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ABSTRACT. In this paper, we obtain some reverses of Callebaut and Holder inequalities for isotonic functionals via
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1. INTRODUCTION

Let L be a linear class of real-valued functions g : E — R having the properties:

(L1) f,g9 € Limply (af + Bg) € Lforall e, 5 € R.

(L2) 1 € L,ie., if fo (t) =1,t € E then f € L.
An isotonic linear functional A : L — R is a functional satisfying

(A1) A(af +Bg) = aA(f)+BA(g)forall f, g€ Land o, B € R.

(A2) If f € Land f > 0, then A(f) > 0.

(A3) The mapping A is said to be normalised if A (1) = 1.
Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy
a number of convenient properties. Thus, they provide, for example, Jessen’s inequality, which
is a functional form of Jensen’s inequality (see [2], [20] and [21]). For other inequalities for
isotonic functionals, see [1], [4]-[19] and [22]-[25]. For related results, see [10, 11]

We note that common examples of such isotonic linear functionals A are given by

A(9)=/Egdu0rA(g)= > pegns

kEE
where (1 is a positive measure on E in the first case and F is a subset of the natural numbers N
in the second (pr, > 0, k € E). As is known to all, the famous Young inequality for scalars says
thatif a, b > 0 and v € [0, 1], then
(1.1) a7y < (1—-v)a+uvb

with equality if and only if a = b. The inequality (1.1) is also called v-weighted arithmetic-
geometric mean inequality. We consider the function f,, : [0,00) — [0, c0) defined for v € (0,1)
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by

(1.2) fol@)=1—v+vae—2a”.

For [m, M] C [0, 00), define
fu(m), M<1

(1.3) A, (m, M) := dmax{f, (m),f, (M)}, m<1<M
fo (M), 1<m

and
fo(M), M<1
(1.4) 0y (m, M) := 40, m<1<M.
fu(m), 1<m
In the recent paper [9], we obtained the following refinement and reverse for the additive
Young’s inequality:
(1.5) 5, (m,M)a<(1—-v)a+vb—a "0 <A, (m,M)a
for positive numbers a, b with 2 € [m,M] C (0,00) and v € [0,1], where A, (m, M) and
0, (m, M) are defined by (1.3) and (1.4), respectively.

Kittaneh and Manasrah [16], [17] provided a refinement and an additive reverse for Young
inequality as follows:

(1.6) (f—f) (1—v)a+vb—a'" Vb”<R(f—f)
where a, b > 0, v € [0,1], r = min {1 — v,v} and R = max {1 — v,v}. The case v = % reduces
(1.6) to an identity. Using (1.5) and (1.6), we have the simpler, however coarser bounds:
2

(1—\/M) a, M<1
(1.7) X 90, m<1<M

(vVm — 1)2 a, l<m

<(-v)a+vb—a """

(1-ym)a, M<1
2
<R x max{(l—ﬁ)27(\/ﬂ—1) }a, m<1<M.
2

(\/M — 1) a, 1<m

We recall that Specht’s ratio is defined by [24]
hE (0,1) U (1, 00)
(18) eln( ) .
h=1

It is well known that limj,_,1 S (k) = 1, S (h) = S () > 1for h > 0, h # 1. The function is
decreasing on (0, 1) and increasing on (1, co) . The following inequality provides a refinement
and a multiplicative reverse for Young's inequality

(1.9) s ((%)) d < (1—v)atb< S (%) Ay,
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where a,b > 0, v € [0,1], r = min {1 — v,v}. The second inequality in (1.3) is due to Tominaga
[26], while the first one is due to Furuichi [15]. On making use of (1.5) and (1.9), we have the
following lower and upper bounds in terms of Specht’s ratio:

(S (M7) — 1] MYa, M <1
(1.10) 0, m<1<M
[S(m")—1]mYa, 1<m
<(1—-v)a+uvb—a v

[S (m) — 1] m¥a, M <1
<{dmax{[S(m)—1m",[S(M)—-1]M"}a, m<1<M.
[S(M)—1]M"a, l<m
We consider the Kantorovich’s constant defined by
2
(1.11) K ()= & Ihl) h> 0.

The function K is decreasing on (0, 1) and increasing on [1,00), K (k) > 1 for any A > 0 and
K (h) = K (+) for any h > 0. The following multiplicative refinement and reverse of Young
inequality in terms of Kantorovich’s constant holds.

