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Abstract

In this paper, we introduce some f -divergence measures that are related to the Jensen’s
divergence introduced by Burbea and Rao in 1982. We establish their joint convexity
and provide some inequalities between these measures and a combination of Csiszár’s
f -divergence, f -midpoint divergence and f -integral divergence measures.

1. Introduction

Let (X ,A ) be a measurable space satisfying |A |> 2 and µ be a σ -finite measure on (X ,A ) . Let P be the set of all probability measures
on (X ,A ) which are absolutely continuous with respect to µ. For P, Q ∈P , let p = dP

dµ
and q = dQ

dµ
denote the Radon-Nikodym derivatives

of P and Q with respect to µ.

Two probability measures P, Q ∈P are said to be orthogonal and we denote this by Q⊥ P if

P({q = 0}) = Q({p = 0}) = 1.

Let f : [0,∞)→ (−∞,∞] be a convex function that is continuous at 0, i.e., f (0) = limu↓0 f (u) .
In 1963, I. Csiszár [1] introduced the concept of f -divergence as follows.

Definition 1.1. Let P, Q ∈P . Then

I f (Q,P) =
∫

X
p(x) f

[
q(x)
p(x)

]
dµ (x) , (1.1)

is called the f -divergence of the probability distributions Q and P.

Remark 1.2. Observe that, the integrand in the formula (1.1) is undefined when p(x) = 0. The way to overcome this problem is to postulate
for f as above that

0 f
[

q(x)
0

]
= q(x) lim

u↓0

[
u f
(

1
u

)]
, x ∈ X . (1.2)

We now give some examples of f -divergences that are well-known and often used in the literature (see also [2]).
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1.1. The class of χα -divergences

The f -divergences of this class, which is generated by the function χα , α ∈ [1,∞), defined by

χ
α (u) = |u−1|α , u ∈ [0,∞)

have the form

I f (Q,P) =
∫

X
p
∣∣∣∣ qp −1

∣∣∣∣α dµ =
∫

X
p1−α |q− p|α dµ. (1.3)

From this class only the parameter α = 1 provides a distance in the topological sense, namely the total variation distance
V (Q,P) =

∫
X |q− p|dµ. The most prominent special case of this class is, however, Karl Pearson’s χ2-divergence

χ
2 (Q,P) =

∫
X

q2

p
dµ−1

that is obtained for α = 2.

1.2. Dichotomy class

From this class, generated by the function fα : [0,∞)→ R

fα (u) =


u−1− lnu for α = 0;

1
α(1−α)

[αu+1−α−uα ] for α ∈ R\{0,1} ;

1−u+u lnu for α = 1;

only the parameter α = 1
2

(
f 1

2
(u) = 2(

√
u−1)2

)
provides a distance, namely, the Hellinger distance

H (Q,P) =
[∫

X
(
√

q−√p)2 dµ

] 1
2

.

Another important divergence is the Kullback-Leibler divergence obtained for α = 1,

KL(Q,P) =
∫

X
q ln
(

q
p

)
dµ.

1.3. Matsushita’s divergences

The elements of this class, which is generated by the function ϕα , α ∈ (0,1] given by

ϕα (u) := |1−uα |
1
α , u ∈ [0,∞),

are prototypes of metric divergences, providing the distances
[
Iϕα

(Q,P)
]α

.

1.4. Puri-Vincze divergences

This class is generated by the functions Φα , α ∈ [1,∞) given by

Φα (u) :=
|1−u|α

(u+1)α−1 , u ∈ [0,∞).

It has been shown in [3] that this class provides the distances [IΦα
(Q,P)]

1
α .

1.5. Divergences of Arimoto-type

This class is generated by the functions

Ψα (u) :=



α

α−1

[
(1+uα )

1
α −2

1
α
−1 (1+u)

]
for α ∈ (0,∞)\{1} ;

(1+u) ln2+u lnu− (1+u) ln(1+u) for α = 1;

1
2 |1−u| for α = ∞.

It has been shown in [4] that this class provides the distances
[
IΨα

(Q,P)
]min(α, 1

α
) for α ∈ (0,∞) and 1

2V (Q,P) for α = ∞.
For f continuous convex on [0,∞) we obtain the ∗-conjugate function of f by

f ∗ (u) = u f
(

1
u

)
, u ∈ (0,∞)
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and

f ∗ (0) = lim
u↓0

f ∗ (u) .

