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Abstract

A composition law, inspired by the Farey addition, is introduced on the set of Pythagorean triples. We
study some of its properties as well as two symmetric matrices naturally associated to a given Pythagorean
triple. Several examples are discussed, some of them involving the degenerated Pythagorean triple (1,0, 1).
The case of Eisenstein triples is also presented.
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1. The Farey composition law on Pythagorean triples
Fix the set N?(<) := {(p, ¢) € N* x N*; p < ¢} and the map:
P:N*(<) = (N")?, P(p,q) = (¢* — p*, 2pq,p” + ¢°).

It is well-known that P provides a parametrization (up to a strictly positive multiplicative factor) of the set of
Pythagorean triples PT := {(a,b,c) € (N*)3;2|b,a® 4+ b*> = ¢%}. If, in addition ged(p, ¢) = 1 with 2 4 (¢ — p) then
(a, b, c) is a primitive (i.e. ged(a, b) = 1) Pythagorean triple.

The aim of this short note is to study the transport of a natural sum from N?(<) to PT. Namely, defining
(p,q)® @, ¢) = (p+p,q+ )it follows the pair (PT, &) with:

(a,b,¢,) @ (a0, ¢) i= (a", 0", ¢") = (g + ) = (0+1)? 20+ D) a+d), (p+ 1) + (g + ).
More precisely, we have:
a":=a+d +2(q¢d —pp), V' :=b+V+20pd +q), " =c++2(qqd +pp). (1.1)
Remark 1.1. If the initial pair (p, ¢) from N?(<) is considered as the ratio £ € (0,1) then the sum:
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is called the mediant in [1] due to the double inequality:

9 q+4q q

s

+l /
p<pp p

But we prefer to use the name of Farey sum after [2, p. 209] although, obviously, the initial sum on N 2(<) is the
restriction of the additive law of the real 2-dimensional linear space R?; another source for the applications of the
Farey sequences in hyperbolic dynamics is [3]. Our choice for this name is also inspired by the very nice picture of
page 23 from the book [4] illustrating a relationship between the circular Farey diagram and the Pythagorean triples.
We point out that a group structure on the subset of primitive Pythagorean triples is considered in [5]. O

Properties 1.1. 1) The composition law @ on PT is commutative but without a neutral element.
2) The height of the Pythagorean triple pt := (a, b, c) is h(pt) := ¢ — b = (g — p)?. For our triple of Pythagorean triples
it follows:
h((pt)") = h((pt)") + h(pt) — 2(q — p)(¢" = P') < h((pt)") + h(pt).
3) The usual CBS inequality provides an upper bound for the resulting Pythagorean triple in terms of the given
(a,b,c,),(a',b,c) € PT:
' <a+d+2Ved, B <b+b +2Ved, V' <o+ (1.2)

with equality in the last relation if and only if ¢ = ¢/ which, in turn, yields ¢’ = 4c = 4¢’ as consequence of the
relation:
(a,b,c) @ (a,b,c) = 4(a,b,c).

O

Example 1.1. 1) Since (1, 3) @ (2,3) = (3,6) we have 2(4,3,5) @ (5,12,13) = 9(3,4, 5).

2) The sum (1,2) & (1,3) = (2,5) gives (3,4, 5) $ 2(4,3,5) = (21,20, 29).

3) The restriction of the complex multiplication to the unit circle S! gives a group multiplication on the set of all
Pythagorean triples:

(a,b,c) ® (a/,b,¢) = (ad’ — b, ab' +a'b,cc’), (a,b,c) ® (a,b,c) = (a® — b*,2ab, ¢* = a® + b*)

having as neutral element the degenerate Pythagorean triple (1,0, 1) which can be considered as the image through
the map P of the pair (p,¢) = (0, 1). For our sum we have:

(a,b,¢) ®(1,0,1) = (a+2¢+ 1,0+ 2p,c+2¢+1), (3,4,5) @ (1,0,1) =2(4,3,5).
4) Fix k € N* and a triangle A. Then we call A as being a k-triangle if its area A is k times its semi-parameter
s = 1(a+b+ c). Let us find the k-rectangular triangles for a prime number k. From ab = k(a + b + c) it results:
plg—p) =k
with only two solutions:

=k+1), (pt)1=(k(k+2),2(k+1),k*+2k+2), A =k(k+1)(k+2),
E+1), (pt)2=(2k+1,2k(k+1),2k> +2k+1), Ay =k(k+1)(2k+1)

Hence, their Farey sum is:
(pt)r @ (pt)2 = (k+1)%(3,4,5).
Also concerning the area there exist pairs of Pythagorean triples sharing it; for example the area A = 210 is provided

by:
(p1=2,¢1=5) (pt)1 =(21,20,29), (p2=1,2=6), (pt)2=(35,12,37)

and their Farey sum is:
(p=3,¢=11), pt=2(56,33,65).