T ﬂ 1—-vyv < _ < R g 1—vyv

(1.12) K (b)a W <(l-v)atvb< K (b)a b,
where a, b > 0, v € [0,1], r = min {1l — v,v} and R = max {1 — v,v}. The first inequality in
(1.12) was obtained by Zou et al. in [27], while the second by Liao et al. [18]. By making use
of (1.5) and (1.9), we have the following lower and upper bounds in terms of Kantorovich’s
constant:

(K" (M) —1]M"a, M <1
(1.13) 0, m<1<M

[K"(m) —1]m"a, 1l<m

<(1-v)a+uvb—a "V

[K®(m) — 1] m”a, M <1
< dmax {[K®(m)—1]m”, [KE(M)—1] M"}a, m<1<M.
[KF (M) —1] M"a, 1<m

In this paper, we obtain some reverses of Callebaut and Holder inequalities for isotonic
functionals via the reverse of Young’s inequality obtained in (1.5). Applications for integrals
and n-tuples of real numbers are provided as well.

2. REVERSES OF CALLEBAUT’S INEQUALITY

The functional version of Callebaut’s inequality states that
(2.14) A2 (fg) S A(F2Og) A (1297 0) < A(£2) A(g)

provided that f2, g%, f2(0-v)g2 f2vg2(0-v)_ fq € [ for some v € [0, 1]. For the discrete and
integral versions in one real variable, see [3].
We start with the following result:
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Theorem 2.1. Let A, B : L — R be two normalised isotonic functionals. If f, g : E — Rare such that
[>0,g>0,f2% g% f2Ug? fg20-v) ¢ [ for some v € [0,1] and

(2.15) O<m§§§M<oo

for some constants m, M, then

@16) (=) (1= A(S) B(5") +vA (") B (1) - (f2<1 g) B (190 )

e ) 1 () e

where f, is defined by (1.2). In partzcular
(2.17) (0<)A F20- V)g2u) <f21/ 21— V))

-4 (
<max{ ( )f(( ))} () A(g?).

Proof. For any x,y € E, we have

2 fPa) f2y) 2
TEEw Fw
Consider
P, PO
g* @) g (y)’
then 2 € {(%)2 , (%)2] and by the inequality (1.5), we have
GO S () (z) 2w\
219 =)A= ey v 92 (v) ( 2 () ) <g (v) )

el 1)) 5

for any z, y € E. Now, if we multiply (2.18) by ¢* () ¢* (y) > 0 then we get
B (-0 ) ) 1 ()5 0 ) )

gmax{fV ((57))- ((fﬁ)) } 7 @) )

forany z,y € E. Fixy € E. Then by (2.19), we have in the order of L that
(2.20) L=0) W) P +vf* W) g = 7 W) " (y) 2079

< max {fu ((Ef) Sy ((%)j }92 (y) £

If we take the functional A in (2.19), then we get
(L= g W) A () + v W) A(e) = 12 (1) 827 () A (1209

SmaX{fu ((_]\";)2) o <(f}f)2>}92 () A(f?)
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for any y € E. This inequality can be written in the order of L as

(2.21) (1 o V) A (fQ) g2 + VA (92) f2 _A (fQ(l—l/)92u> f2u92(1—l/)
m 2 M2 N 9
SmaX{fy ((M) ) fu <<m> )}A(f ) 9.
Now, if we take the functional B in (2.21), then we get the desired result (2.16). O

Corollary 2.1. Let A, B : L — R be two normalised isotonic functionals. If f, g : E — R are such
that f > 0,9 >0, 2, g%, fg € L and the condition (2.15) holds true, then

222) (0<)5 [A (1) B(6?) + A(6*) B ()] ~ A(f9) B (o)
2
<;CZ_Q A(f)B(s).
In particular,
2

2.23) ODAP) AW -2 Ga) <5 (3 1) AP AW,
ot, equivalently

L A9 1 (MY
229 O~ g <3 (1)

Proof. Observe that

and

o (M N _omPeM: M (M -—m)

v m - 2m? m  2m2
Therefore ) ,
m 2 M M -m)® 1 (M
maX{fv ((M) ) v ((m> )} =" om2 2 (m - 1)
and by (2.16), we get the desired result (2.22). O
Remark 2.1. We observe that the inequality (2.23) can be written as
2

(2.25) Aﬁ%A@ﬂP—;(%—J) < A2 (fg).