It is also known that if f is continuous convex on [0,∞) then so is f ∗.
The following two theorems contain the most basic properties of f -divergences. For their proofs we refer the reader to Chapter 1 of [5] (see
also [2]).

Theorem 1.3 (Uniqueness and Symmetry Theorem). Let f , f1 be continuous convex on [0,∞). We have

I f1 (Q,P) = I f (Q,P) ,

for all P, Q ∈P if and only if there exists a constant c ∈ R such that

f1 (u) = f (u)+ c(u−1) ,

for any u ∈ [0,∞).

Theorem 1.4 (Range of Values Theorem). Let f : [0,∞)→ R be a continuous convex function on [0,∞). For any P,Q ∈P , we have the
double inequality

f (1)≤ I f (Q,P)≤ f (0)+ f ∗ (0) . (1.4)

(i) If P = Q, then the equality holds in the first part of (1.4).

If f is strictly convex at 1, then the equality holds in the first part of (1.4) if and only if P = Q;

(ii) If Q⊥ P, then the equality holds in the second part of (1.4).

If f (0)+ f ∗ (0)< ∞, then equality holds in the second part of (1.4) if and only if Q⊥ P.

The following result is a refinement of the second inequality in Theorem 1.4 (see [2, Theorem 3]).

Theorem 1.5. Let f be a continuous convex function on [0,∞) with f (1) = 0 ( f is normalised) and f (0)+ f ∗ (0)< ∞. Then

0≤ I f (Q,P)≤ 1
2
[ f (0)+ f ∗ (0)]V (Q,P) (1.5)

for any Q, P ∈P .

For other inequalities for f -divergence see [6–20].

2. Some Preliminary Facts

For a function f defined on an interval I of the real line R , by following the paper by Burbea & Rao [21], we consider the J -divergence
between the elements t, s ∈ I given by

J f (t,s) :=
1
2
[ f (t)+ f (s)]− f

(
t + s

2

)
.

As important examples of such divergences, we can consider [21],

Jα (t,s) :=


(α−1)−1

[
1
2 (t

α + sα )−
( t+s

2
)α
]
, α 6= 1,

[
t ln(t)+ s ln(s)− (t + s) ln

( t+s
2
)]
, α = 1.

If f is convex on I, then J f (t,s)≥ 0 for all (t,s) ∈ I× I.
The following result concerning the joint convexity of J f also holds:

Theorem 2.1 (Burbea-Rao, 1982 [21]). Let f be a C2 function on an interval I. Then J f is convex (concave) on I× I, if and only if f is
convex (concave) and 1

f ′′ is concave (convex) on I.

We define the Hermite-Hadamard trapezoid and mid-point divergences

T f (t,s) :=
1
2
[ f (t)+ f (s)]−

∫ 1

0
f ((1− τ) t + τs)dτ (2.1)

and

M f (t,s) :=
∫ 1

0
f ((1− τ) t + τs)dτ− f

(
t + s

2

)
(2.2)

for all (t,s) ∈ I× I.
We observe that

J f (t,s) = T f (t,s)+M f (t,s) (2.3)

for all (t,s) ∈ I× I.



Universal Journal of Mathematics and Applications 143

If f is convex on I, then by Hermite-Hadamard inequalities

f (a)+ f (b)
2

≥
∫ 1

0
f ((1− τ)a+ τb)dτ ≥ f

(
a+b

2

)
for all a, b ∈ I, we have the following fundamental facts

T f (t,s)≥ 0 and M f (t,s)≥ 0 (2.4)

for all (t,s) ∈ I× I.
Using Bullen’s inequality, see for instance [22, p. 2],

0≤
∫ 1

0
f ((1− τ)a+ τb)dτ− f

(
a+b

2

)
≤ f (a)+ f (b)

2
−
∫ 1

0
f ((1− τ)a+ τb)dτ

we also have

0≤M f (t,s)≤T f (t,s) . (2.5)