5) Let (F},)nen be the Fibonacci sequence and let p = p,, := F,,41 < ¢ = ¢, := Fy42. It results the n-Fibonacci-
Pythagorean triple (Fpt), = (an,bn, cn):

an = FnFn+3a bn = 2Fn+1Fn+27 Cp = F7%+1 + F3+2



30 M. Crasmareanu

for which we have the Farey sum of Fibonacci type:

(Fpt)n S2) (Fpt)n-‘,-l = (Fpt)n—i-Q-

6) Fix c a hypotenuse which as natural number has only two representations as sum of different squares; for example
65 =12 4+ 82 = 42 + 7% or 145 = 12 + 122 = 8% + 92. Then we call the corresponding Pythagorean triples (a1, by, ¢),
(az,ba, c) as being hypotenuse — related and we can perform their Farey sum. For our examples above we have:

M=10=8)®(p=4,¢2=T7)=(p=5,q=15),(63,16,65) @ (33,56,65) = 50(4, 3,5),
(pr=1,q1=12)® (ps = 8,¢2 = 9) = (p = 9,q = 21), (143,24, 145) & (17, 144, 145) = 18(20, 21, 29).

The class of these c is provided by the expression ¢ = p}*p3? with p; < ps prime numbers of the form 4k + 1; recall
also that any prime number of the form 4% + 1 is a sum of two squares. Related to this discussion we recall that a
positive integer k is a sum of two triangular numbers:

u(u+1)  wvw+1)
2 + 2

k= (1.3)

if and only if 4k + 1 is a sum of squares; namely (1.3) implies 4k + 1 = (v — u)? + (u + v + 1). Hence this k with
u < v provides the Pythagorean triple:

p=v—u<qg=u+v+1l), a=Qu+1)2v+1), b=2v—u)lut+v+1), c=4k+1. (1.4)
As example, ¢ = 65 is provided by k = 16 which is generated by two triangular numbers:
up =3 < vy =4, (al,bhc) = (63, 16,65), U =1<wy =35, (CL27527C) = (33, 56,65).

7) Fix 2N an even number and ask the given triangle has the perimeter 2s = 2. It follows the quadratic Diophantine
equation:
qglp+q) =N

which for some value of N has only two solutions; namely N € {120, 180, 240, 252, 336, ...}. Then we call the
corresponding Pythagorean triples (a1, b1, ¢), (az, b2, ¢) as being perimeter — related and we can perform their Farey
sum. For the example of N = 120 we have (p; =2 < ¢; = 10) and (p1 = 7 < p2 = 8) and then:

23(12,5,13) @ (15,112, 113) = 3%(3, 4, 5).

Returning to the last inequality (1.2) the right-hand-side of it can be interpreted in terms of a quasi-arithmetic mean.
Fix an open real interval [ and M : I x I — I amean i.e. for any pair (z,y) € I x I we have the double inequality:

min{z,y} < M(z,y) < max{z,y}.
Recall also that M is called quasi-arithmetic if there exists a continuous and strictly monotonic function f : I — R

such that:
fl@)+f (y)> _

M(z,y) = My(z,y) = f‘l( 5
Hence, with I = R*, := (0, +00) the last inequality (1.2) reads:

" <4AM s (¢, ).

2. Two symmetric matrices associated to a given Pythagorean triple

In the following we provide a matrix formalism associated to a given Pythagorean triple. Namely, the relations
(1.1) can be put into the form:

" !/

a a a / -P q
v = o |+ v | +or. < P > , T=| ¢ p | €M)
o’ c ¢ q P q

The matrix I and its transpose I' provides two new matrices.
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I) a symmetric 2 x 2 one:
20°+¢>  pq ) <c+p2 L )
A::FtI‘:( = 2 € Sym(2,N*), det A = 2¢* > 0.
pg P+ 24 g c+¢? ym( )

Allowing the pair (p, q) to be a point in the Euclidean plane R? then the map P is a regular parametrization from
R?\ {(0,0)} of the cone C : z? + y? — z? = 0 (which can be called the Pythagorean cone) and hence A is exactly the
first fundamental form of this quadric in R3. Its coefficients of the fundamental forms are in the Gauss notation:

E=4(2p +¢%), F=4dpg(=2b), G=4(p*+2¢%)
L= 22 <2V2, M= V/2pg (: ?sinB< %), N =220 <23,

p2+q? p2+q?
Returning to the matrix A, recall after [6] that any symmetric 2 x 2 matrix has two Hermitian parameters, one
real being half of its trace, and one complex, called Hopf invariant, which for our A is:

2 2

HA) =22 ()i = (g € C".

