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Abstract 

Surface modeling constitutes is a crucial aspect in numerous engineering inquiries and earth observation endeavors. In contemporary 

times, the acquisition of geospatial data essential for the digital representation of local regions is increasingly facilitated through drone-

based methodologies, supplanting conventional terrestrial data gathering techniques. The market presently hosts a plethora of cost-

effective, "ready-to-fly" unmanned aerial vehicles (UAVs), offering users the capability to generate photogrammetric outputs, 

including high geometric precision Digital Elevation Models (DEMs). Moreover, modularly structured drone development kits, 

designed for multifarious applications, are readily accessible for purchase. These drone kits offer an economically advantageous 

platform that users can customize to suit their specific needs. Nevertheless, the geometric precision of DEMs created using these kits 

hinges upon the capabilities of the imaging and navigation systems, in addition to the stabilization of the platform during autonomous 

flight. In this study, using a drone development kit and a commercial drone, simultaneous image acquisition was performed for the 

same study area and two different DEMs were produced. The efficacy of the DEM generated using the drone development kit was 

assessed through a comparative analysis with the DEM obtained from a commercial drone. In addition, geometric accuracy assessment 

was conducted for both DEMs using ground control points. The findings demonstrated the effectiveness of drone development kits in 

generating DEMs with centimeter-level precision, positioning them as competitive alternatives to commercial UAVs. However, certain 

limitations were identified that had an adverse impact on the overall quality of the DEM generated from the drone kit. We address 

these challenges and offer several recommendations to overcome them. 

Keywords: Drone development kit, Unmanned aerial vehicle, Digital elevation model, Geometric accuracy, Point cloud, Visible light 

camera 

Introduction 

Digital elevation models (DEMs) are an important source 

of geospatial information for earth science and many 

engineering applications (Uysal et al., 2015). DEMs can 

be categorized into two main types: digital terrain models 

(DTMs) and digital surface models (DSMs). A DTM 

captures the elevation related to the Earth's topography, 

specifically excluding man-made structures and retaining 

only natural features. Conversely, a DSM represents the 

elevation of the Earth's surface, encompassing all objects 

present, both natural and man-made. In scientific 

literature, DEM is commonly employed as a generic term 

covering both DTM and DSM (Guth et al., 2021; Habib 

et al., 2017; Shawky et al., 2019).  

In the last decade, different remote sensing systems such 

as visible light and multispectral cameras, Light Detection 

and Ranging (LiDAR) have been used as payloads of 

unmanned aerial vehicles (UAVs) or drones (Akturk and 

Altunel, 2019; Carpenter et al., 2023; Zhang and Zhu, 

2023). Nevertheless, visible light cameras continue to 

maintain their prevalence and dominance among the 

available options for DEM production, primarily 

attributed to their cost-effectiveness (Bi et al., 2021; 

Giordan et al., 2020; Kovanič et al., 2023). 

In recent years, a multitude of UAV platforms has been 

developed and made available for purchase, all tailored to 

fulfill this particular purpose. These platforms, commonly 

referred to as commercial UAVs, are equipped with 

supplementary hardware designed for accurate and real-

time positioning, sophisticated camera systems, and 

stabilization mechanisms to ensure the stability of the 

UAV during operations (Kalacska et al., 2020; Bayırhan 

and Gazioğlu, 2020; Gündüz, 2023). Many professional 

users who aim to produce detailed and reliable DEMs 

prefer these UAVs (Deliry and Avdan, 2021; Wang and 

Shu, 2022). When evaluated in terms of non-professional 

users, the acquisition cost of commercial UAVs is still 

high. Currently, there are many ready-to-fly UAVs on the 

market that can be an alternative to commercial UAVs. 

These UAVs, referred to as low-cost UAVs usually have 

low-cost navigation systems, sensors, and cameras. 

However, it has been demonstrated many times that 

reliable DEMs can be produced with low-cost UAVs if a 

specific flight plan, field work with a sufficient number of 

ground control points (GCPs) and camera settings are 

applied (Gafurov, 2021; Jiménez-Jiménez et al., 2021). 

Modular UAV platforms can be considered as another 

low-cost alternative to commercial UAVs. These UAV 

platforms, called "drone development kit" or "Do It 

Yourself (DIY)”, have a main platform function where 

preferred equipment can be integrated. In this respect, 
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these platforms allow a more flexible hardware 

configuration than ready-to-fly UAVs (Hill and Rowan, 

2022). Nonetheless, as the primary aim revolves around 

establishing a cost-effective platform, the endeavor to 

generate reliable DEMs using these UAVs becomes 

relatively more intricate. This complexity is attributed to 

the constraints posed by low-cost cameras and the 

challenges associated with stabilizing the platform (Lee 

and Kim, 2022).  

