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Abstract
A composition law, inspired by the Farey addition, is introduced on the set of Pythagorean triples. We
study some of its properties as well as two symmetric matrices naturally associated to a given Pythagorean
triple. Several examples are discussed, some of them involving the degenerated Pythagorean triple (1, 0, 1).
The case of Eisenstein triples is also presented.
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1. The Farey composition law on Pythagorean triples

Fix the set N2(<) := {(p, q) ∈ N∗ × N∗; p < q} and the map:

P : N2(<)→ (N∗)3, P (p, q) := (q2 − p2, 2pq, p2 + q2).

It is well-known that P provides a parametrization (up to a strictly positive multiplicative factor) of the set of
Pythagorean triples PT := {(a, b, c) ∈ (N∗)3; 2|b, a2 + b2 = c2}. If, in addition gcd(p, q) = 1 with 2 - (q − p) then
(a, b, c) is a primitive (i.e. gcd(a, b) = 1) Pythagorean triple.

The aim of this short note is to study the transport of a natural sum from N2(<) to PT . Namely, defining
(p, q)⊕ (p′, q′) := (p+ p′, q + q′) it follows the pair (PT,⊕) with:

(a, b, c, )⊕ (a′, b′, c′) := (a′′, b′′, c′′) = ((q + q′)2 − (p+ p′)2, 2(p+ p′)(q + q′), (p+ p′)2 + (q + q′)2).

More precisely, we have:

a′′ := a+ a′ + 2(qq′ − pp′), b′′ := b+ b′ + 2(pq′ + qp′), c′′ := c+ c′ + 2(qq′ + pp′). (1.1)

Remark 1.1. If the initial pair (p, q) from N2(<) is considered as the ratio p
q ∈ (0, 1) then the sum:

p

q
⊕ p′

q′
:=

p+ p′

q + q′
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is called the mediant in [1] due to the double inequality:

p

q
<
p+ p′

q + q′
<
p′

q′
.

But we prefer to use the name of Farey sum after [2, p. 209] although, obviously, the initial sum on N2(<) is the
restriction of the additive law of the real 2-dimensional linear space R2; another source for the applications of the
Farey sequences in hyperbolic dynamics is [3]. Our choice for this name is also inspired by the very nice picture of
page 23 from the book [4] illustrating a relationship between the circular Farey diagram and the Pythagorean triples.
We point out that a group structure on the subset of primitive Pythagorean triples is considered in [5]. 2

Properties 1.1. 1) The composition law ⊕ on PT is commutative but without a neutral element.
2) The height of the Pythagorean triple pt := (a, b, c) is h(pt) := c− b = (q− p)2. For our triple of Pythagorean triples
it follows:

h((pt)′′) = h((pt)′) + h(pt)− 2(q − p)(q′ − p′) < h((pt)′) + h(pt).

3) The usual CBS inequality provides an upper bound for the resulting Pythagorean triple in terms of the given
(a, b, c, ), (a′, b′, c′) ∈ PT :

a′′ < a+ a′ + 2
√
cc′, b′′ < b+ b′ + 2

√
cc′,

√
c′′ ≤

√
c+
√
c′ (1.2)

with equality in the last relation if and only if c = c′ which, in turn, yields c′′ = 4c = 4c′ as consequence of the
relation:

(a, b, c)⊕ (a, b, c) = 4(a, b, c).

2

Example 1.1. 1) Since (1, 3)⊕ (2, 3) = (3, 6) we have 2(4, 3, 5)⊕ (5, 12, 13) = 9(3, 4, 5).
2) The sum (1, 2)⊕ (1, 3) = (2, 5) gives (3, 4, 5)⊕ 2(4, 3, 5) = (21, 20, 29).
3) The restriction of the complex multiplication to the unit circle S1 gives a group multiplication on the set of all
Pythagorean triples:

(a, b, c)� (a′, b′, c′) = (aa′ − bb′, ab′ + a′b, cc′), (a, b, c)� (a, b, c) = (a2 − b2, 2ab, c2 = a2 + b2)

having as neutral element the degenerate Pythagorean triple (1, 0, 1) which can be considered as the image through
the map P of the pair (p̃, q̃) = (0, 1). For our sum we have:

(a, b, c)⊕ (1, 0, 1) = (a+ 2q + 1, b+ 2p, c+ 2q + 1), (3, 4, 5)⊕ (1, 0, 1) = 2(4, 3, 5).