Let us remark that if p and ¢ share the same parity (which means that (a, b, ¢) is not a primitive Pythagorean triple
since 2 divides also @) then H(A) is a Gaussian integer. Recall also that a proof of the fact that the map P is a

parametrization of the set PT is based exactly on the complex number (p + iq)* = 2H (A) since ¢ = [2H(A)|. The
eigenvalues and associated eigenvectors of the matrix A are:

M=c<Al=2c v =(-q,p)=—q+ip=i-\/2H(A), 2= (p,q) =p+iqg=1/2H(A).

So, the invertible matrix making A a diagonal one is:

S = ;q 5 ) € GL(2,Z)N Sym(2), S~'=1S5¢e GL(2,Q) N Sym(2),
S=1.A-S =diag(c,2c), H(S)=—q—pi, detS=—c<O.

For example:

A(1,o,1):<(1) g) 5(1,0,1)=<_01 (1))

Recall that a matrix U € GL(n,R) can be consider as corresponding to a mathematical game G(U) of two

persons, both having n strategies; then the value of this game is ([7, p. 449]) v(G(U)) = ﬁ where s(U~!) means

the sum of all elements of U~". For the matrix A the value of its corresponding game is:

22 50
WGA) = 25 <o w(Clp=10=2) = 2.
O
II) a symmetric 3 x 3 one:
c 0 a
B:=T-T'=[ 0 ¢ b | €Sym(3,N¥),
a b c
1 0 sin(ZA) @1
iB = 0 1 sin(£B) = cos(ZA) | € Sym(3) = Sym(3,R).
sin(ZA) sin(£B) = cos(£LA) 1

Again, its eigenvalues and associated eigenvectors are:

AM=0<X=c<A3=2¢ v = (—a, —b, C), Uy = (—b,a,O), U3 = (a,b, C).
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Hence, the invertible matrix making the matrix B a diagonal one is:

—a —-b a
S=| -b a b | €GLB,Z) detS=-2c<0,
c 0 ¢
—a —-b c
S~ = ﬁ -2b 2a 0 | € GL(3,Q), S~ ! -B-S=diag(0,c,2c).
a b ¢

Recall also that a matrix from Sym(3) represents geometrically a conic, see for example [8]. The conic associated to
the matrix B reduces to the double point (—%,—2) € S*. For example:

-1

0 1 0
B(1,0,1) = 1 0], Sgmo=[ o 1
0 1 1 0

—_ o
—_ o

Let us remark that the second matrix from the relation (2.1) yields the function:

- 1 0 sint
f:(0,§>—>Sym(3)\GL(3,R), fH=1 0 1 cost

sint cost 1

as restriction to (the first quadrant of) the unit circle S of the map F : R? — Sym(3):

2% 4+ 92 0 Yy
F(z,y) == 0 92 z , det Fx,y) = (2 +y*)*(2® +y* — 1),
y x 2% 4y

T 0 sin
Flcx : (z,y) = r(cosp,sing), F(r,@) :=r 0 r o cosp |,det F(r,o) =7rt(r? —1).
sing cose r

The matrix S € GL(3,R) making diagonal the symmetric matrix f(t) is:

—sint —cost 1 —sint — ‘;f’rff sint
S(t):=1| —sin2t 2sin’t 0 |, S7'(t):=[ —cost 1 cost |,
sint cost 1 1 0 1

S(t) - f(t) - S7(t) = diag(0,1,2)

while the matrix S € GL(3,R) making diagonal the symmetric matrix F|c~ is:

) —yr 7%27” 72 -5 - ¢
S('Tvy) =92 —2$y 2y 0 ) Sil(xyy) = _% 1 % )
yr xr 7l 1 0 1

S(t) - F(r,e) - S7L(t) = diag(r* — r,r%, 72 +1).

