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Abstract: In this study, we define the concept of tangent in two and three-dimensional alpha spaces

concerning the alpha circles and the alpha spheres. Then using this concept, we derive the alpha distance

formulae between points, a point and a line, between two lines and a point and a plane of the alpha spaces.

Finally, we give simple area and volume formulas in the three dimensional space in terms of the alpha

distances.
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1. Introduction
Metrics with their special properties have been very important keys for many application areas

during the recent years. There are many metrics used in the mathematics (see [8]) to measure

the distance (similarity or dissimilarity) between points (or vectors). These measurements are

important for determining how closely related two pieces of data are in statistical analysis. The

alpha metric (α -metric) is a generalization of two famous metrics known as the taxicab and the

Chinese checker metric which are used in such applications. They are very suitable for new studies

since it includes infinitely many metrics in which the alpha can be considered as a weight that

can reflect relative importance of different criteria or dimensions. On the other hand, the derived

conclusions are rather wide (for example see [6, 7, 9]).

On the road to the alpha metric, first Menger introduced the taxicab geometry using the

taxicab metric [14], and Krause took the first steps to develop it [13]. The taxicab metric is the

special case of the lp -metric for p = 1 . In [13], Krause asked how to develop a distance function

from a point to another which measures the length of ways mimicking the movements of the

Chinese checkers in the Cartesian coordinate plane. Then, Chen answered this question defining

the Chinese checker metric [2]. After a while, the α -metric for α ∈ [0, π
4
] , which includes the

taxicab and Chinese checker metrics as special cases for α = 0 and α = π
4

, defined by Tian [15].
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Later, Gelişgen and Kaya gave n -dimensional α -metric [11, 12]. Finally, Çolakoğlu expanded the

interval α ∈ [0, π
4
] to α ∈ [0, π

2
) for the α -metric [3].

Figure 1: The distances between two points

Geometrically, the α -distance between two points in the plane, is the sum of Euclidean

lengths of line segments joining the points, one of which is parallel to a coordinate axis and the

other one is parallel to a line making angle α with the other coordinate axis (see Figure 1). So

far many studies have been done on this topic (see [1, 4–7, 9, 10]). In this study, we determine the

α -distance formulae between two basic elements such as points, lines and planes, whose Euclidean

analogs are well-known already, and give simple area and volume formulas in the three dimensional

alpha space.

2. Preliminaries

For the positive real number λ(α) = (secα−tanα) , where α ∈ [0, π
2
) , the α -distance between points

P1 = (x1, y1) and P2 = (x2, y2) in the plane is

dα(P1, P2) =max{∣x1 − x2∣ , ∣y1 − y2∣} + λ(α)min{∣x1 − x2∣ , ∣y1 − y2∣} . (1)

Clearly, the unit α -circle has the following equation:

max{∣x∣ , ∣y∣} + λ(α)min{∣x∣ , ∣y∣} = 1. (2)

One can see that in the plane; if α ∈ (0, π
2
) , the unit α -circle is an octagon (see Figure 2)

having corners C1 = (1,0) , C2 = ( 1τ ,
1
τ
) , C3 = (0,1) , C4 = (−1τ , 1

τ
) , C ′1 , C ′2 , C ′3 , C ′4 , where C ′i are

the symmetric points of Ci about the origin and τ = 1+λ(α) . In addition, if α = π
4

then the unit

α -circle is a regular octagon with the same vertices, and if α = 0 , the unit α -circle is a square

having corners C1 , C ′1 , C3 , C ′3 .

Similarly, the α -distance between points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in the three

dimensional space is

dα(P1, P2) =∆P1P2 + λ(α)δP1P2 , (3)
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Figure 2: The unit α -circles for α = 0, α = π
4

and α → π
2

where

∆P1P2 = max{∣x1 − x2∣ , ∣y1 − y2∣ , ∣z1 − z2∣} , (4)

δP1P2 = min{∣x1 − x2∣ + ∣y1 − y2∣ , ∣x1 − x2∣ + ∣z1 − z2∣ , ∣y1 − y2∣ + ∣z1 − z2∣}, (5)

and the unit α -sphere has the following equation:

max{∣x∣ , ∣y∣ , ∣z∣} + λ(α)min{∣x∣ + ∣y∣ , ∣x∣ + ∣z∣ , ∣y∣ + ∣z∣} = 1. (6)