In fact, although most commercial UAVs are equipped 

with mechanical/global shutter cameras, low-cost UAVs 

often have rolling shutter cameras (Zhou et al., 2020). 

Rolling shutter sensor scans the image from the top to the 

bottom line by line. The movement of the UAV during 

image acquisition causes a short delay between the top 

and bottom of the generated image (Gazioğlu et al., 2017). 

This causes a kind of image distortion known as the 

rolling/jelly artifact, which negatively affects the 

accuracy of the DEM produced by the structure from 

motion (SfM) approach (Bruno and Forlani, 2023; 

Incekara and Seker, 2021; Kim et al., 2020). On the other 

hand, depending on the stabilization of the UAV platform, 

its speed and the exposure time of the camera during 

image acquisition, motion blur may occur and SfM suffers 

from this distortion as well (Peng et al., 2022; Sieberth et 

al., 2015; Teague and Chahl, 2023). The mechanical 

shutter can compensate for rolling artifact, but motion 

blur may still occur (Pichaikuppan et al., 2014; Ventura et 

al., 2016). Considering all the aforementioned challenges, 

it becomes a question to be answered whether low-cost 

modular UAVs can provide the expected sensitivity, 

especially in DEM production with high geometric 

accuracy. When similar studies in the literature are 

analyzed, it is generally seen that commercial and ready-

to-fly UAVs are compared with each other or the 

geometrical accuracies provided by any of them in DEM 

production are emphasized (Elkhrachy, 2021; Granados-

Bolaños et al., 2021; Kalacska et al., 2020; Kršák et al., 

2016; Michez et al., 2020). There are limited number of 

studies addressing the examination of photogrammetric 

products derived from modular UAVs (Fanta-Jende et al., 

2020; Guenzi et al., 2019; Jaakkola et al., 2010). For 

example, Hill (2019) produced orthomosaic with better 

than decimeter level accuracy using a DIY-style fixed-

wing drone. Moudrý et al. (2019) reported that home-

assembled fixed-wing UAVs can be used successfully in 

steppes and deciduous forest to generate accurate point 

cloud. Mah and Cryderman (2015) tested the DIY-style 

fixed-wing drone to produce DEM for a on a stockpile. 

Indeed, the flight of fixed-wing UAVs is generally more 

stable, whereas a camera system in a multi-rotor UAV is 

more sensitive to engine vibrations and sudden altitude 

changes (Dahlin Rodin et al., 2019; Gašparović and 

Jurjević, 2017). Remarkably, there exists a scarcity of 

research that have provided comprehensive analysis 

regarding the DEM generation capabilities exhibited by 

multi-rotor drone development kits.  

In this study, a multi-rotor drone development kit was 

assembled for autonomous flight equipped with a visible 

light camera. This drone kit was employed for DEM 

generation, and the resulting DEM was compared with 

GCPs and a reference DEM produced using a commercial 

UAV platform. We present an analysis encompassing 

both model and point-based evaluations of geometric 

accuracy. In addition to providing this evaluation, we 

present a workflow tailored specifically for non-

professional users. Furthermore, we investigate potential 

causes of issues that may arise in the production of DEMs 

from drone kits, offering corresponding suggestions for 

resolution. 

Materials and Methods 

Study Site  

The study area was chosen as an industrial area of 

approximately 0.5 km2 located within the borders of 

Sincan District of Ankara Province. This area has a 

relatively flat topography with an elevation ranging from 

760 m to 805 m, except for stockpiles. In addition, there 

are buildings, natural areas and a part of Ankara Stream 

within the boundaries of the study area. Although there 

are no large trees in the region, many small saplings have 

been planted in the afforestation areas along the Ankara 

Stream (Figure 1). 

Fig. 1. Study area 
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UAV Platforms 

The commercial UAV platform used in this study is DJI 

Phantom 4 RTK. In addition to a standard GNSS (Global 

Navigation Satellite System) receiver, this UAV has a 

built-in RTK (Real Time Kinematic) module that 

provides centimeter-level absolute positioning accuracy 

to image metadata (DJI, 2023). In addition to the visible 

light camera, it has a 3-axis gimbal, which enables oblique 

view and contributes to the stabilization of the camera 

(Lewicka et al., 2022).  

The drone kit, developed by Sapmaz Aviation and 

Advanced Technologies includes all the parts necessary 

for autonomous flight, such as battery pack, electronic 

speed controller, remote control, telemetry module and 

GNSS receiver. All parts of the drone kit have been 

carefully assembled and shown in Figure 2. 

Fig.2. Assembled drone development kit. a) Drone Kit. b) 

Remote Controller. 