We observe that the function ¢ : [1,00) — R, ¢ (t) = 1 — & (t —1)* is positive for t € (1,14 /2)
and negative for t € [1,00). Therefore, the inequality (2.25) is of interest only in the case that L €

(1,14+v2).
On using the inequality (2.16) and (1.7), we get

220 0= A7) B +rA () B(7?) — A (£000) B (52020)

SRmax{(l - %)2 (Anf - 1>2}A(f2)3(92)
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and since

then we get from (2.26) that
@27) (0 (1-v)A(f2) B(¢*) +vA(g) B(f2) — A (2076 ) B (f2g*0™)
< (M 1) a8 ()
m
provided f >0, g > 0, f2, g%, f2(1=) g2 f2v¢2(=¥) ¢ [ for some v € [0, 1].

On using the inequality (2.16) and (1.10), we get the following reverse of Callebaut’s inequal-
ity in terms of Specht’s ratio

@29 ) (1= A7) B +rA(?) B(f) - 4 (£0g) B (527570

{5 () -1 G [s () ] () Jacro e

provided f > 0, g > 0, /2, g%, f20~)g?, 1~ € L for some v € [0, 1].
Finally, on using the inequality (2.16) and (1.13), we get the following reverse of Callebaut’s
inequality in terms of Kantorovich’s constant

(2.29) (O S) (1 _ 1/) A (f2) B (92) +UA (gz) B (f2) _A (f2(17V)92u> B (fzug2(17u))

m\ 2 m\2v M\? M\
s [ ()] G [ (1)) ) ()
xA(f?) B (9°)
provided f >0, g > 0, f2, g%, f2U=) g%, f?¢2(=v) ¢ L for some v € [0, 1].

3. REVERSES OF HOLDER’S INEQUALITY

We have the following additive reverse of Holder’s inequality:

Theorem 3.2. Let A : L — R be a normalised isotonic functional and p, ¢ > 1 with % + % =1.1Iff,
g : E — Raresuch that fg, fP, g? € L and

(3.30) O<m < f<M <00, 0<me <g< M,y < oo,
then
(3.31) (0<)1 — A(f9)

[A(f2)]"/7 [A (g)]"*

o (G2 G2)T) 0 (G G2
where f% is defined by

(3.32) fi(z) =
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Proof. Observe that, by (3.30), we have
mb < A(f7) < M and m < A (g") < M.
Also

giving that

-1 fr
G ()] =5
my 2 B A(g y
Using the inequality (1.5) for b = A{;p), a = 2
RN A T
(8 ()] e

Lt 1 19
G V=A@ A T A (A

i (1) G2 (C2) G20

If we take the functional A in (3.33), then we get
1A(g?) [ LA(S) A(fg)

U= UA) T A T A (A ()

ol ([G) GV T ) (G2 )

which is equivalent to the desired result (3.30). ]

The following reverse of Cauchy-Bunyakovsky-Schwarz inequality for isotonic functionals
holds:

Corollary 3.2. Let A : L — R be a normalised isotonic functional, f, g : E — R are such that fg, f?,
g2 € L and the condition (3.30) is valid, then

A(fg) (My My — mymg)®

172 72 = 29
[A(f2)] 7 [A(g?)] 2myms;
Proof. For p = 2, we have f1 (z) = 4% — \/z,x > 0. Then

(3.34) 0<)1 -

2 ((M) (M>> (MM — myma)?
2 mq mo Qm%mg
and
2 ((M) (2 >> (MM — myma)’
2\ \m ma 2M2 M2
and since

et () () ) (i) () )= ™

then by (3.31) we get the desired result (3.34). O
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Using the inequality (3.34) and (1.7), we get

A(fg)
3.35 0<)1—
439 0= [A(f2)]"P [A (g)]"*

STmax{<1—<;zz>‘5<zz>g>?<<if;>g<afz>g—l>2}7

'S

(-G Y ()]
(@)

then by (3.35) we have the inequality

P q 2
A Mi\?Z [ My\?
(3.36) (0<)1— W9 oy (1) <2> 1) .
[A(f)] P [A (9] m m2
where T' = max {p q} , f,g: E — Raresuch that fg, f?, g? € L and they satisfy the condition

(3.30). Using the inequality (3.34) and (1.10), we get

A(fg)
(3.37) 0<)1— - -
0= [A(f7)]"7 [A (g1)"*

S ONCDRICNE
LERSIRIDICN

provided f, g : E — R are such that fg, f?, g? € L and they satisfy the condition (3.30). Using
the inequality (3.34) and (1.13), we get

