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Abstract

Fault tolerant metric basis assigns a unique code in terms of distances to each node of the
graph which works in the presence of faults. The distance based parameters are widely
used in different fields like robot navigation, interconnection networks, sensor deployments,
image processing and chemistry. The convex polytopes are stable and destroy resistant
which make them attractive choice for interconnection networks and anti-tracking net-
works. The current article, computes the fault tolerant metric dimension (FTMD) of
convex polytopes By, Cy, E, and U,. The applications of FTMD have also been consid-
ered in the manuscript.

Mathematics Subject Classification (2020). 05C12, 05C90

Keywords. convex polytopes, metric dimension, fault tolerant metric dimension

1. Introduction and preliminaries

Consider a connected graph G with the node set V(G) and edge set E(G). The dis-
tance between two nodes u and v is d(u,v) which gives the length of a shortest path
connecting these nodes. The distance of a node v from a set of nodes II is d(v,II) =
min{d(v,z)|xz € II}. If II = {x1,22,...,2,} is an ordered set of nodes, then r(v|II) =
(d(v,x1),d(v,z2),...,d(v,x,)) is called the code or representation of the node v with re-
spect to II. The set IT is known as a resolving set, if the codes r(v|II) are distinct for each
v € V. The least cardinality of a resolving set Il is called the MD of G symbolized as
dim(G) and II itself is called metric basis (MB). In [6], Hernando et al. generalized the
concept of MD to FTMD. If the codes r(v|II) are distinct in at least two places for each
v € V(G), then II is known as fault tolerant metric generator (FTMG) for G. A FTMG
of least cardinality is known as fault tolerant metric basis (FTMB) and its cardinality the
FTMD of G, symbolized as dimp(G). In [4] the notions of MD and FTMD were further
generalized to k—metric dimension by Estrado et al. If the codes r(v|II) are distinct in
at least k places for each v € V(G), then II is known as k—metric generator for G. A
connected graph G is k—metric dimensional if & is the largest integer such that there exists
a k—metric basis for G. When k& = 1 then it is MD and for k = 2 it is FTMD. The articles
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[7,11,19,20] are referred for further discussion on FTMD.

The fault tolerance in a network enables it to sustain its working ability and functionality
if any one of its parts stop working. This ensures the durability and lower repair cost of
the networks. Tian et al. [18] studied convex polytopes in the context of anti-tracking
networks. Convex polytopes have also been studied for metric dimension (MD) and par-
tition dimension (PD). The MD of convex polytopes along with other families of graphs
have been discussed in [1,3,8-10] whereas FTMD is discussed in [2,15-17,20]. The PD
and fault tolerant partition dimension of rotationally symmetric graphs are computed in
[12-14]. The computation of MD and FTMD is NP-hard [5] for general graphs which
motivated the researchers to compute these parameters for special classes of graphs. Fol-
lowing the recent research work on MD and FTMD, the FTMD of convex polytopes for
certain families have been computed in this article.

The following result on FTMD would be helpful in proving our claims.

Proposition 1.1 ([4]). Let G be a k—metric dimensional graph with n number of nodes
and ki, ka be two integers such that 1 < ki < ko < k, then dimy, (G) < dimg,(G).

The article is further divided into the following sections. The convex polytopes By,
Cn, E, and U, are defined and exact values of FTMD for these families are computed in
Section 2. The conclusion and open problems are given in Section 3.

2. Fault tolerant metric dimension of convex polytopes

The current section computes the exact values of FTMD of convex polytopes B,,, C,,
E,, and U,,. The first proposition in this section gives the MD of B,,, Cy,, E, [10] and U,
[9].

Proposition 2.1 ([10], [9]). Consider the convex polytopes By, Cy, E,, and U, for n > 6

then,
(a) dim(B,) = 3;
(b) dzm(cn) =3;
(¢c) dim(E,) = 3;
(¢) dim(Uy) =3

2.1. FTMD of B,

The convex polytope B,, is defined in [10] has 2n 4-sided faces, n 3-sided faces, n 5-sided
faces, and a pair of n-sided faces with the following node and edge sets.