After assembling the parts of the drone development kit, 

the camera was integrated under the kit and connected to 

the built-in GNSS receiver via the control card. For this 

purpose, a camera holder was produced from 

thermoplastic filament that connects the drone body and 

the camera. For aerial image acquisition, we used a light 

weight (76 g) visible light camera (MAPIR Survey 3W). 

This camera has a 12 megapixel (MP) Sony Exmor R 

IMX117 sensor (Latif, 2022). The features of the ready-

to-fly drone kit are summarized in Table 1.  

Table 1. Technical specifications of UAV platforms 

Parts Feature 
Phantom 4 

RTK 

Drone 

Kit 

Frame 

Takeoff weight (g) 1391 1285 

Diagonal dist. (mm) 350 450 

Main navigation G+GL+GA G+GL+GA+Q 

RTK module G+GL+GA - 

Multi-rotor 4 4 

Camera 

Sensor size (ʺ) 1 1/2.3 

Focal length (mm) 8.8 3.37 

Resolution (MP) 20 12 

ISO range 100-3200 50-400 

FOV (˚) 84 87 

Shutter speed (s) 1-1/2000 8-1/2000 

Shutter type Global Rolling 

Gimbal 

Stabilization 3-axis 

- 

Pitch (˚) -90/+30 

Max controllable 

angular speed (˚/s) 
90 

Angular vibration 

range (˚) 
±0.02 

* G;GPS, GL; GLONASS, GA; GALILEO, Q; QZSS

Flight Planning and Image Acquisition 

For the Phantom 4 RTK, the DJI GS application running 

on the control unit with a 5.5ʺ screen was used for flight 

planning. The flight planning of the drone kit was carried 

out using Qground Control which an open source 

application. For both UAVs, the front and side overlap 

rate of the images was chosen as 80% and 70%, 

respectively. Image acquisition mode was chosen as nadir 

and a single grid flight mission was planned instead of 

double-grid due to limited battery capacity in both UAV 

platforms. Two batteries were available for each UAVs 

and both were used to complete the flight missions. To 

keep the ground sampling distance (GSD) value close to 

each other, the flight altitude was set to 90 m for the 

Phantom 4 RTK and 60 m for the drone kit. Finally, the 

flight speed is set to 6 m/s for the Phantom 4 RTK and 7 

m/s for the drone kit. 

Simultaneous image acquisition was carried out on 20 

January 2023 with both platforms. As a result of the flight, 

508 and 604 images were recorded with the Phantom 4 

RTK and drone kit, respectively. In the preliminary 

checks, we noticed that the GNSS receiver of the drone 

kit could not assign geotags to 18 of the images. Hence, 

these geotag-free images of the drone kit were excluded 

before image processing. The nominal GSD value of 

images for commercial UAV and drone kit are 0.027 

m/pixel and 0.023 m/pixel, respectively. The flight plans 

and central projections of the acquired images are shown 

in Figure 3 with blue dots. 

In Figure 3, the locations of geotag-free images are seen 

as blue dot deficiencies in the flight plan of the drone kit. 

Additionally, cross flight lines are also seen as both UAVs 

capture images while returning to the home point. In the 

Phantom 4 RTK, this feature is described as "Altitude 

Optimization" and is performed only when the mission is 

completed. The image is not collected when coming to 

home point for battery replacement. For the drone kit, this 

is implemented by enabling the "images in turnarounds" 

check box via the QGround Control software.  

Fig. 3. Flight plans and positions of images (blue dots). 

Home, start and end points are shown with yellow, green 

and red dots, respectively. a) Phantom 4 RTK. b) Drone 

Kit 

Doğruluk and Yalçın / IJEGEO 10(4):077-089 (2023) 
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This configuration results in image capture not only at the 

end of the mission but also while returning to the home 

point for battery replacement. We activated this feature 

prior to the drone kit's flight. However, as the flight was 

manually terminated, images were only captured during 

the battery replacement phase. 

GCPs 

A pivotal factor in significantly enhancing the quality of 

DEMs involves employing precise and evenly distributed 

GCPs to establish accurate connections between the 

model and ground truth (Villanueva and Blanco, 2019). 

Within the scope of the study, a total of 44 GCPs were 

marked, 6 of which were on the rooftops of the buildings. 

GCPs are marked with red paint on the roof and blue on 

the concrete surfaces. On the soft surface, cube-shaped 

concrete blocks with a side length of 0.15 m were placed 

on the ground (Figure 4). The ground coordinates of the 

GCPs were measured with a geodetic GNSS receiver 

using the Network-RTK method, and 60 epoch 

observations were made at 1 second intervals for each 

point. According to the records of the GNSS receiver, the 

root mean square error (RMSE) values calculated for the 

all GCPs in the horizontal and vertical directions ±0.015 

m and ±0.019 m, respectively. Ground coordinates of 

GCPs were recorded in the Turkish National Reference 

Frame (TUREF/TM33) projection coordinate system. 