4) Fix k ∈ N∗ and a triangle ∆. Then we call ∆ as being a k-triangle if its area A is k times its semi-parameter
s = 1

2 (a+ b+ c). Let us find the k-rectangular triangles for a prime number k. From ab = k(a+ b+ c) it results:

p(q − p) = k

with only two solutions:{
(p = 1, q = k + 1), (pt)1 = (k(k + 2), 2(k + 1), k2 + 2k + 2), A1 = k(k + 1)(k + 2),
(p = k, q = k + 1), (pt)2 = (2k + 1, 2k(k + 1), 2k2 + 2k + 1), A2 = k(k + 1)(2k + 1)

Hence, their Farey sum is:
(pt)1 ⊕ (pt)2 = (k + 1)2(3, 4, 5).

Also concerning the area there exist pairs of Pythagorean triples sharing it; for example the areaA = 210 is provided
by:

(p1 = 2, q1 = 5) (pt)1 = (21, 20, 29), (p2 = 1, q2 = 6), (pt)2 = (35, 12, 37)

and their Farey sum is:
(p = 3, q = 11), pt = 2(56, 33, 65).

5) Let (Fn)n∈N be the Fibonacci sequence and let p = pn := Fn+1 < q = qn := Fn+2. It results the n-Fibonacci-
Pythagorean triple (Fpt)n = (an, bn, cn):

an = FnFn+3, bn = 2Fn+1Fn+2, cn = F 2
n+1 + F 2

n+2
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for which we have the Farey sum of Fibonacci type:

(Fpt)n ⊕ (Fpt)n+1 = (Fpt)n+2.

6) Fix c a hypotenuse which as natural number has only two representations as sum of different squares; for example
65 = 12 + 82 = 42 + 72 or 145 = 12 + 122 = 82 + 92. Then we call the corresponding Pythagorean triples (a1, b1, c),
(a2, b2, c) as being hypotenuse − related and we can perform their Farey sum. For our examples above we have:{

(p1 = 1, q1 = 8)⊕ (p2 = 4, q2 = 7) = (p = 5, q = 15), (63, 16, 65)⊕ (33, 56, 65) = 50(4, 3, 5),
(p1 = 1, q1 = 12)⊕ (p2 = 8, q2 = 9) = (p = 9, q = 21), (143, 24, 145)⊕ (17, 144, 145) = 18(20, 21, 29).

The class of these c is provided by the expression c = pa1
1 p

a2
2 with p1 < p2 prime numbers of the form 4k + 1; recall

also that any prime number of the form 4k + 1 is a sum of two squares. Related to this discussion we recall that a
positive integer k is a sum of two triangular numbers:

k =
u(u+ 1)

2
+
v(v + 1)

2
(1.3)

if and only if 4k + 1 is a sum of squares; namely (1.3) implies 4k + 1 = (v − u)2 + (u+ v + 1)2. Hence this k with
u < v provides the Pythagorean triple:

(p = v − u < q = u+ v + 1), a = (2u+ 1)(2v + 1), b = 2(v − u)(u+ v + 1), c = 4k + 1. (1.4)

As example, c = 65 is provided by k = 16 which is generated by two triangular numbers:

u1 = 3 < v2 = 4, (a1, b1, c) = (63, 16, 65), u2 = 1 < v2 = 5, (a2, b2, c) = (33, 56, 65).

7) Fix 2N an even number and ask the given triangle has the perimeter 2s = 2N . It follows the quadratic Diophantine
equation:

q(p+ q) = N

which for some value of N has only two solutions; namely N ∈ {120, 180, 240, 252, 336, ...}. Then we call the
corresponding Pythagorean triples (a1, b1, c), (a2, b2, c) as being perimeter − related and we can perform their Farey
sum. For the example of N = 120 we have (p1 = 2 < q1 = 10) and (p1 = 7 < p2 = 8) and then:

23(12, 5, 13)⊕ (15, 112, 113) = 34(3, 4, 5).