V(Bn) = {w, vi, i, yiy 2+ 1 < i <n} and

E(Br) = {uilit1; iVig1; Yillit1; ZiZigt1; Uils; Villi; Vi1 243 TYis ¥izi - 1 < i < n}, where
Uptl = UL, Uptl = V1, Tn+l = T1,Yn+1 = ¥1 and 2,41 = 21. The Figure 1 illustrates the
graph of B,. In the forthcoming result, we compute the FTMD of B,,.

Theorem 2.2. dimp(B,) =4 for n > 6.

Proof. The proof comprises two parts.

Case 1: When n is odd with n =2¢ + 1 and ¢ > 3.
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Figure 1. Convex Polytope B, .

Consider the subset II = {u1, u2, ugt1,upr3} of V(By). The codes for all the
nodes of B, with respect to II are given below.

(0,1,6,6—1) =1,
(1,0,6—1,0) =2
(e—1l,e—2,0—€c+1,0—€+3) 3<e< gy
7 (u|I) = (9,6 —1,0,2) e=o¢o+1
(6,6,1,1) e=+2
(p—1,0,2,0) e=¢+3;
m—e+ln—e+2e—¢dp—le—¢p—3) ¢o+4<e<n
(1,2, 4+ 1,9) e=1;
(2,1,0,0+1) €= 2;
r(ve|I) = (,e—1,0—€+2,0—€e+4) 3<e<op+1;
(p+1,04+1,2,2) €= ¢+ 2;
(n—e+2n—e+3,e—d,e—0p—2) ¢+3<e<n
(2,2,0+1,0+1) e=1;
(e+1l,e,0—€e+2,0—€c+4) 2<e< ¢
rladt) = (n—e+2,e,e—0p+1,0—c+4) dp+1<e<op+2
n—e+2n—€e+3,e—dp+1l,e—p—1) ¢+3<e<n
(3,3,0+2,0+2) e=1;
(e+2,e+1,0—€e+3,¢p—€c+5) 2 <e< gy
FOAD =9 et B et e dt26—ct5) prl<e<dt
(n—e+3,n—ec+de—p+2,e—¢) ¢+3<e<n
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(4,4,6+3,0+3) e=1;
(43,6426 ctdd—c+0) 2< <oy

MEM =0 (et et 2e—0+3,6-c+6)  o+1<e<o+?
(

n—et+4dn—e+5e—p+3,e—¢d+1) ¢+3<e<n

Case 2: When n is even with n = 2¢ and ¢ > 3.

Consider the subset II = {u1, u2, ugt1,upr2} of V(By). The codes for all the
nodes of B,, with respect to II are given below.

(0,1,¢,90 — 1) e=1;
(1,0,¢ —1,9) €=2;
(e—le—2,¢—c+1,0—c+2) 3<c<és
rwdm =93 (4,6 1,0,1) e=o+1;
(¢—1,9,1,0) €E=¢+2;
m—e+ln—e+2e—¢dp—le—¢p—2) ¢+3<e<n
(1,2,90+1,9) €=1;
r(ve|I) = (,e—1,0—€+2,¢0—€e+3) 2<e<o+1;
n—e+2n—e+3,e—de—p—1) ¢+2<e<n
(2,2,0+1,¢0+1) e=1;
(e+1l,e—1,0—€+2,¢—€c+3) 2<e< ¢y
red =3 (41 1,6+1,2,2) e=¢+1;
n—e+2n—e+3,e—d+1le—¢) ¢+2<e<n
(3,3,0+2,0+2) e=1;
(e+2,e+1,0—€+3,0—€e+4) 2<e< ¢;
7(ye[l) = (p+2,6+2,3,3) €e=¢+1;
mn—e+3,n—e+de—d+2,e—¢p+1) ¢0+2<e<n
(4,4,0+ 3,90+ 3) e=1;
(e+3,e+2,0—€e+4,6—€c+5) 2<e< ¢
M =0 (643,0+3,4,4) e=¢+1;
(n—e+4n—e+5e—dp+3,e—p+2) ¢+2<e<n

The codes in both cases clearly specify that IT is FTMG; therefore, dimp(B),) <
4. Hence, from Propositions 1.1 and 2.1, we conclude that dimp(B,,) = 4 for n > 6.