Fig. 4. Ground Markings of GCPs. a) Flagstone. b) Soil. c) Roof. d) Soil 

Image Processing 

Pix4D Mapper (version 4.8.4) software was used to 

process the aerial images collected with both UAV 

platforms. After the images are added to the project, the 

input coordinate system is set to WGS84 (World Geodetic 

System 1984) as the drone data is geotagged using the 

onboard GNSS receiver. At this stage, the calibration 

parameters of the cameras used were automatically read 

by the software. Note that the initial calibration 

parameters of both cameras are available in the Pix4D's 

database and the rolling shutter correction option is 

enabled for the MAPIR 3W camera. After this process, 

the output coordinate system (TUREF/TM33) is set as the 

GCPs are recorded in this coordinate system. Image 

processing in Pix4D begins by extracting candidate 

feature points (key points) from overlapping images, and 

then orientation of multi-view stereo images is performed 

using matching feature points (tie points). At this stage, a 

database (sparse point cloud) is created for tie points 

(Pricope et al., 2019). The sparse point cloud is utilized to 

identify image pairs with a satisfactory number of 

common valid tie points, indicating the degree of their 

overlap. This process holds significance as it involves 

generating depth maps for overlapping pairs, ultimately 

leading to the creation of a dense point cloud. After GCPs 

are added to the block and marked, some of them are 

assigned as GCP and bundle block adjustment is applied 

to optimize the camera model and reduce systematic 

errors in the image block. At this stage, georeferencing the 

sparse point cloud to a specific coordinate system is 

performed (Ruzgienė et al., 2015). When the SfM 

workflow is completed, the RMSE values of residuals at 

check points (CPs) are calculated. Should the resultant 

statistical measures prove to be satisfactory, a subsequent 

procedure involving point cloud expansion and filtering is 

executed upon the initially sparse point cloud. Following 

this, the generation of a dense point cloud, DEM and 

orthomosaic ensues, all accomplished at a predetermined 

resolution. 

Quality Analysis 

Quality evaluation were also carried out regarding the 

visual evaluations of the image matching results and 

DEMs, as well as the RMSE values calculated for CPs as 

a result of the bundle block adjustment. RMSE is 

important in accuracy assessment of geospatial data as it 

serves as a measure of the magnitude of error 
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encompassing bias in the x, y, and z directions. The 

following equation was used for the sum of the RMSE 

errors at the CPs; 

RMSET=√RMSEx
2+RMSEy

2+RMSEz
2 (Eq.1) 

Where: RMSET represents the total root mean square 

error, and the others represent the RMSE values of the 

residuals in the x, y, and z directions, respectively. On the 

other hand, point clouds and DEMs were compared with 

each other to measure geometric accuracy. This approach 

has been used in many earth science studies and has 

proven to be a more effective method for determining the 

locality of deviations  (Bailey et al., 2022; Mancini et al., 

2013). Cloud to cloud comparisons were performed by 

applying the workflow in CloudCompare software. In this 

comparison, the point clouds are aligned with each other 

by iterative closest point (ICP) algorithm. For every point 

in the source point cloud, ICP identifies the closest point 

in the target point cloud, establishing a one-to-one 

correspondence between the datasets. Throughout this 

process, the registration error, characterized by Euclidean 

distances between corresponding points, is iteratively 

minimized (Xu et al., 2023). Afterward the mean 

distances between the two data sets and the standard 

deviation of this distance are calculated. The mean 

distance represents accuracy, while the standard deviation 

represents precision (Zapico et al., 2021). In the concept 

of comparing DEMs, the spatial distribution of vertical 

discrepancies is tried to be revealed. The critical step in 

this approach is to align the compared DEMs to the same 

horizontal plane (Wang and Ye, 2021).  

Results 

In this study, aerial image datasets were processed 

independently using the default settings of Pix4D 

software. There were two main reasons for using default 

parameters. Firstly, since potential users of drone kits 

were non-professionals, the aim was to establish a 

relatively simple workflow tailored to their needs. The 

other was to exclude the effect of the software's parameter 

optimization on the results from the scope of the study. 

Consequently, dense point clouds and DEMs were 

produced for both UAVs. Image processing was 

performed on a computer with a 3.3 GHz Intel Xeon- 

E2124 CPU and 5 GB Nvidia Quadro P2000 graphics 

card and 80 GB of system memory (RAM). 

During the initial phase, the extraction of tie points was 

achieved through the process of image matching. The 

results of the matchings are visually depicted in Figure 5. 

Within Figure 5, areas denoted by black hues signify 

regions characterized by a high degree of matching 

success, whereas regions depicted in white hues indicate 

instances of inadequate image matching. 

