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1. Introduction  

Capitalizing on the rapid advancements in artificial intelli-

gence technology and a surging demand for enhanced traffic 

safety and operational efficiency, scholarly focus has increas-

ingly converged on the domain of autonomous vehicles (AVs) 

over recent decades. Broadly dissected, the architecture of au-

tonomous vehicles encompasses three fundamental modules: 

perception, planning, and control. The planning module orches-

trates the generation of a sequential array of waypoints that chart 

the vehicle's course toward its intended destination. Subse-

quently, these waypoints are relayed to the control system, en-

trusted with the task of executing precise trajectory tracking. 

The primary objective of trajectory tracking is to effectually and 

swiftly follow a designated target trajectory, all within the oper-

ational parameters and limitations [1, 2]. Within the realm of 

autonomous driving trajectory tracking, this strategy bifurcates 

into a tripartite categorization of motion tasks: point-to-point 

motion, path following, and trajectory tracking [3]. This classi-

fication serves to disentangle complexities into discrete task 

units, thereby facilitating the derivation of apt controllers tai-

lored to the respective tasks. Commencing with point-to-point 

motion, the fundamental objective entails navigating from an in-

itial starting position to a predetermined destination point, irre-

spective of the specific course or trajectory. Conversely, the pur-

suit of trajectory tracking hinges upon the meticulous pursuit 

and alignment with a pre-established geometric path within stip-

ulated temporal confines. In parallel, the conception of path fol-

lowing materialized as an intermediary to enable the vehicle's 

attainment of the specified geometric trajectory while stead-

fastly adhering to its contours. 

PID controllers, renowned for their elementary configuration, 

theoretical underpinning, and extensive industrial adoption, 

constitute a quintessential exemplar of classical control method-

ologies. Comprising three distinct terms of action, the PID con-

troller's operational premise is typically predicated upon the dis-

crepancy between the present state and the desired response. 

These terms, namely Proportional (P), Integral (I), and Deriva-

tive (D), exert respective influences on the modulation of the 

triggering error. The annals of research in this domain have 

yielded a plethora of investigations. An innovative physics-

grounded path planning framework tailored for the autonomous 

traversal of tracked vehicles across rugged terrains has been pro-

pounded. The proposed methodology melds a hybrid planner 
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and simulator, orchestrating an intricate interplay of these facets 

by orchestrating closed-loop robot motion simulation through a 

low-level controller embedded within a realistic terrain model 

within a physics engine [4]. In a parallel endeavor, an inventive 

steering control strategy has been introduced, catering to dual-

motor coupled drive systems, where torque control forms the 

foundation, and speed closed-loop PID control governs the dual-

side drive motors. Efficacy in terms of desired steering angular 

velocity response and vehicle maneuverability enhancement 

was substantiated through simulation results [5]. Similarly, a 

speed tracking controller, predicated upon the PID control para-

digm, was formulated to determine the requisite vehicular trac-

tion force for attaining the desired velocity [6]. A trajectory 

planning and tracking paradigm, synergistically integrating arti-

ficial potential and PID feedback, was engendered to chart target 

trajectories. Empirical and simulation outcomes were proffered, 

exemplifying heightened tracking accuracy and steering 

smoothness vis-à-vis conventional Model Predictive Control 

(MPC) approaches [7]. Amidst a pantheon of adept control 

methodologies, PID control perseveres as an enduring focal 

point. Noteworthy attributes of PID control encompass its lucid 

architecture, commendable control efficacy, robust design, and 

facile implementation [8]. 

Over the course of the past four decades, evolutionary algo-

rithms have been extensively employed across a diverse spec-

trum of domains within the natural and social sciences, encom-

passing disciplines such as physics, mathematics, engineering, 

and economics [9, 10]. In broad contours, these algorithms ini-

tially generate candidate solutions in a stochastic manner, which 

serve as proxies for potential problem resolutions. Subsequently, 

these candidate solutions undergo evaluation via the objective 

function to ascertain their fitness values. Proceeding onward, it-

erative procedures within the algorithms recalibrate these candi-

dates, progressively converging towards the global minimum 

point. This iterative process persists until a stipulated termina-

tion criterion, encompassing parameters like the number of iter-

ations, tolerance threshold, or number of function evaluations, 

is satisfied. The endeavor of discerning the optimal configura-

tion of hyperparameters for a model or algorithm, commonly re-

ferred to as hyperparameter optimization, resonates as an ap-

proach capable of mitigating the exigencies of labor-intensive 

human intervention while circumventing the perils intrinsic to 

manual searches [11, 12]. It merits noting that the PID method-

ology necessitates complementary algorithms for the discern-

ment and meticulous refinement of its hyperparameters. The 

quest for well-suited, optimized values of these hyperparameters 

proves to be a formidable undertaking, given the intricate inter-

play of factors such as the intricate nature of vehicle dynamics, 

the vagaries arising from external disturbances' uncertainty, and 

the vehicle's non-holonomic constraint [13]. 