0

2.2. FTMD of C,

The convex polytope C,, is defined in [10] consists of 3n 3-sided faces, n 4-sided faces,
n 5-sided faces, and a pair of n-sided faces with the following node and edge sets.
V(Cyp) = {ui,vi, zi,yi, 2 : 1 <i <n} and
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Figure 2. Convex Polytope C,,.

E(Crn) = {uitiy1; vivig 15 Yilir 15 Zi%is1; Wiis Vills; Vi 1245 TiYis Yizis Yizir1 = 1 < @ < nj,
where U141 = U1, Unt1 = V1, Tnt1 = 1, Ynt1 = Y1 and 2,41 = 2z1. The Figure 2 illustrates
the graph of C,.

In the forthcoming result, we compute the FTMD of C),.

Theorem 2.3. dimp(Cy) =4 forn > 6.

Proof. The proof comprises two parts.
Case 1: When n is odd with n =2¢ + 1 and ¢ > 3.
Consider the subset IT = {u1,ug2, upt1,ugs3} of V(Cy). The codes for all the
nodes of C, with respect to II are given below.

(0,1,¢,¢ — 1) e=1;
(1,0, —1,9) €=2;
(e—le 2,p—e+1,¢—€+3) 3<e< ¢
r(uI) = (9.9 —1,0,2) e=o+1
(¢¢7 1) €=¢+2;
(¢p—1,90,2,0) e=¢+3;
m—e+1ln—e+2e—¢p—le—¢p—3) ¢o+4<e<n
(1,2,¢0+1,9) e=1;
(2,1,0,0+1) €=2;
r(ve|I) = (e,e—1,0p—€+2,0—€e+4) 3<e<o+1;
(p+1,6+1,2,2) €=¢+2
n—e+2n—€e+3,e—d,e—0p—2) ¢+3<e<n
(2,2,04+1,04+1) e=1;
(e+1,e,0—€+2,0—€+4) 2 <e< g
(e [IT) = (n—e+2,,e—¢d+1,0—€e+4) p+1<e<¢p+2
m—e+2,n—€e+3,e—dp+1l,e—¢p—1) ¢p+3<e<n
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3,3,0+2,0+2) e=1
e+2,e+1,0—€+3,0—€e+5) 2<e< ¢;
n—e+3et+tle—p+2,0—€+5) p+1<e<p+2

(
(
T(ye|H): (
n—e+3,n—e+de—d+2,e—¢) ¢+3<e<n

(4,4, + 3,0+ 3) €=1;
(e+2,4,0—€e+4,0+3) 2<e<3;
(e+2,e+1,0—€e+4,6—e+6) 4<e< ¢, ¢ >4
rE =0 (1 3,e41,4,6—c+6) p+1<e<d+2;
(n—e+4,n—e+5e—¢+2,4) o+3<e< @+ 4
mn—e+4n—e+5e—dp+2,e—¢) ¢p+5<e<n,p>4

Case 2: When n is even with n = 2¢ and ¢ > 3.
Consider the subset IT = {u1,u2, upy1,upt2} of V(Cy). The codes for all the
nodes of €, with respect to II are given below.

(0,1,9,00 — 1) e=1;
(1,0, —1,9) €=2;
(e—1l,e—2,0—c+1,0—€+2) 3<e< ¢y
r(uelll) = (6,6 —1,0,1) e=¢+1
(¢—1,¢,1,0) €e=9¢+2
m—e+ln—€e+2,e—¢p—1l,e—p—2) ¢+3<e<n
(1,2,0+1,9) e=1;
r(veT) = (,e—1,0—€+2,¢0—€e+3) 2<e<op+1;
m—e+2n—€e+3,e—de—p—1) ¢p+2<e<n
(2,2,0+1,0+1) e=1;
(e+1l,e,0—€+2,0—€e+3) 2<e< gy
r@dM =1 (¢ 11,6+1,22) e=¢+1;
m—e+2n—€e+3,e—dp+1l,e—¢) ¢p+2<e<n
(3,3,0+2,0+2) e=1;
(e+2,e+1,0—€+3,¢p—€e+4) 2<e<
rW =9 (442,64 2,3,3) e=¢+1;
m—e+3,n—e+de—d+2,e—¢p+1) ¢o+2<e<n
(4,4,0+3,90+2) e=1;
(e+2,4,0—€e+4,0—€+D5) 2<e<3;
r(z[II) = (e+2,e+1,0—€e+4,¢—€+5) 4<e< 9,0 >4
(n—e+4,e+1,4,4) p+1<e< P+ 2
mn—e+4,n—e+5e—p+2e—p+1) ¢+3<e<n
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Figure 3. Convex Polytope FE,.