Let us recall the following special means:

a) The arithmetic mean

A(a,b) :=
a+b

2
, a,b > 0,

b) The geometric mean

G(a,b) :=
√

ab; a,b≥ 0,

c) The harmonic mean

H (a,b) :=
2

1
a +

1
b

; a,b > 0,

d) The identric mean

I (a,b) :=


1
e

(
bb

aa

) 1
b−a

if b 6= a

a if b = a

; a,b > 0

e) The logarithmic mean

L(a,b) :=


b−a

lnb− lna
if b 6= a

a if b = a

; a,b > 0

f) The p-logarithmic mean

Lp (a,b) :=


(

bp+1−ap+1

(p+1)(b−a)

) 1
p

if b 6= a, p ∈ R\{−1,0}

a if b = a

; a,b > 0.

If we put L0 (a,b) := I (a,b) and L−1 (a,b) := L(a,b) , then it is well known that the function R 3p 7→ Lp (a,b) is monotonic increasing on
R.
We observe that for p ∈ R\{−1,0} we have∫ 1

0
[(1− τ)a+ τb]p dτ = Lp

p (a,b) ,
∫ 1

0
[(1− τ)a+ τb]−1 dτ = L−1 (a,b)

and ∫ 1

0
ln [(1− τ)a+ τb]dτ = ln I (a,b) .

Using these notations we can define the following divergences for (t,s) ∈ In× In where I is an interval of positive numbers:

Tp (t,s) := A(t p,sp)−Lp
p (t,s)
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and

Mp (t,s) := Lp
p (t,s)−Ap (t,s)

for all p ∈ R\{−1,0} ,

T−1 (t,s) := H−1 (t,s)−L−1 (t,s)

and

M−1 (t,s) := L−1 (t,s)−A−1 (t,s)

for p =−1 and

T0 (t,s) := ln
(

G(t,s)
I (t,s)

)
and

M0 (t,s) := ln
(

I (t,s)
A(t,s)

)
for p = 0.
Since the function f (τ) = τ p, τ > 0 is convex for p ∈ (−∞,0)∪ (1,∞), then we have

Tp (t,s) , Mp (t,s)≥ 0 (2.6)

for all (t,s) ∈ I× I.
For p ∈ (0,1) the function f (τ) = τ p, τ > 0 and for p = 0, the function f (τ) = lnτ are concave, then we have for p ∈ [0,1) that

Tp (t,s) , Mp (t,s)≤ 0 (2.7)

for all (t,s) ∈ I× I.
Finally for p = 1 we have both T1 (t,s) = M1 (t,s) = 0 for all (t,s) ∈ I× I.
We need the following convexity result that is a consequence of Burbea-Rao’s theorem above:

Lemma 2.2. Let f be a C2 function on an interval I. Then T f and M f are convex (concave) on I× I, if and only if f is convex (concave)
and 1

f ′′ is concave (convex) on I.

Proof. If T f and M f are convex on I× I then the sum T f +M f = J f is convex on I× I, which, by Burbea-Rao theorem implies that f is
convex and 1

f ′′ is concave on I.

Now, if f is convex and 1
f ′′ is concave on I, then by the same theorem we have that the function J f : I× I→ R

J f (t,s) :=
1
2
[ f (t)+ f (s)]− f

(
t + s

2

)
is convex.
Let t, s, u, v ∈ I. We define

ϕ (τ) := J f ((1− τ)(t,s)+ τ (u,v)) = J f (((1− τ) t + τu,(1− τ)s+ τv))

=
1
2
[ f ((1− τ) t + τu)+ f ((1− τ)s+ τv)]− f

(
(1− τ) t + τu+(1− τ)s+ τv

2

)
=

1
2
[ f ((1− τ) t + τu)+ f ((1− τ)s+ τv)]− f

(
(1− τ)

t + s
2

+ τ
u+ v

2

)
for τ ∈ [0,1] .
Let τ1, τ2 ∈ [0,1] and α, β ≥ 0 with α +β = 1. By the convexity of J f we have

ϕ (ατ1 +βτ2)

= J f ((1−ατ1−βτ2)(t,s)+(ατ1 +βτ2)(u,v))

= J f ((α +β −ατ1−βτ2)(t,s)+(ατ1 +βτ2)(u,v))

= J f (α (1− τ1)(t,s)+β (1− τ2)(t,s)+ατ1 (u,v)+βτ2 (u,v))