Returning to the last inequality (1.2) the right-hand-side of it can be interpreted in terms of a quasi-arithmetic mean.
Fix an open real interval I and M : I × I → I a mean i.e. for any pair (x, y) ∈ I × I we have the double inequality:

min{x, y} ≤M(x, y) ≤ max{x, y}.

Recall also that M is called quasi-arithmetic if there exists a continuous and strictly monotonic function f : I → R
such that:

M(x, y) = Mf (x, y) := f−1
(
f(x) + f(y)

2

)
.

Hence, with I = R∗+ := (0,+∞) the last inequality (1.2) reads:

c′′ ≤ 4M√·(c, c
′).

2. Two symmetric matrices associated to a given Pythagorean triple

In the following we provide a matrix formalism associated to a given Pythagorean triple. Namely, the relations
(1.1) can be put into the form: a′′

b′′

c′′

 :=

 a
b
c

+

 a′

b′

c′

+ 2Γ ·
(
p′

q′

)
, Γ :=

 −p q
q p
p q

 ∈M3,2(Z∗).

The matrix Γ and its transpose Γt provides two new matrices.
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I) a symmetric 2× 2 one:

A := Γt · Γ =

(
2p2 + q2 pq

pq p2 + 2q2

)
=

(
c+ p2 b

2
b
2 c+ q2

)
∈ Sym(2,N∗),detA = 2c2 > 0.

Allowing the pair (p, q) to be a point in the Euclidean plane R2 then the map P is a regular parametrization from
R2 \ {(0, 0)} of the cone C : x2 + y2 − z2 = 0 (which can be called the Pythagorean cone) and hence A is exactly the
first fundamental form of this quadric in R3. Its coefficients of the fundamental forms are in the Gauss notation:{

E = 4(2p2 + q2), F = 4pq(= 2b), G = 4(p2 + 2q2)

L = 2
√
2p2

p2+q2 ≤ 2
√

2, M =
√
2pq

p2+q2

(
=
√
2
2 sinB <

√
2
2

)
, N = 2

√
2q2

p2+q2 ≤ 2
√

2.

Returning to the matrix A, recall after [6] that any symmetric 2× 2 matrix has two Hermitian parameters, one
real being half of its trace, and one complex, called Hopf invariant, which for our A is:

H(A) =
p2 − q2

2
− (pq)i =

1

2
(p− iq)2 ∈ C∗.

Let us remark that if p and q share the same parity (which means that (a, b, c) is not a primitive Pythagorean triple
since 2 divides also a) then H(A) is a Gaussian integer. Recall also that a proof of the fact that the map P is a
parametrization of the set PT is based exactly on the complex number (p+ iq)2 = 2H(A) since c = |2H(A)|. The
eigenvalues and associated eigenvectors of the matrix A are:

λ1 = c < λ2 = 2c, v̄1 = (−q, p) = −q + ip = i ·
√

2H(A), v̄2 = (p, q) = p+ iq =

√
2H(A).

So, the invertible matrix making A a diagonal one is: S =

(
−q p
p q

)
∈ GL(2,Z) ∩ Sym(2), S−1 = 1

cS ∈ GL(2,Q) ∩ Sym(2),

S−1 ·A · S = diag(c, 2c), H(S) = −q − pi, detS = −c < 0.

For example:

A(1, 0, 1) =

(
1 0
0 2

)
, S(1, 0, 1) =

(
−1 0
0 1

)
.

Recall that a matrix U ∈ GL(n,R) can be consider as corresponding to a mathematical game G(U) of two
persons, both having n strategies; then the value of this game is ([7, p. 449]) v(G(U)) = 1

s(U−1) where s(U−1) means
the sum of all elements of U−1. For the matrix A the value of its corresponding game is:

v(G(A)) =
2c2

3c− b
< c, v(G(p = 1, q = 2)) =

50

11
.