The codes in both cases clearly specify that II is FTMG; therefore, dimp(C),) <
4. Hence, from Propositions 1.1 and 2.1, we conclude that dimp(C,) = 4 for
n > 6.

0

2.3. FTMD of E,

The convex polytope E, can be obtained from C), by adding the new edges u;v;41 in it
and consisting of 3n 3-sided faces, n 4-sided faces, n 5-sided faces, and a pair of n-sided
faces with the following node and edge sets.

V(E,) = {ui,vi, x5, 95,2 : 1 <i<n} and

E(Ep) = {uilig1; ViVig 15 Yillit 15 ZiZir1; Wils UgUiq 13 Villss Vig 1343 Tiis YiZis Yir12i = 1 <
i < n}, where upy1 = U1, V41 = V1, Tnt1 = T1,Yn+1 = Y1 and zp41 = 21. The Fig-
ure 3 illustrates the graph of E,.

In the forthcoming result, we compute the FTMD of E,.

Theorem 2.4. dimp(E,) =4 forn > 6.

Proof. The proof comprises two parts.

Case 1: When n is odd with n = 2¢ + 1 and ¢ > 3.
Consider the subset II = {uq, u2, upt1,upr3} of V(E,). The codes for all the
nodes of FE, with respect to II are given below.

(0,1,¢,0 — 1) e=1;

1,0, —1,9) €=2;
e—1l,e—2¢0—€e+1,0—€+3) 3<e< ¢
o, —1,0,2) €e=¢+1;

0, 0,1,1) €= ¢+ 2;
o»—1,0,2,0) €=¢+ 3;
n—e+ln—e+2,e—¢p—1l,e—¢d—3) ¢o+4<e<n

(
(
(
(
(
(
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(1,1,0,9) e=1
(2,1, - 1,0+ 1) €=2;

r(ve|I) = (,e—1,0—€e+1,¢0—€+3) 3<e< ¢y
(n—e+1l,e—1,e—¢p,¢—e+3) p+1<e<p+2;
m—e+1l,n—€e+2e—de—0p—2) ¢+3<e<n

(22¢¢+1) e=1;
(3, -1,¢+1) €=2;
(e—l—leqb e+1,0—€e+3) 3<e<p—1,¢>4;
r(zl) ={ (@+1,62,¢—€c+3) p<e<o+l;
m—e+1ln—€e+2,e—¢p+1,2) p+2<e<¢+3;
mn—e+1ln—e+2,e—d+le—p—1) ¢o+4<e<n-—1,¢>4
(2,2,0+1,0) e=n
(3,3,6+1,6+2) (=1
(e+2,e+1,0—€+2,0—€e+4) 2<e<op—1;
(p+2,6+1,3,¢0—e€+4) p<e<p+1;
P =0 (et 2 n—ct3c—6+23) p+2<e<d+3;
(n—e+2n—e+3,e—d+2,e—¢) ¢+4<e<n—1,¢>4;
(3,3, +2,0+1) e=n
(4,4, + 3,0+ 3) e =1;
(e+3,e+2,0—€e+2,¢p—c+4) 2<e< p—2,0>4;
(e+3,e+2,4,0—€c+4) ¢—1<e<¢;
r(z) ={ (n—€e+2n—c+3,e—0¢+3,4) ¢+1<e<o+2,¢=3;
(n—e+2,n—e+3,e—¢p+3,4) p+1<e<op+3,¢>4;
m—e+2;n—€e+3,e—¢p+3,e—d+1) ¢p+4<e<n—2,¢>05;
4,4n—e+op+2,e—p+1) n—1<e<n

Case 2: When n is even with n = 2¢ and ¢ > 3.
Case 2.1: When n = 6 It is easy to check that IT = {uy,u4, 21, 24} is a FTMG.
Case 2.2: Whenn > 6 and ¢ > 4. Consider the subset IT = {u1, u3, ug41, Up43}
of V(E,). The codes for all the nodes of E,, with respect to II are given below.