= J f (α [(1− τ1)(t,s)+ τ1 (u,v)]+β [(1− τ2)(t,s)+ τ2 (u,v)])

≤ αJ f ((1− τ1)(t,s)+ τ1 (u,v))+βJ f ((1− τ2)(t,s)+ τ2 (u,v))

= αϕ (τ1)+βϕ (τ2) ,

which proves that ϕ is convex on [0,1] for all t, s, u, v ∈ I.
Applying the Hermite-Hadamard inequality for ϕ we get

1
2
[ϕ (0)+ϕ (1)]≥

∫ 1

0
ϕ (τ)dτ (2.8)
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and since

ϕ (0) =
1
2
[ f (t)+ f (s)]− f

(
t + s

2

)
,

ϕ (1) =
1
2
[ f (u)+ f (v)]− f

(
u+ v

2

)
and ∫ 1

0
ϕ (τ)dτ =

1
2

[∫ 1

0
f ((1− τ) t + τu)dτ +

∫ 1

0
f ((1− τ)s+ τv)dτ

]
−
∫ 1

0
f
(
(1− τ)

t + s
2

+ τ
u+ v

2

)
dτ,

hence by (2.8) we get

1
2

{
1
2
[ f (t)+ f (s)]− f

(
t + s

2

)
+

1
2
[ f (u)+ f (v)]− f

(
u+ v

2

)}
≥1

2

[∫ 1

0
f ((1− τ) t + τu)dτ +

∫ 1

0
f ((1− τ)s+ τv)dτ

]
−
∫ 1

0
f
(
(1− τ)

t + s
2

+ τ
u+ v

2

)
dτ.

Re-arranging this inequality, we get

1
2

[
f (t)+ f (u)

2
−
∫ 1

0
f ((1− τ) t + τu)dτ

]
+

1
2

[
f (s)+ f (v)

2
−
∫ 1

0
f ((1− τ)s+ τv)dτ

]
≥ 1

2

[
f
(

t + s
2

)
+ f

(
u+ v

2

)
−
∫ 1

0
f
(
(1− τ)

t + s
2

+ τ
u+ v

2

)
dτ

]
,

which is equivalent to

1
2
[
T f (t,u)+T f (s,v)

]
≥T f

(
t + s

2
,

u+ v
2

)
= T f

(
1
2
(t,u)+

1
2
(s,v)

)
,

for all (t,u) , (s,v) ∈ I× I, which shows that T f is Jensen’s convex on I× I. Since T f is continuous on I× I, hence T f is convex in the usual
sense on I× I.
Now, if we use the second Hermite-Hadamard inequality for ϕ on [0,1] , we have

∫ 1

0
ϕ (τ)dτ ≥ ϕ

(
1
2

)
. (2.9)

Since

ϕ

(
1
2

)
=

1
2

[
f
(

t +u
2

)
+ f

(
s+ v

2

)]
− f

(
1
2

t + s
2

+
1
2

u+ v
2

)
hence by (2.9) we have

1
2

[∫ 1

0
f ((1− τ) t + τu)dτ +

∫ 1

0
f ((1− τ)s+ τv)dτ

]
−
∫ 1

0
f
(
(1− τ)

t + s
2

+ τ
u+ v

2

)
dτ

≥ 1
2

[
f
(

t +u
2

)
+ f

(
s+ v

2

)]
− f

(
1
2

(
t + s

2
+

u+ v
2

))
,

which is equivalent to

1
2

[∫ 1

0
f ((1− τ) t + τu)dτ− f

(
t +u

2

)]
+

1
2

[∫ 1

0
f ((1− τ)s+ τv)dτ− f

(
s+ v

2

)]
≥
∫ 1

0
f
(
(1− τ)

t + s
2

+ τ
u+ v

2

)
dτ− f

(
1
2

(
t + s

2
+

u+ v
2

))
that can be written as

1
2
[
M f (t,u)+M f (s,v)

]
≥M f

(
t + s

2
,

u+ v
2

)
= M f

(
1
2
(t,u)+

1
2
(s,v)

)
for all (t,u) , (s,v) ∈ I× I, which shows that M f is Jensen’s convex on I× I. Since M f is continuous on I× I, hence M f is convex in the
usual sense on I× I.