In the ambit of this scholarly investigation, triads of distinct 

evolutionary algorithms (EAs), namely the grey wolf optimizer 

[14], multi-verse optimizer [15], and salp swarm algorithm [16]. 

These algorithms are strategically employed to meticulously 

calibrate the hyperparameters of the PID controller, a corner-

stone of feedback control systems for autonomous vehicles. This 

novel application of evolutionary algorithms to PID controller 

tuning is a significant contribution to the field for several rea-

sons. 

First and foremost, our study marks an inaugural endeavor in 

this category, breaking new ground by deploying these ad-

vanced optimizers to discern the optimal hyperparameters for 

the PID controller. This innovation establishes a precedent that 

pushes the boundaries of existing knowledge, offering a fresh 

perspective on trajectory tracking challenges in the context of 

autonomous vehicles. 

Secondly, our research goes beyond theoretical exploration. 

We provide a comprehensive evaluation of the algorithms' per-

formance, combining quantitative analysis with numerical data 

and qualitative insights through graphical representation. This 

thorough assessment not only validates the practical effective-

ness of these algorithms but also contributes to a scholarly dis-

course that can inspire further research in this promising domain. 

In summary, our study's primary contributions lie in its pio-

neering approach to PID controller hyperparameter calibration, 

the comprehensive performance evaluation of the employed al-

gorithms, and the potential for further exploration and advance-

ments in autonomous vehicle trajectory tracking. These contri-

butions collectively enhance our understanding of feedback con-

trol systems and pave the way for improved autonomous vehicle 

navigation and safety. 

The main contents of this paper are as follows. In Sections 2-

3, the vehicle model and PID controller are presented. In Section 

4, the working principles of the algorithms used are explained. 

In Section 5, the results obtained are given and discussed. Fi-

nally, Section 6 is devoted to state the conclusion of the paper. 

2. The Vehicle Model 

This study utilizes the Kinematic Bicycle Model [17] to sim-

ulate the actions of the self-driving vehicle. This model encap-

sulates a streamlined rendition of bicycle kinematics, tailored to 

depict the vehicular motion when traversing at low velocities. In 

the pursuit of analytical expediency, it is postulated that the ve-

hicle maintains a constant, subdued velocity across an even ter-

rain, devoid of wheel slippage, thereby affording the supposition 

of rigid wheels [18]. Traditionally, the automotive rear axle cen-

ter is commonly acknowledged as the point of reference, and the 

essence of the control objective is to ensure the alignment of this 

center point with the intended trajectory. Based on the in-depth 

kinematic scrutiny, the mathematical representation of the vehi-

cle's motion is formulated as presented in prior studies [19, 20]: 

ẋ = v cos δ     (1) 

�̇� = 𝑣 cos 𝛿   (2) 

�̇� = 𝑣 tan 𝜃/𝐿     (3) 
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In this context, where (𝑥, 𝑦) corresponds to the positional 

displacement within the global reference frame coordinates, 

𝛿 symbolizes the orientation angle of the vehicle, 𝑣 stands for 

the longitudinal velocity at the midpoint of the rear axis, 𝐿 de-

notes the wheelbase, and 𝜃 represents the steering angle of the 

front wheel. The nonlinear equation below represents the formu-

lation of the vehicle's kinematics model: 

𝑋(𝑡)̇ = 𝑓(𝑋(𝑡), 𝑈(𝑡))     (4) 

where state variable 𝑋(𝑡) = [𝑥(𝑡)𝑦(𝑡)𝛿(𝑡)]𝑇  and the control 
amount 𝑈(𝑡) = [𝑣(𝑡)𝜃(𝑡)]𝑇 . 

3. PID Controller 

PID controller represents a ubiquitous feedback control methodol-

ogy extensively applied within the realm of engineering for the 

regulation of dynamic systems. Its fundamental objective resides 

in the precise modulation of control input, with the overarching 

aim of attaining and preserving a desired output state. This attain-

ment is predicated upon the judicious management of the discrep-

ancy existing between the intended reference value, known as the 

setpoint, and the present actual process variable. 