(
(
(
(
(
(
(
(

Fault tolerant resolvability of convex polytopes

(
(
(
(
(
(
(
(

0727¢7¢_2)
1717¢_17¢_1)
2707¢_2a¢)

e—1l,e—3,0—e+1,0—€+3)

¢7¢_27072)
¢_17¢_17131)
¢_27¢7270)

e=1;
€= 2;
€= 3;
4<e< ¢
e=¢+1;
€= ¢+ 2;
€= ¢+ 3;

n—et+ln—e+3,e—¢p—1l,e—¢p—3) ¢+4<e<n

1727¢7¢_]‘)
2717¢_17¢)

n—e+le—1e—¢,¢—e+3)
n—e+1l,n—e+3,e—¢p,e—¢—2)

2,

e+1,2,0—€e+1,¢6—e+3)

5,
5,

etle—1,2¢—c+3)
n—e+1l,e—1le—¢+1,2)
n—e+ln—e+3,e—¢p+1l,e—¢p—1)

2,

(
(
(
(
(
(
(
(

(
(
(,e—2,0—€e+1,0—€+3)
(
(

2,0,9)

3a¢_27¢_1)
3,0—3,0—1)

3a¢+17¢71)

3,30+ 1,0+1)

€+2’37¢_6+25¢_6+4)

6747¢_17¢)
6747¢_27¢)
6+176737¢_6+4)

n—e+2ee—¢p+2,3)
n—e+2n—e+4de—p+2¢e—9¢)

3,4,0+2,9)

e=1;

€=2;
3<e<¢;
p+1<e<p+2;
p+3<e<n

e =1,

2<e<3;
e=4,¢ =4
e=4,¢ >4
5<e<g,0> 4
p+1<e< P+ 2
p+3<en—1;

2<e<3;
e=4,¢ =4
e=4,¢ > 4;
5<e<,0>4
p+1<e<Pp+2
p+3<e<n—1;

€E="nN
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Figure 4. Convex Polytope U,.

(4,4, 0+ 1,90+ 2) e=1;
(e+3,4,0—€+2,0—€c+4) €=2;
(e+3,e+2,0—c+2,0—€+4) 3<e<p—2,0 >4
(¢ +2,0,4,5) e=¢—1;

r(zll) ={ (n—e+2,e+1,4,4) p<e<¢+1;
(4,n—e+4,e—¢+3,4) Pp+2<e<dp+3,0=4;
n—e+2,n—e+4,e—¢+3,4) p+2<e<p+3,¢0>4
m—e+2n—e+de—¢p+3,e—d+1) ¢p+4<e<n-—2¢>05;
4n—ec+4,0+2,e—p+1) n—1<e<n

The codes in both cases clearly specify that IT is FTMG; therefore, dimp(E,,) <
4. Hence, from Propositions 1.1 and 2.1, we conclude that dimp(E,) = 4 for
n > 6.

O

2.4. FTMD of U,

The convex polytope U, are defined in [9] has n 4-sided faces, 2n 5-sided faces, and a
pair of n-sided faces with the following node and edge sets.

V(Up) = {us,vi, x5, 9,2 : 1 < i <n} and

E(Un) = {uitig1; 0iVig 15 2i%is 15 Wi Vilts; TiYis Tig1Yis Yizi - 1 < i < n}, where upy1 =
UL, Untl = V1, Tptl = T1, Ynt1 = Y1 and zp4+1 = z1. The Figure 4 illustrates the graph of
Up.

In the forthcoming result, we compute the FTMD of U,.

Theorem 2.5. dimp(U,) =4 for n > 6.

Proof. The proof comprises two parts.