The following reverses of the Hermite-Hadamard inequality hold:
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Lemma 2.3 (Dragomir, 2002 [10] and [11]). Let h : [a,b]→ R be a convex function on [a,b] . Then

0≤ 1
8

[
h+

(
a+b

2

)
−h−

(
a+b

2

)]
(b−a) (2.10)

≤ h(a)+h(b)
2

− 1
b−a

∫ b

a
h(τ)dτ

≤ 1
8
[h− (b)−h+ (a)] (b−a)

and

0≤ 1
8

[
h+

(
a+b

2

)
−h−

(
a+b

2

)]
(b−a)≤ 1

b−a

∫ b

a
h(τ)dτ−h

(
a+b

2

)
≤ 1

8
[h− (b)−h+ (a)] (b−a) . (2.11)

The constant 1
8 is best possible in all inequalities from (2.10) and (2.11).

We also have:

Lemma 2.4. Let f be a C1 convex function on an interval I. If I̊ is the interior of I, then for all (t,s) ∈ I̊× I̊ we have

0≤M f (t,s)≤T f (t,s)≤
1
8
C f ′ (t,s) (2.12)

where

C f ′ (t,s) :=
[

f ′ (t)− f ′ (s)
]
(t− s) . (2.13)

Proof. Since for b 6= a

1
b−a

∫ b

a
f (t)dt =

∫ 1

0
f ((1− t)a+ tb)dt,

then from (2.10) we get

f (t)+ f (s)
2

−
∫ 1

0
f ((1− τ) t + τs)dt ≤ 1

8
[

f ′ (t)− f ′ (s)
]
(t− s)

for all (t,s) ∈ I̊× I̊.

Remark 2.5. If

γ = inf
t∈I̊

f ′ (t) and Γ = sup
t∈I̊

f ′ (t)

are finite, then

C f ′ (t,s)≤ (Γ− γ) |t− s|

and by (2.12) we get the simpler upper bound

0≤M f (t,s)≤T f (t,s)≤
1
8
(Γ− γ) |t− s| .

Moreover, if t, s ∈ [a,b]⊂ I̊ and since f ′ is increasing on I̊, then we have the inequalities

0≤M f (t,s)≤T f (t,s)≤
1
8
[

f ′ (b)− f ′ (a)
]
|t− s| . (2.14)

Since J f (t,s) = T f (t,s)+M f (t,s) , hence

0≤J f (t,s)≤
1
4
[

f ′ (b)− f ′ (a)
]
|t− s| .

Corollary 2.6. With the assumptions of Lemma 2.4 and if the derivative f ′ is Lipschitzian with the constant K > 0, namely∣∣ f ′ (t)− f ′ (s)
∣∣≤ K |t− s| for all t, s ∈ I̊,

then we have the inequality

0≤M f (t,s)≤T f (t,s)≤
1
8

K (t− s)2 . (2.15)



Universal Journal of Mathematics and Applications 147

3. Main Results

Let P, Q, W ∈P and f : (0,∞)→ R. We define the following f -divergence

J f (P,Q,W ) :=
∫

X
w(x)J f

(
p(x)
w(x)

,
q(x)
w(x)

)
dµ (x)

=
1
2

[∫
X

w(x) f
(

p(x)
w(x)

)
dµ (x)+

∫
X

w(x) f
(

q(x)
w(x)

)
dµ (x)

]
−
∫

X
w(x) f

(
p(x)+q(x)

2w(x)

)
.

(3.1)

If we consider the mid-point divergence measure M f defined by

M f (Q,P,W ) :=
∫

X
f
[

q(x)+ p(x)
2w(x)

]
w(x)dµ (x)

for any Q, P, W ∈P , then from (3.1) we get

J f (P,Q,W ) =
1
2
[
I f (P,W )+ I f (Q,W )

]
−M f (Q,P,W ) . (3.2)

We can also consider the integral divergence measure

A f (Q,P,W ) :=
∫

X

(∫ 1

0
f
[
(1− t)q(x)+ t p(x)

w(x)

]
dt
)

w(x)dµ (x) .