The PID controller derives its operational essence from a triad of 

hyperparameters, whereby each parameter corresponds to an indi-

vidual constituent of the acronym P-I-D. These three components 

play distinct roles in shaping the controller's response [21]: 

Proportional (P) Term: The proportional term, denoted as 𝐾𝑝, is 

primarily responsible for instantaneously responding to the current 

error. It produces an output value that is proportional to the current 

error value. In other words, it determines how much the control 

action should respond to the present error. 

Integral (I) Term: The integral term, represented as 𝐾𝑖, considers 

past errors and accumulates them over time. It is employed to elim-

inate any residual steady-state error that might exist after the pro-

portional and derivative terms have been applied. The integral term 

acts to counteract sustained error accumulation. 

Derivative (D) Term: The derivative term, designated as 𝐾𝑑, fo-

cuses on the rate of change of the error. It predicts future error 

trends and counteracts the present rate of error change. By doing 

so, it helps prevent overshoots and oscillations in the system's re-

sponse. The main equations of the PID controller can be seen in 

Table 1 [22]. The combined expression of the PID controller, ren-

dered as: 

  𝑌(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑𝑑(𝑒(𝑡))/𝑑𝑡
𝑡

0
    (5)  

In the context of the PID controller framework, the tracking 

error signal, denoted as 𝑒(𝑡),  emerges as a pivotal component 

encapsulating the disparity between the reference trajectory 

𝑟(𝑡) and the actual output 𝑦(𝑡) of the controlled system. The 

integral of the absolute value of the error (IAE) is addressed 

through the integral term in the PID controller. Central to the 

unctionality of the PID control scheme are three distinct control-

ler parameters, namely the proportional gain 𝐾𝑝 integral gain  

𝐾𝑖 and derivative gain 𝐾𝑑. These parameters collectively con-

tribute to shaping the controller's responsiveness and effective-

ness in minimizing the tracking error, thereby ensuring the 

alignment of the controlled output with the desired reference tra-

jectory. The effect of the PID parameters to system response can 

be seen in Table 2 [23]. 

4. Evolutionary Algorithms Employed 

4.1. Grey Wolf Optimizer 

The Grey wolf optimizer (GWO) was presented in 2014 and 

took inspiration from how gray wolves hunt by using the social 

hierarchy between them [14]. Social hierarchy within this con-

text can be elucidated based on a classification of dominance 

levels, encompassing four distinct strata: alpha (α), beta (𝛽), 

delta (𝛿) and omega (𝜔). Positioned at the pinnacle of this hi-

erarchy, the alpha wolf assumes a preeminent role in orchestrat-

ing search endeavors. Sequentially following, the beta wolf oc-

cupies the second rank, while the delta wolf stands at the third 

tier. Concluding this hierarchy, the omega wolf resides at the 

fourth echelon, predominantly shadowing the trajectories traced 

by its counterparts in order to navigate toward regions of the 

search space that exhibit promise and potential. Encircling prey 

materializes in the context of hunting prey and involves a stra-

tegic maneuver to encircle the target. The underlying mathemat-

ical model for this tactical approach is presented below: 

𝐷 = |𝐶. 𝑋𝑝(𝑡) − 𝑋(𝑡)|      (6)  

𝑋(𝑡 + 1) = 𝑋𝑝 − 𝐴. 𝐷                  (7)          

where 𝑡 indicates the current iteration, 𝐴 = 2𝑎. 𝑟1 − 𝑎 , 𝐶 =
2. 𝑟2 and 𝑟1, 𝑟2 are random vectors in [0,1]. Within the GWO 

framework, the Hunting phase is orchestrated by the alpha wolf, 

typically leading the hunting endeavors, while the beta and delta 

wolves might intermittently participate in the hunt. Conse-

quently, the top three solutions, represented by alpha, beta, and 

delta, contribute to updating the positions of the grey wolves. To 

mathematically emulate this hunting behavior, the subsequent 

equations are introduced: 

𝐷𝛼 = |𝐶1 ∗ 𝑋𝛼 − 𝑋|                 (8) 

𝐷𝛽 = |𝐶2 ∗ 𝑋𝛽 − 𝑋|                   (9) 

𝐷𝛿 = |𝐶3 ∗ 𝑋𝛿 − 𝑋|                       (10) 

𝑋1 = 𝑋𝛼 − 𝐴1𝐷𝛼                   (11) 

𝑋2 = 𝑋𝛽 − 𝐴2 𝐷𝛽                      (12) 

𝑋3 = 𝑋𝛿 − 𝐴3𝐷𝛿                      (13) 

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
               (14) 
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Table 1. The main equations of PID controller 
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𝑇𝑑
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(𝑒[𝑛] − 𝑒[𝑛 − 1])) 

Table 2. Parameter effect of the PID controller 

 KP KI KD 

Rise time - - ~ 

Overshoot + + - 

Settling time ~ + - 

Steady-state error - - ~ 

4.2. Multi-Verse Optimizer 

The underpinning principles of the multi-verse optimizer 

draw inspiration from three fundamental cosmological con-

cepts: the white hole, the black hole, and the wormhole [15]. 