Fig. 5. Image matching maps. a) Phantom 4 RTK. b) Drone Kit 

Upon scrutinizing Figure 5, it becomes apparent that the 

Phantom 4 RTK yields a relatively more uniform image 

matching map. In contrast, the matching performance of 

the drone kit demonstrates a discernible reduction, 

primarily noticeable in the northern building rooftops and 

southern vegetation clusters. According to Pix4D's quality 

report, the average number of tie points per image was 

calculated as 32,894 for the Phantom 4 RTK, while this 

value was 28,503 for the drone kit. Despite the close 

similarity in the average number of tie points for both 

UAVs, it is crucial to note a significant reduction in the 

minimum number of tie points calculated per image for 

the drone kit. Specifically, this value was calculated as 

14,835 for the Phantom 4 RTK, while it was 2,651 for the 

drone kit. The regions depicted in white hues on the drone 

kit's matching map represent the corresponding location 

of these images. The decline in matching performance can 

be attributed to various factors, including repetitive 

texture, image scale changes, camera settings, and motion 

blur resulting from platform vibration (Sieberth et al., 

2014). In our case, while motion blur is observable in 

certain drone kit images, pinpointing the exact cause of 

motion blur is often challenging. Detailed investigations 

are necessary to establish a direct link between motion 

blur and the stabilization of the UAV platform (Dahlin 

Rodin et al., 2019). 



Doğruluk and Yalçın / IJEGEO 10(4):077-089 (2023) 

82 

Following the completion of the image matching stage, 44 

GCPs were added to the project and image coordinates 

were marked on at least three images for each GCP. 12 of 

them with homogeneous distributed in the study area were 

assigned as GCPs and used to self-calibration (camera 

model optimization) and georeferencing. The spatial 

distribution of GCPs in the study area corresponds to 

approximately 4 GCPs/ha. The remaining were assigned 

as CPs and used to evaluate the geometric accuracy of the 

generated DEMs. The spatial distribution of GCPs and 

CPs is shown in Figure 6 with sparse point clouds. 

In the next stage, the image blocks were optimized with 

12 GCPs. In this way, the scale and absolute position of 

the image blocks were determined. At this stage, 

georeferencing results were also produced by disabling 

Pix4D's rolling shutter (RS) correction. Statistics of 

residuals calculated for CPs as a result of bundle block 

adjustment are shown in Table 2.  

Fig. 6. Spatial distribution of GCPs and CPs in the study area. 

Fig. 7. Absolute distances between point clouds and their histogram. “bin 741” represents the bin number corresponding 

to 90% of the absolute distances in the histogram. 

Table 2. RMSE values calculated for 32 CPs 

UAV 
RS 

Correction 

RMSE (m) 

X Y Z Total 

P4 RTK 
enable 0.014 0.018 0.030 0.038 

disable 0.015 0.017 0.030 0.038 

Drone 

Kit 

 enable 0.069 0.045 0.060 0.102 

disable 0.179 0.130 0.082 0.236 
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When Table 2 is examined, it is clearly seen that the RS 

correction has a positive effect on the georeferencing 

results of the drone kit and the RMSE values are reduced. 

However, the RS correction slightly changed the Phantom 

4 RTK's georeferencing results. A dense point cloud was 

generated for the drone kit subsequent to the application 

of RS correction procedures, whereas the point cloud was 

generated without RS correction for the Phantom 4 RTK. 

The density of the point cloud produced with the Phantom 

4 RTK was 246 points/m2, while the point density of the 

drone kit was 304 points/m2. 

Utilizing the aforementioned point clouds, a cloud to 

cloud comparison was conducted. Registration of the 

point clouds was achieved by using 50,000 randomly 

selected points, subsequently the absolute mean distances 

of these point clouds were calculated. The outcome of this 

analysis is depicted in Figure 7.  

The cloud to cloud comparison yielded an absolute mean 

distance of 0.094 m, accompanied by a standard deviation 

of ±0.133 m. These distances are visually represented in 

Figure 7, employing distinct colors to reflect varying 

magnitudes. An observation of Figure 7 reveals a 

predominant concentration of absolute distances within 

the blue spectrum (ranging from 0 to 0.25 m). 

Furthermore, approximately 90% of absolute distances 

fall below ±0.199 m. However, discernible elevations in 

mean distances are noticeable along building rooftops and 

the periphery of the image blocks. 

Subsequent to the cloud to cloud comparison, two distinct 

DEMs were generated at a resolution of 0.10 m per pixel. 