We introduce the related f -divergences

T f (P,Q,W ) :=
∫

X
w(x)T f

(
p(x)
w(x)

,
q(x)
w(x)

)
dµ (x) (3.3)

=
1
2
[
I f (P,W )+ I f (Q,W )

]
−A f (Q,P,W )

and

M f (P,Q,W ) :=
∫

X
w(x)M f

(
p(x)
w(x)

,
q(x)
w(x)

)
dµ (x) (3.4)

= A f (Q,P,W )−M f (Q,P,W ) .

We observe that

J f (P,Q,W ) = T f (P,Q,W )+M f (P,Q,W ) .

If f is convex on (0,∞) then by the Hermite-Hadamard and Bullen’s inequalities we have the positivity properties

0≤M f (P,Q,W )≤T f (P,Q,W )

and

0≤J f (P,Q,W )

for P, Q, W ∈P .
We have the following result:

Theorem 3.1. Let f be a C2 function on an interval (0,∞) . If f is convex on (0,∞) and 1
f ′′ is concave on (0,∞) , then for all W ∈P , the

mappings

P×P 3(P,Q) 7→J f (P,Q,W ) , M f (P,Q,W ) , T f (P,Q,W )

are convex.

Proof. Let (P1,Q1) , (P2,Q2) ∈P×P and α, β ≥ 0 with α +β = 1. We have

J f (α (P1,Q1,W )+β (P2,Q2,W )) = J f (αP1 +βP2,αQ1 +βQ2,W )

=
∫

X
w(x)J f

(
α p1 (x)+β p2 (x)

w(x)
,

αq1 (x)+βq2 (x)
w(x)

)
dµ (x)

=
∫

X
w(x)J f

(
α

p1 (x)
w(x)

+β
p2 (x)
w(x)

,α
q1 (x)
w(x)

+β
q2 (x)
w(x)

)
dµ (x)

=
∫

X
w(x)J f

(
α

(
p1 (x)
w(x)

,
q1 (x)
w(x)

)
+β

(
p2 (x)
w(x)

,
q2 (x)
w(x)

))
dµ (x)

=: Ψ

Now, by the convexity of J f on I× I proved in Theorem 2.1, we have that

J f

(
α

(
p1 (x)
w(x)

,
q1 (x)
w(x)

)
+β

(
p2 (x)
w(x)

,
q2 (x)
w(x)

))
≤ αJ f

((
p1 (x)
w(x)

,
q1 (x)
w(x)

))
+βJ f

((
p2 (x)
w(x)

,
q2 (x)
w(x)

))
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for x ∈ X . If we multiply by w(x)≥ 0 and integrate over dµ (x) , then we get

Ψ≤
∫

X
w(x)

[
αJ f

(
p1 (x)
w(x)

,
q1 (x)
w(x)

)
+βJ f

(
p2 (x)
w(x)

,
q2 (x)
w(x)

)]
dµ (x)

= α

∫
X

w(x)J f

(
p1 (x)
w(x)

,
q1 (x)
w(x)

)
dµ (x)+β

∫
X

w(x)J f

(
p2 (x)
w(x)

,
q2 (x)
w(x)

)
dµ (x)

= αJ f (P1,Q1,W )+βJ f (P2,Q2,W ) ,

which proves the convexity of P×P 3(P,Q) 7→J f (P,Q,W ) for all W ∈P .
The convexity of the other two mappings follows in a similar way and we omit the details.

Theorem 3.2. Let f be a C1 function on an interval (0,∞) . If f is convex on (0,∞) , then for all W ∈P

0≤M f (P,Q,W )≤T f (P,Q,W )≤ 1
8

∆ f ′ (Q,P,W ) (3.5)

where

∆ f ′ (Q,P,W ) :=
∫

X

[
f ′
(

q(x)
w(x)

)
− f ′

(
p(x)
w(x)

)]
(q(x)− p(x))dµ (x) . (3.6)

Proof. From the inequality (2.12) we have

1
2

[
f
(

p(x)
w(x)

)
+ f

(
q(x)
w(x)

)]
−
∫ 1

0
f
(
(1− t)

p(x)
w(x)

+ t
q(x)
w(x)

)
dt ≤ 1

8

(
f ′
(

p(x)
w(x)

)
− f ′

(
q(x)
w(x)

))(
p(x)
w(x)

− q(x)
w(x)

)
for all x ∈ X .
If we multiply by w(x)> 0 and integrate on X we get

1
2
[
I f (P,W )+ I f (P,W )

]
−A f (Q,P,W )≤ 1

8

∫
X

w(x)
(

f ′
(

p(x)
w(x)

)
− f ′

(
q(x)
w(x)

))(
p(x)
w(x)

− q(x)
w(x)

)
dµ (x)

=
1
8

∫
X

(
f ′
(

p(x)
w(x)

)
− f ′

(
q(x)
w(x)

))
(p(x)−q(x))dµ (x) ,

which implies the desired inequality.

