing a given task. 

They introduced a research which concerned with 

probabilistic and non-spatial model of swarm 

robotics. This research was not interested in spatial 

distribution or trajectories of robots [2]. 

Additionally, Chen and Fang have investigated 

collective behavior of social foraging swarms with 

the help of Lyapunov stability theory [3]. Arlotti, 

Deutsch, and Lachowicz have proposed a 

Boltzmann-type mathematical swarm model for 

groups of agents moving orderly into the same 

direction [4]. More over most of the other 

publications have made use of Particle Swarm 

Optimization (PSO) [5-9]. Even though there is a 

plethora of literature modeling dynamics down to 

particle scale, none of them has dealt with particle 

locations specified by probability functionals. 

Probability functionals may be acquired in many 

ways. One of these ways is by means of 

thermostatistical mechanics. 

 

When one scours through the articles about 

modeling by ensembles, it may easily be seen that 

ensembles are being used in different branches of 

science from astrophysics to food chemistry. To 

name a few, Zhang has created a canonical 

ensemble model in order to examine the statistical 

significance of the quantum tunneling radiation 

spectrum [10,12]. Roman and Dukelsky have 

introduced grand canonical and canonical 

ensemble modeling in order to detect the low 

energy excited states in the pairing model of 

superconductivity (Bardeen-Cooper-Schrieffer 

model) [11]. The main objective of Nogawa, Ito, 

and Watanabe was to investigate the evaporation-

condensation transition of the Potts model. In 

accordance with this purpose, an intrinsically 

system-size-dependent discrete transition between 

supersaturation state and phase-separation state has 

been surveyed in the microcanonical ensemble 

[13]. Wang and Yang have aimed at improving the 

capability of numerical calculation on statistical 

model with large lattice sizes by means of 

microcanonical ensemble theory [14]. Hilbert and 

Dunkel have introduced one-dimensional 

evaporation model and they have analyzed this 

model by calculating thermodynamic functions 

both for microcanonical and canonical ensembles. 

By doing so, they have analogized and exemplified 

the differences between the microcanonical and 

canonical ensembles [15]. Alkhimov has submitted 

a d-dimensional model of the canonical ensemble 

of open self-avoiding strings [16]. Knani, 

Khalfaoui, Hachicha, Ben Lamine, and Mathlouthi 

have used grand canonical ensemble in food 

chemistry for modeling of water vapor adsorption 

on food products [17]. Knani, Mathlouthi, and Ben 

Lamine have delved into the peripheral mechanism 

of taste perception by the aid of grand canonical 

ensemble [18]. But none yet may be found on 

swarm modeling.  

 

In this paper, the authors have modeled the swarm 

behavior using ensembles within the 

thermostatistical mechanics framework. The 

classical statistical mechanics have three formally 

posed ensembles, i.e. microcanonical, canonical 

and grand canonical ensembles. Each of the three 

ensembles will be explained below. 

 

2. ENSEMBLES 

 
In statistical mechanics, a little is known about a 

system when a system is defined as one particle. 

This knowledge however, is not enough to 

describe exact state the system is in. Therefore, 

using an N number of same structure particle 

system and observing average behavior in distinct 

probable states provides more information. Such 

systems are called ensembles [19]. 

 

Statistical mechanics does not govern the cases 

where one or more but limited number of particles 

is involved. Knowing how many particles hit 



Çağatay KOK, Seven Burçin ÇELLEK, Çağlar KOŞUN, Serhan ÖZDEMİR 

Ç.Ü. Müh. Mim. Fak. Dergisi, 31(ÖS 2), Ekim 2016 ÖS 231 

boundary walls of a system is more of a concern 

than knowing when one specific particle hits the 

walls [20]. 

 

2.1. Microcanonical Ensemble 

 
Microcanonical ensemble can be described as a 

system insulated from energy and particle transfer, 

with a known internal energy denoted by “U” [21]. 

All state probabilities are equal to each other and is 

equal to pi = 1/W, where W is number of the 

states. Also, its temperature is given as it follows. 

 
1

T
   

 SB 

 U
 k

 ln 

 U
 (1) 

 
T  = Temperature 

SBG  = Boltzmann-Gibbs Entropy 

U  = Total Energy of the System 

k  = Boltzmann constant 

W  = Number of States 

 

 
Figure 1. Representation of microcanonical 

ensemble 

 

It can be imagined as an insulated box, shown in 

Figure 1, with N particles in it, and walls to be 

assumed rigid and smooth in order to talk about 

energy conservation when particles bump to the 

walls of box [20]. 

 

2.2. Canonical Ensemble 

 

Canonical ensemble, in Figure 2, is a system that 

consists of N many particles and is in thermal 

equilibrium with a heat bath. Energy transfer is 

allowed with the heat bath, but particle transfer is 

impermissible. Heat bath can be described as a 

system with a relatively large heat capacity, in so 

much that its temperature remains constant in spite 

of any energy transfer [22]. Since the energy 

transfer can be shown between the system and the 

heat bath, exact energy of the system is unknown. 

 

 
Figure 2. Representation of canonical ensemble 

 
However, mean energy U of the system can be 

calculated as it follows. 
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U  = Mean Energy of the System 

pi  = Probability of The States 

Ei  = Energy Eigenvalue 

W  = Number of States 

   = Lagrange Parameter 

ZBG  = Partition Function 

FBG  = Helmholtz Free Energy 

 

2.3. Grand Canonical Ensemble 

 

Grand canonical ensemble is a statistical ensemble 

whose particle number N is also given in form of 

average as well as its mean energy U. It means, a 

grand canonical ensemble can exchange particles 

with a reservoir. This reservoir can also act as a 
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heat bath, thus allows energy transfer as well [23]. 