DEM produced by Phantom 4 RTK is abbreviated as 

"DEMP" and the other is abbreviated as "DEMK". To 

clearly demonstrate the spatial distribution of vertical 

errors (Δz) in the DEMK, cell-by-cell error raster were 

generated by subtracting the value in DEMK from the 

corresponding value of the reference model (DEMP). In 

this comparison, a 20 m buffer was applied to narrow 

down the study area, aiming to eliminate errors in the 

analysis that might arise from inadequate overlap in the 

boundary lines of the flights. The resulting raster map and 

the statistics of the Δz values are shown in Figure 8. Note 

that only errors in the range of ±1m are visualized to 

examine the Δz values in more detail, while statistics are 

generated based on all data. 

Fig. 8. Height difference map. 

When Figure 8 examined, an observable trend emerges 

where deviations accentuate in proximity to water 

surfaces and surrounding buildings. Upon statistical 

evaluation, the RMSE values for Δz (±0.343 m) exhibit an 

increase when contrasted with the outcomes of the initial 

cloud to cloud comparison. This escalation can be 

attributed to inherent estimation errors arising from 

interpolation processes. On the other hand, it has been 

ascertained that 90% of linear errors (LE90) within the 

DEMK are contained within the range of ±0.171 m. This 

finding demonstrates a slight improvement compared to 

the results of the cloud-to-cloud comparison, as errors 

occurring at the boundaries were excluded from the 

analysis. In summary, we demonstrate that in the presence 

of homogeneously distributed precise GCPs, DEMs with 

centimeter-level accuracy can be generated using drone 

kits. In our specific case, 90% of the linear errors in this 

DEM were smaller than ± 0.20 m. Excluding areas where 

adequate overlap was not achieved resulted in a slight 

decrease in this value, concurrently leading to an overall 

increase in accuracy. 

Discussion 

Within the scope of this study, the potential to generate 

DEMs characterized by centimeter-level geometric 

accuracy utilizing multi-rotor drone kits, contingent upon 

meticulous GCPs strategizing was demonstrated. 

Considering the quantitative assessment performed with 

CPs, an accuracy equating to a RMSET of 0.102 m is 

Doğruluk and Yalçın / IJEGEO 10(4):077-089 (2023) 
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achieved. In contrast, the corresponding value for the 

commercial UAV stands at 0.038 m (as depicted in Table 

2). The RMSET reflects the disparity between the initial 

and computed positions of CPs, serving as an estimation 

for the overall absolute accuracy of the DEM. While the 

application of RS correction does enhance the outcomes 

for the drone kit, it becomes imperative to delve further 

into the scrutiny of the errors occurring within the CPs. 

For this purpose, correlations of the computed residuals 

encompassing all three axes (x, y, and z) were scrutinized 

across the set of 32 CPs for both platforms (Table 3). 

Table 3. Correlation matrix of residuals 

xk yk zk xp yp zp 

xk 1 

yk 0.17 1 

zk -0.41 -0.29 1 

xp 0.06 -0.10 -0.05 1 

yp 0.00 0.42 -0.06 -0.21 1 

zp 0.22 0.23 0.12 -0.34 0.21 1 

According to the Table 3, it was deduced that there existed 

no noteworthy correlation among the residuals. This 

observation underscored the absence of a substantial 

connection between the residuals and the positional errors 

inherent to the CPs themselves. This indicates that the 

generated DEMs do not exhibit a significant bias with 

each other. Afterward, boxplot charts were generated to 

visually represent the statistical distribution of residuals 

for the CPs (Figure 9). The central horizontal lines in the 

boxes represent median values and the symbol x 

represents mean values in Figure 9.  

Considering the box lengths, it is clear that the variation 

of the residuals increases in all directions (xk, yk and zk) 

for the drone kit. In addition, the residual ranges are 

higher than the Phantom 4 RTK. Given that both sets of 

images were processed with the same software, the 

observed increase in error magnitudes in the residuals can 

be attributed to the drone kit's GNSS receiver, lower 

specification camera, and the absence of a camera 

stabilization system. 

On the other hand, in model-based evaluations, it is seen 

that 90% of the errors are concentrated in a range of about 

0.20 m, which is consistent with the point-based 

evaluation results. However, it was observed that the 

magnitude of the errors increased dramatically some 

characteristic regions of the study area. On bare ground, 

planted areas and stockpile the errors varied within a small 

range but increased especially on the rooftops of the 

buildings. The comparative manifestation of these errors 

and data gaps within the DEMK is strikingly illustrated in 

Figure 10. 

In Figure 10-a, data gaps and noises on the rooftops are 

clearly seen. These variations negatively affect the results 

of the point and model-based comparisons performed in 

this study and reduce the overall reliability and quality 

(e.g. completeness) of the DEM obtained from the drone 

kits. Moreover, in applications such as change detection, 

this could lead to the non-detection of changes or their 

misinterpretation as false positives. Indeed, at low flight 

altitudes, image matching difficulties arise when 

reconstructing rooftops, even if 80% overlap is used. 