Corollary 3.3. With the assumptions of Theorem 3.2 and if f ′ is Lipschitzian with the constant K > 0, namely∣∣ f ′ (s)− f ′ (t)
∣∣≤ K |s− t| for all t, s ∈ (0,∞) ,

then

0≤M f (P,Q,W )≤T f (P,Q,W )≤ 1
8

Kdχ2 (Q,P,W ) , (3.7)

where

dχ2 (Q,P,W ) :=
∫

X

(q(x)− p(x))2

w(x)
dµ (x) . (3.8)

Remark 3.4. If there exists 0 < r < 1 < R < ∞ such that the following condition holds

r ≤ q(x)
w(x)

,
p(x)
w(x)

≤ R for µ-a.e. x ∈ X , ((r,R))

then

0≤M f (P,Q,W )≤T f (P,Q,W )≤ 1
8
[

f ′ (R)− f ′ (r)
]

d1 (Q,P) (3.9)

where

d1 (Q,P) :=
∫

X
|q(x)− p(x)|dµ (x) .

Moreover, if f is twice differentiable and∥∥ f ′′
∥∥
[r,R],∞ := sup

t∈[r,R]

∣∣ f ′′ (t)∣∣< ∞ (3.10)

then

0≤M f (P,Q,W )≤T f (P,Q,W )≤ 1
8

∥∥ f ′′
∥∥
[r,R],∞ dχ2 (Q,P,W ) . (3.11)

We also have:
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Theorem 3.5. Let f be a C2 function on an interval (0,∞) . If f is convex on (0,∞) and 1
f ′′ is concave on (0,∞) , then for all W ∈P ,

0≤J f (P,Q,W )≤ 1
2
[
Ψ f ′ (P,Q,W )+Ψ f ′ (Q,P,W )

]
, (3.12)

where

Ψ f ′ (P,Q,W ) :=
∫

X

[
f ′
(

p(x)
w(x)

)
− f ′

(
q(x)+ p(x)

2w(x)

)]
(p(x)−w(x))dµ (x) .

Proof. It is well known that if the function of two independent variables F : D⊂ R×R→ R is convex on the convex domain D and has
partial derivatives ∂F

∂x and ∂F
∂y on D then for all (t,s) , (u,v) ∈ D we have the gradient inequalities

∂F (t,s)
∂x

(t−u)+
∂F (t,s)

∂y
(s− v)≥ F (t,s)−F (u,v)≥ ∂F (u,v)

∂x
(t−u)+

∂F (u,v)
∂y

(s− v) . (3.13)

Now, if we take F : (0,∞)× (0,∞)→ R given by

F (t,s) =
1
2
[ f (t)+ f (s)]− f

(
t + s

2

)
and observe that

∂F (t,s)
∂x

=
1
2

[
f ′ (t)− f ′

(
t + s

2

)]
and

∂F (t,s)
∂y

=
1
2

[
f ′ (s)− f ′

(
t + s

2

)]
and since F is convex on (0,∞)× (0,∞) , then by (3.13) we get

1
2

[
f ′ (t)− f ′

(
t + s

2

)]
(t−u)+

1
2

[
f ′ (s)− f ′

(
t + s

2

)]
(s− v)

≥ 1
2
[ f (t)+ f (s)]− f

(
t + s

2

)
− 1

2
[ f (u)+ f (v)]+ f

(
u+ v

2

)
≥ 1

2

[
f ′ (u)− f ′

(
u+ v

2

)]
(t−u)+

1
2

[
f ′ (v)− f ′

(
u+ v

2

)]
(s− v) .