One can also see that in three dimensional space; if α ∈ (0, π
2
) then the unit α -sphere is

deltoidal icositetrahedron (see Figure 3) having corners S1 = (1,0,0) , S2 = (0,1,0) , S3 = (0,0,1) ,

S4 = ( 1τ ,
1
τ
,0) , S5 = (−1τ , 1

τ
,0) , S6 = ( 1τ ,0,

1
τ
) , S7 = (−1τ ,0, 1

τ
) , S8 = (0, 1

τ
, 1
τ
) , S9 = (0, −1τ , 1

τ
) ,

S10 = ( 1τ ,
1
τ
, 1
τ
) , S11 = (−1τ , 1

τ
, 1
τ
) , S12 = (−1τ , −1

τ
, 1
τ
) , S13 = ( 1τ ,

−1
τ
, 1
τ
) , S′1, S′2, S′3, S′4, S′5, S′6,

S′7, S′8, S′9, S′10, S′11, S′12, S′13 , where S′i are the symmetric points of Si about the origin and

τ = 1 + λ(α) , if α ∈ (0, π
2
) then the unit α -sphere is a regular octahedron.

Figure 3: The unit α -spheres for α = 0, α = π
4

and α → π
2
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3. Main Results
We use the tangent notion to determine α -distance formulae. As a natural analog of the tangent

notion in the Euclidean geometry, a line whose α -distance from the center of a given α -circle is the

radius of the α -circle, is called a tangent to the α -circle, and a line or a plane whose α -distance

from the center of a given α -sphere is the radius of the α -sphere, is called a tangent line or tangent

plane to the α -sphere. For instance, in Figure 4, while the lines l1 and l2 are tangent to the α -circle

with center P1 ; the lines l3 , l4 , and the planes Ω1 , Ω2 are tangent to the α -sphere with center P2 .

Figure 4: Tangent lines and planes to a α -circle and a α -sphere

Before we start determining the α -distance formulae, let us define three following vector

sets that we will use in the proofs as V1 , V3 , V2 , respectively:

{(1,0), (0,1), (1,1), (−1,1)} ,

{(1,0,0), (0,1,0), (0,0,1), (1,1,0), (−1,1,0), (1,0,1), (−1,0,1), (0,1,1), (0,−1,1)} ,

V3 ∪ {(1,1,1), (-1,1,1), (1,−1,1), (1,1,−1)} .

The formula of the α -distance between a point and a line is given by the following proposi-

tion:

Proposition 3.1 The α-distance between a point P = (x0, y0) and a line l ∶ Ax +By +C = 0 in

R2 is

dα(P, l) =
∣Ax0 +By0 +C ∣

max{∣A∣ , ∣B∣ , ∣A∓B∣
1+λ(α)}

. (7)

Proof It is clear that
dα(P, l) =min{dα(P,X) ∶X ∈ l} ,

which is equal to the radius of the α -circle with center P , that is tangent to the line l . So, a

corner of the α -circle is on l and one of the lines lv ∶ β(tv) = (x0, y0) + vtv passing the point P
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having the direction vector v ∈ V1 . Therefore, at least one of the points Qv = l ∩ lv exists, and l

is tangent to the α -circle at one of them. So, we have

dα(P, l) =min{dα(P,Qv) ∶ v ∈ V1)}.

One can find that

Q(1,0) = (x0 + t(1,0), y0) ,Q(0,1) = (x0, y0 + t(0,1)) ,

Q(1,1) = (x0 + t(1,1), y0 + t(1,1)) ,Q(−1,1) = (x0 + t(−1,1), y0 + t(−1,1)) ,

where tv = −Ax0−By0−C
⟨(A,B),v⟩ .

If the line l is not parallel to the lines lv , where v ∈ V1 , then all of the points Qv can be

obtained and one gets
dα(P,Q(1,0)) = ∣t(1,0)∣ =

∣Ax0 +By0 +C ∣
∣A∣

,

dα(P,Q(0,1)) = ∣t(0,1)∣ =
∣Ax0 +By0 +C ∣

∣B∣
,

dα(P,Q(1,1)) = ∣t(1,1)∣ (1 + λ(α)) =
∣Ax0 +By0 +C ∣
∣A +B∣ /(1 + λ(α))

,

dα(P,Q(−1,1)) = ∣t(−1,1)∣ (1 + λ(α)) =
∣Ax0 +By0 +C ∣
∣−A +B∣ /(1 + λ(α))

.