These difficulties arise from both sudden image scale 

changes due to building heights and repetitive textures in 

images (Hong-Xia et al., 2013; Santise et al., 2014). 
Unlike rooftops, the absence of significant noise and data 

gaps in areas with poor image matching at ground level 

(Figure 10-c, e, g) indicates that the problem is caused by 

sudden image scale changes. However, it should not be 

overlooked that the micro-level details are less 

represented in the DEMK (Figure 10-g). Nonetheless, if 

the already poorly represented micro-level details is 

deemed negligible, subsequent to the cleaning of noisy 

points within the point cloud utilizing a suitable filtering 

methodology (e.g. statistical outlier removal), the 

generation of a DEM employing a pertinent interpolation 

technique (e.g. inverse distance weighting or kriging) 

could potentially augment the precision of outcomes. 

However, diminishing the details may impose limitations 

on the applications of the DEM derived from the drone 

kit. Notably, the level of detail (LoD) plays a crucial role 

in the creation of 3D city models. Reducing micro details 

can result in the regression of the produced model to a 

lower level (e.g. LoD2 instead of LoD3) impacting its 

accuracy (Ergun et al., 2023). 

Fig. 9. Boxplot graph of residuals. Blue tones represent the drone kit, green tones represent the Phantom 4 RTK. 
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Fig. 10. Perspective views of DEMs. a), c), e), g), i), k) represent DEMK. b), d), f), h), j), l) represent DEMP. 

Fig. 11. Percentage of 3D points observed from UAVs images. 

Certainly, regardless of the underlying reasons, 

difficulties in image matching have a direct impact on the 

triangulation phase, where camera parameters are 

employed to create a point cloud from the tie points. 

Considering that each 3D point is generated from tie 

points observed in at least two images, it can be deduced 

that 3D points derived from a smaller number of images 

(e.g. 3 images) are less reliable than those derived from a 
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larger number of images (e.g. 5 images) (Rhee and Kim, 

2016). In our case, we analyzed sparse point clouds and 

generated a graph to enhance our understanding of the 

number of images from which the generated 3D points 

originated (Figure 11).  

Upon examination of Figure 11, for both UAVs, it is 

evident that the majority of the 3D points constituting the 

sparse point cloud are derived from 2, 3 or 4 images. 
However, a consistent rise is observed with the Phantom 

4 RTK, particularly beyond 4 images, and the percentage 

of points generated from ≥ 8 images is more than double 

that of the drone kit. Although this may not appear to 

represent a substantial quantity of 3D points, it actually 

corresponds to approximately 360,000 and 190,000 points 

for the Phantom 4 RTK and drone kit, respectively, even 

within the sparse point cloud. Consequently, it is 

unsurprising that the Phantom 4 RTK exhibits fewer noisy 

points and produces a more reliable point cloud compared 

to the drone kit. 

Another well-known factor that influences the quality of 

the resulting products of UAVs is motion blur. In our case, 

a notable presence of motion blur was evident in some 

images acquired using the drone kit, in contrast to the 

imagery obtained through the Phantom 4 RTK. 

Considering that the meteorological conditions during 

image acquisition for both UAVs are similar, the reason 

for motion blur can be related to the flight speed, 

stabilization and camera settings of the drone kit. The 

exposure of a frame camera is regulated by parameters 

such as shutter speed, aperture (f-number) and ISO value, 

regardless of the flight speed of the platform. However, 

Roth et al. (2018) proposed the following equation, which 

considers flight speed (v), GSD value, and shutter speed 

(t) to calculate theoretical motion blur (b) caused by the

forward motion of the platform.

b=
𝑣.𝑡

GSD
(Eq.2) 

They suggested that the shutter speed should be fast 

enough to prevent motion blur and keeping motion blur 

smaller than 0.5*GSD for each image. According to this 

approach, the shutter speeds of the drone kit and Phantom 

4 RTK were supposed to be faster than 1/600 s and 1/444 

s respectively. For the Phantom 4 RTK with a built-in 

gimbal, shutter speed, aperture and ISO are automatically 

adjusted according to flight speed and sensor sensitivity, 

keeping the expected image motion blur at the sensor 

pixel size (Sertić et al., 2022). Therefore, the shutter speed 

limit value may have been kept more flexible for the 

Phantom 4 RTK during the flight mission. During the 

flight of the drone kit, the camera parameters were 

configured in automatic mode, thereby attaining a 

harmonious equilibrium among factors such as ISO, 

aperture and shutter speed. Nevertheless, the drone kit 

lacked a functional mechanism capable of establishing a 

congruence between the camera system and the 

stabilization of the aerial platform during the flight 

operations. Hence, our attention was directed towards 

investigating the possible occurrence of motion blur in 

images surpassing the computed theoretical threshold for 

shutter speed. The specific shutter speeds associated with 

each image in the drone kit were extracted using ExifTool 

(Harvey and Körtner, 2016). Additionally, despite the 

flight being conducted with the cameras in auto mode, the 

camera settings and configurations utilized for both the 

drone kit and the Phantom 4 RTK are outlined in Table 4. 