2

II) a symmetric 3× 3 one:
B := Γ · Γt =

 c 0 a
0 c b
a b c

 ∈ Sym(3,N∗),

1
cB =

 1 0 sin(∠A)
0 1 sin(∠B) = cos(∠A)

sin(∠A) sin(∠B) = cos(∠A) 1

 ∈ Sym(3) = Sym(3,R).

(2.1)

Again, its eigenvalues and associated eigenvectors are:

λ1 = 0 < λ2 = c < λ3 = 2c, v̄1 = (−a,−b, c), v̄2 = (−b, a, 0), v̄3 = (a, b, c).
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Hence, the invertible matrix making the matrix B a diagonal one is:
S =

 −a −b a
−b a b
c 0 c

 ∈ GL(3,Z) detS = −2c3 < 0,

S−1 = 1
2c2

 −a −b c
−2b 2a 0
a b c

 ∈ GL(3,Q), S−1 ·B · S = diag(0, c, 2c).

Recall also that a matrix from Sym(3) represents geometrically a conic, see for example [8]. The conic associated to
the matrix B reduces to the double point

(
−a

c ,−
b
c

)
∈ S1. For example:

B(1, 0, 1) =

 1 0 1
0 1 0
1 0 1

 , S(1, 0, 1) =

 −1 0 1
0 1 0
1 0 1

 .

Let us remark that the second matrix from the relation (2.1) yields the function:

f :
(

0,
π

2

)
→ Sym(3) \GL(3,R), f(t) :=

 1 0 sin t
0 1 cos t

sin t cos t 1


as restriction to (the first quadrant of) the unit circle S1 of the map F : R2 → Sym(3):

F (x, y) :=

 x2 + y2 0 y
0 x2 + y2 x
y x x2 + y2

 , detF (x, y) = (x2 + y2)2(x2 + y2 − 1),

F |C∗ : (x, y) = r(cosϕ, sinϕ), F (r, ϕ) := r

 r 0 sinϕ
0 r cosϕ

sinϕ cosϕ r

 ,detF (r, ϕ) = r4(r2 − 1).

The matrix S ∈ GL(3,R) making diagonal the symmetric matrix f(t) is: S(t) := 1
2

 − sin t − cos t 1
− sin 2t 2 sin2 t 0

sin t cos t 1

 , S−1(t) :=

 − sin t − cos t
sin t sin t

− cos t 1 cos t
1 0 1

 ,

S(t) · f(t) · S−1(t) = diag(0, 1, 2)

while the matrix S ∈ GL(3,R) making diagonal the symmetric matrix F |C∗ is: S(x, y) := 1
2r2

 −yr −xr r2

−2xy 2y2 0
yr xr r2

 , S−1(x, y) :=

 −y
r −x

y
y
r

−x
r 1 x

r
1 0 1

 ,

S(t) · F (r, ϕ) · S−1(t) = diag(r2 − r, r2, r2 + r).

From a differentiable point of view F is an immersion of R2 into R6 = Sym(3) since the rank of the Jacobian matrix
of F is 2. With the notation u = x2 + y2 the equation detF = 1, i.e. F (x, y) ∈ SL(3,R), means the cubic equation:

u3 − u2 − 1 =

(
u− 1

3

)3

− 1

3

(
u− 1

3

)
− 29

27
= 0

which admits only one real (and positive) solution u1 ' 1.4656. Naturally, we can associate the cubic (in fact elliptic)
plane curve:

C : v2 = u3 − u2 − 1

whose details can be found on: https://www.lmfdb.org/EllipticCurve/Q/496/e/1. 2

Returning to the case of 2× 2 matrices let us remark that the first part of relations (1.4) gives an affine map:(
u
v

)
→
(
p
q

)
:= C ·

(
u
v

)
+

(
0
1

)
, C :=

(
−1 1
1 1

)
.
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The eigenvalues of C and the square matrix S making C a diagonal one are:

λ1 = −
√

2 < λ2 =
√

2, S =

(
−1−

√
2
√

2− 1
1 1

)
, S−1 =

1

4

(
−
√

2 2−
√

2√
2 2 +

√
2

)
with S−1CS = diag(−

√
2,
√

2).

We finish this section by introducing a composition law on R∗+ = (0,+∞), inspired by the equality case discussed
in the Property 1.2.3):

x⊕F y := (
√
x+
√
y)2.