Then one has

dα(P, l) =min{ ∣Ax0+By0+C∣
∣A∣ , ∣Ax0+By0+C∣

∣B∣ , ∣Ax0+By0+C∣
∣A+B∣/(1+λ(α)) ,

∣Ax0+By0+C∣
∣A−B∣/(1+λ(α))} ,

and

dα(P, l) =
∣Ax0 +By0 +C ∣

max{∣A∣ , ∣B∣ , ∣A∓B∣
1+λ(α)}

.

Other conditions do not change the result. ◻

The α -distance between two parallel lines in the plane can be determined by the following

formula:

Corollary 3.2 The α-distance between l1 ∶ Ax +By +C1 = 0 and l2 ∶ Ax +By +C2 = 0 in R2 is

dα(l1, l2) =
∣C1 −C2∣

max{∣A∣ , ∣B∣ , ∣A∓B∣
1+λ(α)}

. (8)

The three dimensional case is similar. One can consider an α -sphere instead of an α -circle.

The α -distance from a point to a plane or a line is equal to the radius of the widening α -sphere
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when the plane or the line becomes tangent to the α -sphere. The following proposition states a

formula for the α -distance between a point and a plane in three-dimensional space:

Proposition 3.3 The α-distance between the point P = (x0, y0, z0) and the plane Ω ∶ Ax +By +

Cz +D = 0 in R3 is

dα(P,Ω) =
∣Ax0 +By0 +Cz0 +D∣

max{∣K ∣ , ∣K∓L∣
1+λ(α) ,

∣K+L∓M ∣
1+2λ(α) } ,

(9)

where K,L,M ∈ {A,B,C} and K ≠ L ≠M ≠K .

Proof It is obvious that

dα(P,Ω) =min{dα(P,X) ∶X ∈ Ω} ,

which is equal to the radius of the α -sphere with center P , that is tangent to the plane Ω . So, at

least one vertex of the α -sphere is on Ω and one of the lines lv ∶ β(tv) = (x0, y0, z0) + vtv passing

the point P having direction vector v ∈ V2 . Therefore, at least one of the points Qv = Ω ∩ lv

exists, and Ω is tangent to the α -sphere at one of them. So, we have

dα(P,Ω) =min{dα(P,Qv) ∶ v ∈ V2}.

One can find that

Q(1,0,0) = (x0 + t(1,0,0), y0, z0) , Q(0,1,0) = (x0, y0 + t(0,1,0), z0) , Q(0,0,1) = (x0, y0, z0 + t(0,0,1)) ,

Q(1,1,0) = (x0 + t(1,1,0), y0 + t(1,1,0), z0) , Q(−1,1,0) = (x0 − t(−1,1,0), y0 + t(−1,1,0), z0) ,

Q(1,0,1) = (x0 + t(1,0,1), y0, z0 + t(1,0,1)) , Q(−1,0,1) = (x0 − t(−1,0,1), y0, z0 + t(−1,0,1)) ,

Q(0,1,1) = (x0, y0 + t(0,1,1), z0 + t(0,1,1)) , Q(0,−1,1) = (x0, y0 − t(0,−1,1), z0 + t(0,−1,1)) ,

Q(1,1,1) = (x0 + t(1,1,1), y0 + t(1,1,1), z0 + t(1,1,1)) ,

Q(−1,1,1) = (x0 − t(−1,1,1), y0 + t(−1,1,1), z0 + t(−1,1,1)) ,

Q(1,−1,1) = (x0 + t(1,−1,1), y0 − t(1,−1,1), z0 + t(1,−1,1)) ,

Q(1,1,−1) = (x0 + t(1,1,−1), y0 + t(1,1,−1), z0 − t(1,1,−1)) ,

where tv = −Ax0−By0−Cz0−D
⟨(A,B,C),v⟩ .