A(fg)
3.38 0<
e O g >]”q

o ([ ()T ) )" ()
() ()1 (2) (')

where T' = max {p } f,g9: E — Raresuchthat fg, f?, g¢ € L and they satisfy the condition
(3.30).
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4. APPLICATIONS FOR INTEGRALS

Let (€2, A, i) be a measurable space consisting of a set €2, a o -algebra A of subsets of {2 and
a countably additive and positive measure ;. on A with values in RU {oo} . For a yi-measurable
function w : Q@ — R, with w (x) > 0 for u -a.e. (almost every) = € €, consider the Lebesgue
space

Ly (Q,u)={f:Q—R, fisp-measurable and /Q If (z)|w(x)dp (x) < oo}

For simplicity of notation, we write everywhere in the sequel [, wdy instead of [, w () dp (x).
The same for other integrals involved below. We assume that [, wdu = 1.

Let f, g be u-measurable functions with the property that there exists the constants A4, m > 0
such that

f

(4.39) 0<m< g < M < oo p-almost everywhere (a.e.) on Q.
If f2, g € Ly, (Q, i), then by (2.17) we have

(4.40) (0 S)/Q wadu/QWfdu—/Qwa(lfs)g%du/Qwf2592(1’5>du

SmaX{fs ((Z)Z)) fs ((%)j } /waQdM/QWQQdM

for any s € [0, 1], where f; is defined by (1.2), and, in particular,
2 2
(Jo wigdp) 1 (M
(4.41) 0<)1— < (£ 1) .
<) Jowfdp fowg?dp = 2 \'m

Let f, g be yu-measurable functions with the property that there exists the constants m;, M,
ma, Ms such that

(4.42) 0<m < f<M <00, 0<my <g< My <oop-a.e.onf.

Let p, ¢ > 1 with % + % = 1, then by (3.31) we have the following reverse of Holder’s inequality

Jowfgdp
(Joy wirdp)'’” ( f wyrdp) '

o1 ([ (22)] ) () ()}

where f1 is defined by (3.32).
In particular, we have the reverse of Cauchy-Bunyakovsky-Schwarz inequality

(4.43) 0<)1—

2
(4.44) 0<)1— {@%mw < (0 mima)”
(Jowf2dp) ™ (Jqwg?dp) 2mim;
From (3.36), we have, for T = max {%, %} , that

z g 2
(445 (0=)1- Jo wrod <7 <M1>2 (MQ> 1)
(Jowfrdp) e (Jowgtdp) Ha my ma
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5. APPLICATIONS FOR REAL NUMBERS

We consider the n-tuples of positive numbers a = (a1, ..., ay) , b = (b1, ..., b,) and the proba-
bility distribution p = (p1,...,pn),i.e. p; > 0 forany i € {1,...,n} with > p; = 1.
If there exist the constants m, M > 0 such that

0<m§%§M<ooforanyi€{l,...,n},

bi
then by (4.40), for the counting discrete measure, we have
(5.46) 0) 3 peat 3opi =3 pual I 3 piaf
i=1 i=1 i=1 ;

Srr:ax{fs_<<m) )_fs (( ) )}Zpl ZZW

for any s € [0, 1], where f; is defined by (1.2). In particular,
" piaiby)’ 1 (M ’
(5.47) 0<)1— n(Zz:lzp an ) S <= ( _ 1) '
Dim1Pitg Qi piby T 2 \m
If there exists the constants mq, M7, mo, Ms such that

(5.48) 0<my <a; <M <00, 0<mg<b; <My <ooforanyie {1,...,n}

and p, ¢ > 1 with zlz + % = 1, then by (4.43) we have the following reverse of Holder’s inequality

> piab;
(5.49) (0<)1—
(0 pia?) P (0 pib)

come {5 (22 ()] ) 5 (2 (229}

where f1 is defined by (3.32). In particular, we have the reverse of Cauchy-Bunyakovsky-

Schwarz inequality

(5.50) 0<)1— Dizy Pitibi (M, My —myma)”
T CLpad (e T 2mims
From (4.45), we have for T' = max{p } that
n 2 g 2
o e B (o ()
(Zz 1pZ ) (Zz 1 qu) mi ma

provided a and b satisfy the condition (5.48).
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