From a differentiable point of view F is an immersion of R? into R® = Sym(3) since the rank of the Jacobian matrix
of F is 2. With the notation v = 22 + y? the equation det F' = 1, i.e. F(z,y) € SL(3,R), means the cubic equation:

1\° 1 1 29
3 2
1
v <u 3> 3<u 3> 27 0

which admits only one real (and positive) solution u; ~ 1.4656. Naturally, we can associate the cubic (in fact elliptic)
plane curve:
C:viP=u?—-u?—-1

whose details can be found on: https://www.Imfdb.org/EllipticCurve/Q/496/e/1. O

Returning to the case of 2 x 2 matrices let us remark that the first part of relations (1.4) gives an affine map:

()= ()= (D)) e (W)
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The eigenvalues of C and the square matrix S making C' a diagonal one are:

with S~1CS = diag(—v/2,v/2).

We finish this section by introducing a composition law on R* = (0, +-00), inspired by the equality case discussed
in the Property 1.2.3):

zopy = (Vr+y)>

Apart from commutativity and = @ = = 4z we note the property cos? t @ sin® ¢t = 1 + sin 2t.

3. The Farey sum of a class of Eisenstein triples

For the sake of completeness we present now the case of Eisenstein triples. Recall that an Eisenstein triangle has
an angle of 60°. By supposing this angle to be ZC' it results:

a® —ab+b* =c?

and hence, a Eisenstein triple is a triple of positive integers satisfying this Diophantine equation; then min{a, b} <
¢ < max{a, b}. We point out that recently, the Eisenstein triples are used in [9] to characterize the bijective digitized
rotations on the hexagonal grid. Contrary to the Pythagorean case we have only a partial parametrization:

a=a(p,q):==q¢*—p*>, b=0bp,q) =2pq—p*, c=clp,q):=p"+q¢*—pq=(q3—p)*+pg (3.1)

and the limit case p = ¢ gives the degenerate Eisenstein triple p*(0, 1, 1). Then we can define a Farey sum on the
class of (3.1) (p, q)-Eisenstein triples:

a,b,e,)® (a0, = (a", b, ") =
(777) (77 »1 Yo

=((qg+d)? =+ 20+P)a+d) =+ p+P)+(@+d) = +0)a+d)) (3.2)

Example 3.1. 1) Since (p = 1, ¢ = 2) yields the equilateral triangle 3(1,1,1) and (p = 1, ¢ = 3) gives the Eisenstein
triple (8,5, 7) we have:
(3,3,3) @ (8,5,7) = (21,16,19), (" =2,¢" = 5).

2) Again (a,b,¢)® (a,b,c) = 4(a,b,c) and (a,b,¢) ®(0,1,1) = (a+2(¢ —p), b+2¢+1, c+p+ g+ 1) with the example
3(1,1,1) @ (0,1,1) = (5,8,7).
The matrix expression of the Farey sum (3.2) is:
a” a a , —2p 2q
'l = b |+ ¥ | +T- ( p/ ) , T:==1 2(¢g—p) 2p € Ms5(Z).
' c d 2p—q 2q—p

The associated symmetric matrices are:

D
12(p* — pg) + 5¢°  —6p* + 5pq — 2¢° )

A:=T!.T = € Sym(2,Z

( —6p® +5pg — 2¢°  5p® + 4(2¢* — pq) ym(2,2)
with:

TrA =17p? — 16pq + 13¢%, det A = 12(2p* — 4p3q + 10p*¢® — 8pq® + 3¢%).
1)
4(p* + ¢*) 4p? —4p® + 6pq — 2¢°
B:=T-Tt= 4p? 4(2p% — 2pq + q*)  —6p® +10pg —2¢> | € Sym(3,7)
—4p® 4+ 6pg — 2¢> —6p? + 10pg — 2¢®>  5p? — 8pq + 5g>

with:

TrB = 17p? — 16pq + 13¢%, det B = 48¢(2p° — 6p*q + 10p>°¢*> — T°¢® + ¢°).



34

M. Crasmareanu

To the equilateral triangle 3(1, 1, 1) corresponds the matrices:

D)

8 —4 37 — /505 37 4+ /505
A(p_l,q_Q)_<_4 29)esym(2,2), /\1:#<)\2:f

with TrA = 37, det A = 63, Hopf invariant H(A) = —2] + 4i and:

sev

S é13( 21 + /505 21 — /505 ) € GL2.R), S 1 ( 8 /505 — 21 )

8 8 T 2v505 \ —8 /505 + 21
1))
20 4 0
B(p=1,q=2) = 4 8 6 | € Sym(3
0 6 9
Al >~ 1.98 < Ay >~ 13.51 < A3 ~ 21.50, det B = 576 = 242.
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