Thus, if the plane Ω is not parallel to the lines lv where v ∈ V2 , then all of the points Qv
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exist and we obtain

dα(P,Q(1,0,0)) = ∣t(1,0,0)∣ = ∣Ax0+By0+Cz0+D∣
∣A∣ ,

dα(P,Q(1,0,0)) = ∣t(0,1,0)∣ = ∣Ax0+By0+Cz0+D∣
∣B∣ ,

dα(P,Q(1,0,0)) = ∣t(0,0,1)∣ = ∣Ax0+By0+Cz0+D∣
∣C∣ ,

dα(P,Q(1,1,0)) = ∣t(1,1,0)∣ (1 + λ(α)) = ∣Ax0+By0+Cz0+D∣
∣A+B∣/(1+λ(α)) ,

dα(P,Q(−1,1,0)) = ∣t(−1,1,0)∣ (1 + λ(α)) = ∣Ax0+By0+Cz0+D∣
∣−A+B∣/(1+λ(α)) ,

dα(P,Q(1,0,1)) = ∣t(1,0,1)∣ (1 + λ(α)) = ∣Ax0+By0+Cz0+D∣
∣A+C∣/(1+λ(α)) ,

dα(P,Q(−1,0,1)) = ∣t(−1,0,1)∣ (1 + λ(α)) = ∣Ax0+By0+Cz0+D∣
∣−A+C∣/(1+λ(α)) ,

dα(P,Q(0,1,1)) = ∣t(0,1,1)∣ (1 + λ(α)) = ∣Ax0+By0+Cz0+D∣
∣B+C∣/(1+λ(α)) ,

dα(P,Q(0,−1,1)) = ∣t(0,−1,1)∣ (1 + λ(α)) = ∣Ax0+By0+Cz0+D∣
∣−B+C∣/(1+λ(α)) ,

dα(P,Q(1,1,1)) = ∣t(1,1,1)∣ (1 + 2λ(α)) = ∣Ax0+By0+Cz0+D∣
∣A+B+C∣/(1+2λ(α)) ,

dα(P,Q(−1,1,1)) = ∣t(−1,1,1)∣ (1 + 2λ(α)) = ∣Ax0+By0+Cz0+D∣
∣−A+B+C∣/(1+2λ(α)) ,

dα(P,Q(1,−1,1)) = ∣t(1,−1,1)∣ (1 + 2λ(α)) = ∣Ax0+By0+Cz0+D∣
∣A−B+C∣/(1+2λ(α)) ,

dα(P,Q(1,1,−1)) = ∣t(1,1,−1)∣ (1 + 2λ(α)) = ∣Ax0+By0+Cz0+D∣
∣A+B−C∣/(1+2λ(α)) .

Therefore, we get

dα(P,Ω) =min{ ∣Ax0+By0+Cz0+D∣
∣K∣ , ∣Ax0+By0+Cz0+D∣

∣K∓L∣/(1+λ(α)) , ∣Ax0+By0+Cz0+D∣
∣K+L∓M ∣/(1+2λ(α))}

and so

dα(P,Ω) =
∣Ax0 +By0 +Cz0 +D∣

max{∣K ∣ , ∣K∓L∣
1+λ(α) ,

∣K+L∓M ∣
1+2λ(α) } ,

where K,L,M ∈ {A,B,C} and K ≠ L ≠M ≠K . Other conditions do not change the result. ◻

The α -distance between two parallel planes in three-dimensional space can be given as

follows:

Corollary 3.4 The α-distance between Ω1 ∶ Ax+By+Cz+D1 = 0 and Ω2 ∶ Ax+By+Cz+D2 = 0

in R3 is

dα(Ω1,Ω2) =
∣D1 −D2∣

max{∣K ∣ , ∣K∓L∣
1+λ(α) ,

∣K+L∓M ∣
1+2λ(α) } ,

(10)
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where K,L,M ∈ {A,B,C} and K ≠ L ≠M ≠K .

The α -distance between a point and a line in three-dimensional space can be computed by

the formula given in the following proposition:

Proposition 3.5 The α-distance between the point P = (x0, y0, z0) and the line l passing through

the point P1 = (x1, y1, z1) , with the direction vector u = (u1, u2, u3) in R3 is

dα(P, l) = min
v∈V3

{max{∣ρi −
ui ⟨ρ,v⟩
⟨u,v⟩

∣} + λ(α)min{∣ρj −
uj ⟨ρ,v⟩
⟨u,v⟩

∣ + ∣ρk −
uk ⟨ρ,v⟩
⟨u,v⟩

∣}} , (11)

where ρ = (ρ1, ρ2, ρ3) = (x1 − x2, y1 − y2, z1 − z2) , and i, j, k ∈ {1,2,3} for i ≠ j ≠ k ≠ i .