Apart from commutativity and x⊕F x = 4x we note the property cos2 t⊕F sin2 t = 1 + sin 2t.

3. The Farey sum of a class of Eisenstein triples

For the sake of completeness we present now the case of Eisenstein triples. Recall that an Eisenstein triangle has
an angle of 60◦. By supposing this angle to be ∠C it results:

a2 − ab+ b2 = c2

and hence, a Eisenstein triple is a triple of positive integers satisfying this Diophantine equation; then min{a, b} ≤
c ≤ max{a, b}. We point out that recently, the Eisenstein triples are used in [9] to characterize the bijective digitized
rotations on the hexagonal grid. Contrary to the Pythagorean case we have only a partial parametrization:

a = a(p, q) := q2 − p2, b = b(p, q) := 2pq − p2, c = c(p, q) := p2 + q2 − pq = (q − p)2 + pq (3.1)

and the limit case p = q gives the degenerate Eisenstein triple p2(0, 1, 1). Then we can define a Farey sum on the
class of (3.1) (p, q)-Eisenstein triples:

(a, b, c, )⊕ (a′, b′, c′) := (a′′, b′′, c′′) =

= ((q + q′)2 − (p+ p′)2, 2(p+ p′)(q + q′)− (p+ p′)2, (p+ p′)2 + (q + q′)2 − (p+ p′)(q + q′)). (3.2)

Example 3.1. 1) Since (p = 1, q = 2) yields the equilateral triangle 3(1, 1, 1) and (p = 1, q = 3) gives the Eisenstein
triple (8, 5, 7) we have:

(3, 3, 3)⊕ (8, 5, 7) = (21, 16, 19), (p′′ = 2, q′′ = 5).

2) Again (a, b, c)⊕ (a, b, c) = 4(a, b, c) and (a, b, c)⊕ (0, 1, 1) = (a+2(q−p), b+2q+1, c+p+ q+1) with the example
3(1, 1, 1)⊕ (0, 1, 1) = (5, 8, 7).

The matrix expression of the Farey sum (3.2) is: a′′

b′′

c′′

 :=

 a
b
c

+

 a′

b′

c′

+ Γ ·
(
p′

q′

)
, Γ :=

 −2p 2q
2(q − p) 2p
2p− q 2q − p

 ∈M3,2(Z).

The associated symmetric matrices are:
I)

A := Γt · Γ =

(
12(p2 − pq) + 5q2 −6p2 + 5pq − 2q2

−6p2 + 5pq − 2q2 5p2 + 4(2q2 − pq)

)
∈ Sym(2,Z)

with:
TrA = 17p2 − 16pq + 13q2, detA = 12(2p4 − 4p3q + 10p2q2 − 8pq3 + 3q4).

II)

B := Γ · Γt =

 4(p2 + q2) 4p2 −4p2 + 6pq − 2q2

4p2 4(2p2 − 2pq + q2) −6p2 + 10pq − 2q2

−4p2 + 6pq − 2q2 −6p2 + 10pq − 2q2 5p2 − 8pq + 5q2

 ∈ Sym(3,Z)

with:
TrB = 17p2 − 16pq + 13q2, detB = 48q(2p5 − 6p4q + 10p3q2 − 7p2q3 + q5).
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To the equilateral triangle 3(1, 1, 1) corresponds the matrices:
I)

A(p = 1, q = 2) =

(
8 −4
−4 29

)
∈ Sym(2,Z), λ1 =

37−
√

505

2
< λ2 =

37 +
√

505

2

with TrA = 37, detA = 63, Hopf invariant H(A) = − 21
2 + 4i and:

S =
1

8

(
21 +

√
505 21−

√
505

8 8

)
∈ GL(2,R), S−1 =

1

2
√

505

(
8
√

505− 21

−8
√

505 + 21

)
.

II)  B(p = 1, q = 2) =

 20 4 0
4 8 6
0 6 9

 ∈ Sym(3,Z),

λ1 ' 1.98 < λ2 ' 13.51 < λ3 ' 21.50, detB = 576 = 242.
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