Simply, a grand canonical can be seen in Figure 3 

as an open system in contact with a reservoir [22]. 

 

 
Figure 3. Representation of grand canonical 

ensemble 

 

3.  ENERGY AND MASS CONCEPTS 

IN SWARMS 
 

Next, the authors wish to proceed by representing 

the swarms as a collection of particles, with a 

difference that they will be cast in ensembles. As 

may be read below, the differences and 

equivalences in ensembles appear as the 

occurrence of both the prey and the hunter. Prey 

and the hunter have an effect on swarm, and it can 

be described as a form of energy. 

 

Other factors, such as environmental interactions, 

leadership disputes, etc. may also be described as 

disturbance and/or energy, and are omitted for the 

clarity of the thesis of this paper. 

 

 
Figure 4. Swarm in microcanonical state 

A swarm shows microcanonical characteristics 

when it is away from interactions of prey and/or 

hunter. There are no external influences on the 

swarm, and the swarm acts as if it is an isolated 

system, Figure 4. 

 

All by itself, a microcanonical ensemble model 

would simply state that any formation is equally 

likely, and no preference of a particular 

configuration is observed. Its internal energy is 

constant; a minute temperature fluctuation is 

observed. Temperature may substitute for any state 

of the swarm, such as average speed, average 

distance, etc. 

 

Aside from environmental interactions, leadership 

disputes, and all other psychologic reasons can be 

described as energy. 

 

A swarm shows microcanonical characteristics 

when it is away from interactions of prey or 

hunter. There is no influence on swarm, and swarm 

acts as if it is an isolated system. 

 

4.  SWARM CAST IN ENSEMBLES, 

AND ENSEMBLE TRANSITIONS 
 

4.1. Microcanonical to Canonical Ensemble 

Transitions 

 

Transitions from the microcanonical to the 

canonical ensemble, and therefore the 

representation swarms in the canonical ensemble 

framework are given in the following two 

categories. These categories are heat dissipation 

and contraction, and heating and expansion as 

follows. 

 

4.1.1. Heat Dissipation and Contraction: The 

Prey 
 

When the swarm finds a prey, probabilities in 

phase space change. Probabilities of the states 

close to the prey builds up, Figure 5, and it 

becomes likely to see more agents around the prey. 

Interactions between a swarm and a prey   force 

the swarm to congregate at the location where the 

prey is.  This shrinking in effective swarm radius 
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is an expected result of the energy dissipation from 

the system. Then it can be said that the presence of 

prey (food) has an effect of cooling on system. 

 

 

 
Figure 5. Swarm in canonical state, interaction 

with prey 

 
4.1.2. Heating and Expansion: The Predator 

 
When it comes to the interactions between the 

swarm and the predator, the swarm tries to get 

away and expand. This scene is similar to 

heating of the system.  The state probabilities 

around the predator go to lower values, Figure 

6, and the agents may tend to isolate the 

hunter, leaving a void around it, or flee from 

that location depending on the swarm size. 

 

 
Figure 6. Swarm in canonical state, interaction 

with hunter 

4.2.  Canonical to Grand Canonical Ensemble 

Transition 

 
There may be multiple ways where a grand 

canonical ensemble appears. One such case may be 

observed when two swarms start mingling. If the 

agents of these two swarms are identical, but 

assumes a predator role, not only an exchange of 

particles but loss of agents may be observed. Or 

simply that the swarm loses an agent, since it is a 

particle transfer, a loss or a gain of an agent can be 

defined as another transition, in this case, from 

canonical to grand canonical ensemble.  

 

4.3. The Probabilities 

 
The probabilities change after the transition from 

microcanonical to canonical ensemble. The 

probabilities that were originally uniform now 

become nonuniform. The probabilities of the states 

in canonical ensemble are functions of energy and 

the pseudo temperatures of those states, hence 

nonuniform. Temperature gradient (or speed 

gradient) is the cause of the new probability 

distribution. 

 

Local interactions can be described as energy 

fluctuations when mass of hunter or prey is 

negligible compared to total mass of the swarm. 
This may very well be pronounced as ensemble 

equivalence. 

 

5. CONCLUSION 

 
In this study, the behavior of the collection of 

particles i.e. swarms is evaluated in 

thermostatistical mechanics framework. Statistical 

ensembles are utilized to describe the behaviors of 

those particles and, hence this study focuses on 

modeling the swarm problem in the statistical 

ensembles. The authors deal with the swarm 

problem in three widely known statistical 

ensembles i.e. microcanonical, canonical and 

grand-canonical, each of which approaches the 

swarms in a different point of view. The initial 

state of the swarms is described within 

microcanonical ensemble where the agents of the 

swarms are isolated, Figure 4. In the following 
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scenarios, the transition from microcanonical to 

canonical and then to grand canonical ensembles 

are discussed in this paper. The scenarios of the 

transitions between the ensembles are illustrated 

and explained over predator, prey and swarm 

agents. It is assumed that the effects of prey and 

predator emerge in the form of energy. Thus, in the 

canonical ensemble context, the interaction 

between the swarm and the prey or predator would 

change the probabilities in the phase space, 

exhibiting the heating or cooling effects on the 

system, similar to Figure 5, and Figure 6. In grand 

canonical case, exchange of particles is also 

crucial, and in this paper, in the form of loss or 

gain of the agents is considered in the grand 

canonical ensemble. The authors believe that this 

new approach could deliver the researchers a tool 

that could bring in also a new insight regarding 

swarm behavior. 
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