Proof We get that

dα(P, l) =min{dα(P,X) ∶X ∈ l} ,

which is equal to the radius of the α -sphere with center P , that is tangent to the line l . One can

see that if the line l tangent to this α -sphere, at least one point on an edge of the sphere is on

both the line l and one of the planes Ωv passing P having the normal vector v ∈ V3 . Therefore,

at least one of the points Rv = l ∩Ωv exists, and l is tangent to the α -sphere at one of them. So,

we have

dα(P, l) =min{dα(P,Rv) ∶ v ∈ V3}.

Considering l ∶ β (t) = (x1 + tu1, y1 + tu2, z1 + tu3) and Ωv , one can find that

Rv = (x1 + u1tv, y1 + u2tv, z1 + u3tv),

where tv = ⟨ρ,v⟩⟨u,v⟩ , ρ = (ρ1, ρ2, ρ3) = (x0 − x1, y0 − y1, z0 − z1) and v ∈ V3. If the line l is not parallel
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to the planes Ωv , where v ∈ V3 , then all of the points Rv exist and we obtain

dα(P,R(1,0,0)) = max{∣ρ2 − u2

u1
ρ1∣ ∣ρ3 − u3

u1
ρ1∣} + λ(α)min{∣ρ2 − u2

u1
ρ1∣ ∣ρ3 − u3

u1
ρ1∣} ,

dα(P,R(0,1,0)) = max{∣ρ1 − u1

u2
ρ2∣ ∣ρ3 − u3

u2
ρ2∣} + λ(α)min{∣ρ1 − u1

u2
ρ2∣ ∣ρ3 − u3

u2
ρ2∣} ,

dα(P,R(0,0,1)) = max{∣ρ1 − u1

u3
ρ3∣ ∣ρ2 − u2

u3
ρ3∣} + λ(α)min{∣ρ1 − u1

u3
ρ3∣ ∣ρ2 − u2

u3
ρ3∣} ,

dα(P,R(1,1,0)) = max{k1, k2, k3} + λ(α)min{k1 + k2, k1 + k3, k2 + k3} , where ki = ∣ρi − ui(ρ1+ρ2)
u1+u2

∣

dα(P,R(-1,1,0)) = max{k1, k2, k3} + λ(α)min{k1 + k2, k1 + k3, k2 + k3} , where ki = ∣ρi − ui(−ρ1+ρ2)
−u1+u2

∣

dα(P,R(1,0,1)) = max{k1, k2, k3} + λ(α)min{k1 + k2, k1 + k3, k2 + k3} , where ki = ∣ρi − ui(ρ1+ρ3)
u1+u3

∣

dα(P,R(-1,0,1)) = max{k1, k2, k3} + λ(α)min{k1 + k2, k1 + k3, k2 + k3} , where ki = ∣ρi − ui(−ρ1+ρ3)
−u1+u3

∣

dα(P,R(0,1,1)) = max{k1, k2, k3} + λ(α)min{k1 + k2, k1 + k3, k2 + k3} , where ki = ∣ρi − ui(ρ2+ρ3)
u2+u3

∣

dα(P,R(0,-1,1)) = max{k1, k2, k3} + λ(α)min{k1 + k2, k1 + k3, k2 + k3} , where ki = ∣ρi − ui(−ρ2+ρ3)
−u2+u3

∣

Therefore, we get

dα(P, l) = min
v∈V3

{max{∣ρi −
ui ⟨ρ,v⟩
⟨u,v⟩

∣} + λ(α)min{∣ρj −
uj ⟨ρ,v⟩
⟨u,v⟩

∣ + ∣ρk −
uk ⟨ρ,v⟩
⟨u,v⟩

∣}} ,

where ρ = (ρ1, ρ2, ρ3) = (x1 − x2, y1 − y2, z1 − z2) , and i, j, k ∈ {1,2,3} for i ≠ j ≠ k ≠ i . Other

conditions do not change the result. ◻

The α -distance between two skew lines in three dimensional space can be determined by

the following proposition:

Proposition 3.6 Let

l1 ∶ β1 (t) = (x1, y1, z1) + t (u1, u2, u3) ,

l2 ∶ β2 (t) = (x2, y2, z2) + t (v1, v2, v3)

be two skew lines. Then the α-distance between l1 and l2 is

dα(l1, l2) =
∣(x1 − x2)µ(2,3) + (y1 − y2)µ(3,1) + (z1 − z2)µ(1,2)∣

max{∣µ(2,3)/λ1∣ , ∣µ(3,1)/λ2∣ , ∣µ(1,2)/λ3∣}
(12)

with µ(m,n) = umvn − unvm .

Proof Since the lines l1 and l2 are skew, there is only one plane Ω through l2 , parallel to l1 .

Then we have
dα(l1,Ω) = dα(P1,Ω)
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for any point P1 on l1 . Thus we get

dα(l1, l2) = dα(P1,Ω)

since there is an α -sphere whose center at l1 and radius dα(P1,Ω) , that is tangent to l2 . So, since

⟨P2X, (u1, u2, u3) × (v1, v2, v3)⟩ = 0

for X = (x, y, z) and P2 = (x2, y2, z2) on Ω , we get

(x − x2)µ(2,3) + (y − y2)µ(3,1) + (z − z2)µ(1,2) = 0,

where µ(m,n) = umvn − unvm , for the equation of the plane Ω . Therefore, by Proposition 3.3, one

gets

dα(l1, l2) = dα(P1,Ω) =
∣(x1 − x2)µ(2,3) + (y1 − y2)µ(3,1) + (z1 − z2)µ(1,2)∣

max{∣K ∣ , ∣K∓L∣
1+λ(α) ,

∣K+L∓M ∣
1+2λ(α) }

with K,L,M ∈ {µ(1,2), µ(3,1), µ(2,3)} and K ≠ L ≠M ≠K . ◻

Clearly, the distance formulae derived here give also the taxicab and Chinese checker distance

formulae when α = 0 and α = π
4

, respectively (see [4, 10]).

4. Area and Volume in Terms of the Alpha Distance

Here, we give an alpha version of the area and volume formulas in terms of the alpha distance

using the following equation which relates the Euclidean distance to the alpha distance between

two points in the three dimensional space.

Proposition 4.1 For any two points P1 and P2 in R3 , if u = (u1, u2, u3) is a direction vector

of the line through P1 and P2 , then

dE(P1, P2) = ρ(u)dα(P1, P2), (13)

where ρ(u) = (u2
1 + u2

2 + u2
3)1/2/(max{∣u1∣ , ∣u2∣ , ∣u3∣} + λ(α)min{∣u1 + u2∣ , ∣u1 + u3∣ , ∣u2 + u3∣}) .

Proof Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) . Then u = k(x1 − x2, y1 − y2, z1 − z2) for some

k ∈ R∗ . Since

dE(P1, P2)
dα(P1, P2)

=
∥u∥E
∥u∥α

,

we have

dE(P1, P2) = ρ(u)dα(P1, P2),
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where

ρ(u) =
∥u∥E
∥u∥α

= (u2
1 + u2

2 + u2
3)1/2

max{∣u1∣ , ∣u2∣ , ∣u3∣} + λ(α)min{∣u1 + u2∣ , ∣u1 + u3∣ , ∣u2 + u3∣}
.

◻
The following corollaries gives alpha versions of the standard area and volume formulas in

terms of alpha distances. The proofs are straightforward.

Corollary 4.2 Let PQR be a triangle with the area A in the three dimensional alpha space, and

let a = dα(Q,R) and h = dα(P,H) , where H is the Euclidean orthogonal projection of the point

P on the line QR . If u and v are direction vectors of the lines QR and PH , respectively, then

A = ah/2ρ(u)ρ(v).

Corollary 4.3 Let PQRS be a tetrahedron having the base QRS in the plane Ax+By+Cz+D = 0 ,

and let h = dα(P,H) , where H is the Euclidean orthogonal projection of the point P to the base.

If the area of the triangle QRS is A , then the volume of the tetrahedron is

V = Ah/3ρ(A,B,C).
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