The shutter speeds of the drone kit images are in the range 

of 1/227-1/885 s. However, in the examinations 

conducted on images captured using low shutter speeds, a 

substantial correlation between motion blur and shutter 

speed was not identified.  

Table 4. The camera settings of UAVs 

Phantom 4 RTK Drone kit 

Shutter 

Speed (1/s) 

Range 

1/200-1/500 1/227-1/885 

Aperture 

(f-Number) 
f/5.6 f/2.8 

ISO 100 50 

Despite all these efforts, there was difficulty in 

determining the exact cause of the motion blur and 

whether it could be directly linked to the stabilization of 

the drone kit. To address this issue, we ascribe the 

undertaking of a more extensive examination into the 

impacts of parameters, such as flight speed and shutter 

speed, on image quality and motion blur, to forthcoming 

endeavors utilizing two distinct visible light cameras 

mounted on a drone kit. Hence, we anticipate that by 

employing two cameras with different settings on a single 

drone kit, we can investigate whether motion blur is 

directly linked to the stabilization of the drone kit. Based 

on current results, we recommend choosing slower (e.g. 6 

m/s) flight speeds and higher shutter speeds (e.g. 1/750 s) 

to set before flight to avoid motion blur when acquiring 

images with drone development kits. 

Conclusion 

The performance of geospatial data collection of UAV 

platforms has been a hot topic of interest for researchers 

for a long time. Nowadays, commercial UAVs outfitted 

with cutting-edge instrumentation effortlessly and 

accurately execute this undertaking. Nevertheless, the 

relatively high cost associated with commercial UAV 

platforms compels non-professional users to explore 

alternative solutions. The increasing interest in low-cost 

UAVs in geospatial data collection can be evaluated as a 

result of these trends. Today, access to low-cost UAVs, 

for example, weighing less than 250 grams and equipped 

with a three-axis gimbal (e.g. DJI Mini 4 Pro), has become 

easier than ever and is accessible for around $760. On the 

other hand, the Phantom 4 RTK, considered one of the 

more affordable commercial UAVs in its class, is 

available for approximately $6,600. However, users who 

will prefer such low-cost UAVs need concrete 

information for cost-benefit optimization. Although there 

is a considerable amount of research on the creation of 

photogrammetric products such as DEMs using ready-to-

fly UAVs, research on modular UAV platforms that can 

be procured in a fully modular structure and made ready-

to-fly by users is limited. The dominance of ready-to-fly 
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UAVs in the market and their relative ease of use may be 

the reason for this limitation. But when it comes to 

collecting geospatial data or generating DEMs, the quality 

of the end products is often directly related to equipment 

selection and their fine-tuning. Ready-to-fly UAVs 

substantially restrict the extent to which users can select 

equipment and manipulate its parameters. 

Modular UAVs exhibit advantages of cost-effectiveness 

and enablement of heightened flexibility in terms of 

payload arrangement and meticulous adjustments, in 

contrast to their ready-to-fly counterparts. Moreover, 

different remote sensing sensors can be integrated on 

these platforms at the same time and are less affected by 

wind due to their reasonable weight. For instance, both a 

visible light and a multispectral camera can be 

concurrently integrated into the modular UAV. This 

enables the acquisition of not only geometric information 

but also richer spectral information for the area of interest. 

Undoubtedly, alongside this flexibility, there exist 

challenges, notably the imperative to acquire GCPs 

compared to commercial UAVs. Although field works are 

the most time-consuming process of geospatial data 

generation using UAVs, GCPs are still needed to 

eliminate distortions (e.g. doming effect) in the end 

products, even when using commercial UAVs. It is 

emphasized that even the inclusion of just 1 GCP 

significantly reduces vertical bias, and having at least 1 

GCP per 100 images enhances the overall accuracy of the 

resulting products. From this point of view, low-cost 

modular UAVs can be preferred, probably considering the 

field work involving a higher number of GCPs than 

commercial UAVs. Although marking GCPs on the 

ground typically does not significantly inflate costs, the 

heightened workload and prolonged duration of field 

work may contribute to an increase in the overall cost. 

Considering that the cost of the commercial UAV 

platform employed in this study is roughly four times 

higher than that of the modular UAV (approximately 

$1000 including all components), it is evident that 

modular UAVs with a comparable flight mission duration 

(about 30 minutes) will remain an appealing alternative. 
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