Case 1: When n is odd with n =2¢ + 1 and ¢ > 3.
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Consider the subset IT = {uy, u, ug+1,ugs+3} of V(Uy,). The codes for all the
nodes of U,, with respect to II are given below.

(0,1,6,6 1) e=1:
(1,0,6 —1,6) =2
&—16 2,0—€e+1,0—€+3) 3<e< ¢
r(uI) ={ (6,0 —1,0,2) e=¢+1;
(¢¢71a1) €E=¢+2;
(¢—1,9,2,0) €=¢+3;
m—e+1ln—e+2e—dp—1l,e—¢dp—3) ¢o+4<e<n
(1,2, 4+ 1,9) e =1;
(2,1,0,0+1) €=2;
rivll) ={ (6e—1¢—c+2,0—€+4) 3<e<o+1
(¢+1,0+1,2,2) €=¢+2;
m—e+2n—€e+3,e—de—¢p—2) ¢+3<e<n
(2,3,0+2,0+1) e=1;
(e+1l,e,0—€+3,0+2) 2<e<3;
r(z|II) = (e+1l,e,0—€+3,06—€+D5) 4<e< ¢+ 1;
(¢ +2,0+2,3,3) €=¢+2;
m—e+3,n—e+de—d+le—¢p—1) ¢+3<e<n
(3,3,0+2,0+2) e=1;
(e+2,e+1,0—€+3,0—€+5) 2<e< ¢
PO =Y (4Bt le—d+2,6—ct5) drl<e<ot2:
n—e+3,n—e+de—d+2,e—¢) ¢+3<e<n
(4,4,0+3,0+3) e=1;
(e+3,e4+2,0—€e+4,¢—€+6) 2<e< ¢
r(z[) = (n—e+4,e+2,c—¢+3,6—c+6) p+1<e<op+2
mn—e+4,n—e+5e—p+3,e—p+1) ¢+3<e<n

Case 2: When n is even with n = 2¢ and ¢ > 3.
Consider the subset IT = {uy,u2, ugt1,ugr2} of V(Uy,). The codes for all the
nodes of U, with respect to II are given below.

(0,1,¢9,0 — 1) e=1;
(1,0, —1,9) €=2;
(e—1l,e—2,0—€c+1,0—€+2) 3<e< ¢
rwd =946 -1,0,1) e=¢+1;
(¢—1,¢,1,0) €e=9¢+2
m—e+ln—€e+2,e—¢p—1l,e—¢p—2) ¢+3<e<n
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(1727¢+17¢) 6:1;
ro ) =¢ (6e—1,¢—€e+2,¢—€+3) 2<e<¢+1;
m—e+2n—e+3,ce—de—p—1) ¢+2<e<n

(2,3, 0+2,0+1) e=1;
(e+1l,e,0—€+3,0—€e+4) 2<e< gy
e =9 (12,64 1,2,3) e=o+1;
m—e+3n—et+de—d+1le—¢) ¢o+2<e<n
(3,3, 0+ 2,0+ 2) €e=1;
(e+2,e+1,0—€+3,0—€e+4) 2<e< ¢
rWAD =9 (512,64 2,3,3) €=+ 1;
mn—e+3,n—e+de—¢d+2,e—¢p+1) ¢0+2<e<n
(4,4,04+ 3,0+ 3) e=1;
(e+3,e+2,0—€e+4,¢—€+5) 2<e< ¢
rED =0 (513,64 3,4,4) €=+ 1;
n—e+4n—e+5e—p+3,e—p+2) ¢+2<e<n

The codes in both cases clearly specify that II is FTMG; therefore, dimp(U,,) <
4. Hence, from Propositions 1.1 and 2.1, we conclude that dimp(U,) = 4 for
n > 6.

O

3. Conclusion

In this manuscript, we infer that the FTMD of the convex polytopes B,,Cy, E, and
U, is 4 and does not depend on the order of these families. FTMB provides codes of least
length for the graphs which are effective even in the presence of faults. The applications
of FTMB can be realized in the deployment of sensors, robot navigation, transportation
and interconnection networks.

Open Problem: Compute the FTMD of generalized Petersen graphs.

Open Problem: Compute the FTMD of mesh related networks.
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