Within this algorithmic framework, mathematical representa-

tions of these concepts are harnessed to facilitate exploration, 

exploitation, and local search processes, respectively. Specifi-

cally, the notions of white holes and black holes serve as agents 

for global search strategies, whereas the concept of wormholes 

augments local search endeavors. This paradigm conceives each 

solution as a distinct universe, with individual variables com-

prising objects within these universes. Moreover, every solution 

is endowed with an inflation rate, proportionate to its corre-

sponding fitness function evaluation. Within the MVO algo-

rithm, the ensuing interactions between the three aforemen-

tioned universe types are governed by a set of rules: 

 A higher inflation rate correlates with an increased likelihood 

of manifesting white holes. 

 Conversely, an elevated inflation rate corresponds to a dimin-

ished likelihood of encountering black holes. 

 Universes characterized by higher inflation rates tend to 

transmit objects via white holes. 

 In contrast, universes with lower inflation rates exhibit a pro-

pensity to receive more objects through black holes. 

 Irrespective of the inflation rate, objects in all universes ex-

hibit the potential for stochastic displacement towards the opti-

mal universe through wormholes. 

𝑈 = [𝑥1𝑥2 … 𝑥𝑛] ,   

𝑥𝑖 = [𝑥𝑖,1𝑥𝑖,2 … 𝑥𝑖,𝐷] , 𝑖 = 1,2, … 𝑀    (15) 

In Eq.15, U stands for a population, M is the number of the 

universe and D is the dimension of the problem. 

𝑥𝑖
𝑗

= {
𝑥𝑘

𝑗
     𝑟1 < 𝑁𝐼(𝑈𝑖)

𝑥𝑖
𝑗
  𝑟1 ≥ 𝑁𝐼(𝑈𝑖)

     (16) 

In Eq.16, 𝑥𝑖
𝑗
 denotes the jth parameter of ith universe, Ui re-

fers to the ith universe, 𝑁𝐼(𝑈𝑖) is normalized inflation rate of 

the ith universe, r1 is a random number in [0, 1], and 𝑥𝑘
𝑗
 indi-

cates the jth parameter of kth universe selected by a roulette 

wheel selection mechanism. To instigate localized modifica-

tions within each universe and enhance the likelihood of aug-

menting inflation rates via wormholes, a premise is adopted 

wherein wormhole tunnels consistently connect a given universe 

with the most optimal universe identified thus far.  

4.3. Salp Swarm Algorithm 

Introduced in 2017, the salp swarm algorithm is rooted in the 

population-based paradigm and derives inspiration from the col-

lective behavior of salp swarms in their natural habitat [16]. In 

the hierarchical structure of the salp chain, the vanguard salp as-

sumes the role of the leader while the subsequent members trail 

in its wake. To render this phenomenon into a mathematical 

model, the populace is initially partitioned into two distinct fac-

tions: the leader and the followers. The leader embodies the fore-

most salp within the chain, while the remaining constituents are 

categorized as followers. Eponymously designated, the leader 

exerts directional influence over the swarm's trajectory, steering 

their course, while the followers, as their nomenclature suggests, 

adhere to a sequenced emulation of their predecessors. The be-

low equation is given to update the position of the leader. To 
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update the position of the followers, the following equations are 

used. 

𝑥𝑗
𝑖 =

1

2
𝑎𝑡2 + 𝑣0𝑡   (17) 

where  𝑖 ≥ 2, 𝑥𝑗
𝑖 shows the position of ith follower salp in jth 

dimension, 𝑡 is time and 𝑣𝑜 is the initial speed. 

 

Fig. 1. The framework of EA based PID controller 

The depicted framework, as illustrated in Fig. 1, is employed 

for the purpose of trajectory tracking control, wherein the as-

sessment of fitness is accomplished by means of the root mean 

square error, as represented by Eq. (18) below. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = √
∑ 𝐶𝑇𝐸𝑖

2𝑁
𝑖

𝑁
  (18) 

Here, 𝐶𝑇𝐸𝑖  denotes the cross-track error between the vehicle 

and the corresponding segmented path at the ith instance, and N 

signifies the duration over which this evaluation is conducted. 

5. Experimental Results 

In order to verify the performance of the proposed algorithms 

in finding hyperparameters of PID controller, two example paths 

given in Fig.3 are used as target trajectories. We ran the experi-

ments on a Desktop PC with Intel Xeon Gold 5220R processor, 

256 GB RAM, Ubuntu 22.04. For the fairness of comparison, 

the algorithm-specific parameter values proposed by the original 

studies [14, 15, 16] were used in the experiments. The popula-

tion size and maximum iteration are chosen 10 and 100, respec-

tively for whole algorithms that run 10 times independently. The 

performance of the algorithms is evaluated numerically and 

graphically. The best hyperparameters found by each algorithm 

are also given.  

Initially, the process begins with the initialization of the evo-

lutionary algorithms (EAs), namely GWO, MVO, and SSA (See 

Section 4). This involves setting up the algorithm-specific pa-

rameters, such as population size, maximum iterations, and 

other relevant settings (See references 14, 15, 16). Once the al-

gorithms are initialized, the vehicle's trajectory tracking process 

is executed. This involves the movement of the vehicle along a 

predefined reference trajectory using a control strategy based on 

the PID controller. The vehicle's position is calculated over time 

using a simplified kinematic bicycle model (See Section 2). 

While the vehicle follows the reference trajectory, the CTE is 

calculated for each waypoint along the trajectory (See Eq. 20). 

The CTE represents the deviation between the vehicle's actual 

position and the desired position on the reference trajectory. The 

calculated CTE errors are used as the objective function values. 

The evolutionary algorithms (GWO, MVO, and SSA) are then 

applied to optimize the parameters of the PID controller. The 

goal is to find PID parameters that minimize the CTE errors and 

improve the trajectory tracking performance. The steps can be 

represented below (Fig. 2): 

 

Fig. 2. The process of the evolutionary optimizatio

  

                             (a) Example 1                                        (b) Example 2      

Fig. 3. Example trajectories 
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Table 3. Comparative results of the algorithms for example 1 (Error 
data is in units.) 

 GWO SSA MVO 

Best 11.818 11.818 11.818 

Mean 11.818 11.818 11.818 

Std 6.223e-6 3.652e-5 1.239e-5 

Run time (sec) 23.11 23.07 23.29 

Table 4. Best found parameters of the algorithms for example 1 

 

Fig. 4. Convergence graphs of the algorithms for example 1 

 
Fig. 5. Trajectory results for example 1 

 

Fig. 6. Convergence graphs of the algorithms for example 2 

 

Fig.7. Trajectory results for example 2 

Table 5. Comparative results of the algorithms for example 2 (Error 
data is in units.) 

 GWO SSA MVO 

Best 4.194 4.194 4.141 

Mean 4.211 4.207 4.158 

Std 0.012 0.008 0.021 

Run time (sec) 22.99 22.67 23.08 

Table 6. Best found parameters of the algorithms for example 2 

 GWO SSA MVO 

𝐾𝑝 1.153 1.115 1.262 

𝐾𝑖 4.001e-4 0.001 1.102e-4 

𝐾𝑑 0.151 0.152 0.225 

 

 GWO SSA MVO 

𝐾𝑝 0.020 0.020 0.020 

𝐾𝑖 1.132e-10 2.021e-9 1.820e-9 

𝐾𝑑 6.082e-4 6.085e-4 6.082e-4 
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6. Conclusion 

In the context of autonomous driving trajectory tracking, the 

amalgamation of evolutionary algorithms for the refinement of 

PID controller hyperparameters has yielded substantial insights. 

In this study, we embarked on a journey to explore the synergy 

between evolutionary algorithms and the PID controller in the 

context of vehicular trajectory tracking for autonomous vehicles. 

By harnessing the power of three distinct evolutionary algo-

rithms, namely GWO, MVO and SSA, we aimed to calibrate the 

hyperparameters of the PID controller to enhance its perfor-

mance. Notably, this endeavor represents a pioneering effort, 

marking the first deployment of these evolutionary optimizers 

for PID tuning within the intricate domain of trajectory tracking. 

Our research revealed profound contributions on two primary 

fronts. Firstly, it established a novel precedent in the field by 

introducing the GWO, MVO, and SSA algorithms as potent 

tools for discerning optimal PID hyperparameters. This novel 

application underscores the originality of our approach, offering 

fresh insights into the realm of autonomous vehicle control. Sec-

ondly, our study conducted a thorough and rigorous assessment 

of the algorithmic performance, combining quantitative analysis 

with qualitative graphical representations. This comprehensive 

evaluation showcased not only the practical effectiveness of the 

employed algorithms but also laid the foundation for potential 

future explorations and advancements in this burgeoning field. 
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