(3.14)

If we take u = v = 1 in (3.14), then we have

1
2

[
f ′ (t)− f ′

(
t + s

2

)]
(t−1)+

1
2

[
f ′ (s)− f ′

(
t + s

2

)]
(s−1)≥ 1

2
[ f (t)+ f (s)]− f

(
t + s

2

)
≥ 0 (3.15)

for all (t,s) ∈ (0,∞)× (0,∞) .

If we take t = p(x)
w(x) and s = q(x)

w(x) in (3.15) then we obtain

1
2

[
f ′
(

p(x)
w(x)

)
− f ′

(
q(x)+ p(x)

2w(x)

)](
p(x)
w(x)

−1
)
+

1
2

[
f ′
(

q(x)
w(x)

)
− f ′

(
q(x)+ p(x)

2w(x)

)](
q(x)
w(x)

−1
)

≥ 1
2

[
f
(

p(x)
w(x)

)
+ f

(
q(x)
w(x)

)]
− f

(
q(x)+ p(x)

2w(x)

)
≥ 0.

By multiplying this inequality with w(x)> 0 we get

0≤ 1
2

[
w(x) f

(
p(x)
w(x)

)
+w(x) f

(
q(x)
w(x)

)]
−w(x) f

(
q(x)+ p(x)

2w(x)

)
≤ 1

2

[
f ′
(

p(x)
w(x)

)
− f ′

(
q(x)+ p(x)

2w(x)

)]
(p(x)−w(x))+

1
2

[
f ′
(

q(x)
w(x)

)
− f ′

(
q(x)+ p(x)

2w(x)

)]
(q(x)−w(x))

for all x ∈ X .

Corollary 3.6. With the assumptions of Theorem 3.2 and if f ′ is Lipschitzian with the constant K > 0, then

0≤J f (P,Q,W )≤ 1
4

K
∫

X
|p(x)−q(x)|

[∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣+ ∣∣∣∣ q(x)

w(x)
−1
∣∣∣∣]dµ (x) . (3.16)
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Proof. We have that

Ψ f ′ (P,Q,W )≤
∫

X

∣∣∣∣ f ′( p(x)
w(x)

)
− f ′

(
q(x)+ p(x)

2w(x)

)∣∣∣∣ |p(x)−w(x)|dµ (x)

≤ K
∫

X

∣∣∣∣ p(x)
w(x)

− q(x)+ p(x)
2w(x)

∣∣∣∣ |p(x)−w(x)|dµ (x)

= K
∫

X

∣∣∣∣ p(x)−q(x)
2w(x)

∣∣∣∣ |p(x)−w(x)|dµ (x)

=
1
2

K
∫

X

|p(x)−q(x)| |p(x)−w(x)|dµ (x)
w(x)

=
1
2

K
∫

X
|p(x)−q(x)|

∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣dµ (x)

and similarly

Ψ f ′ (P,Q,W )≤ 1
2

K
∫

X
|p(x)−q(x)|

∣∣∣∣ q(x)
w(x)

−1
∣∣∣∣dµ (x) .

Finally, by the use of (3.12) we get the desired result.

Remark 3.7. If there exist 0 < r < 1 < R < ∞ such that the following condition (r,R) holds and if f is twice differentiable and (3.10) is
valid, then

0≤J f (P,Q,W )≤ 1
4

∥∥ f ′′
∥∥
[r,R],∞×

∫
X
|p(x)−q(x)|

[∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣+ ∣∣∣∣ q(x)

w(x)
−1
∣∣∣∣]dµ (x) . (3.17)

Since ∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣ , ∣∣∣∣ q(x)

w(x)
−1
∣∣∣∣≤max{R−1,1− r}

and ∣∣∣∣ p(x)
w(x)

− q(x)
w(x)

∣∣∣∣≤ R− r,

hence by (3.17) we get the simpler bound

0≤J f (P,Q,W )≤ 1
2

∥∥ f ′′
∥∥
[r,R],∞ (R− r)max{R−1,1− r} . (3.18)

We also have:

Theorem 3.8. With the assumptions of Theorem 3.2 and if f ′ is Lipschitzian with the constant K > 0, then

0≤T f (P,Q,W )≤ 1
6

K
∫

X
|p(x)−q(x)|

[∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣+ ∣∣∣∣ q(x)

w(x)
−1
∣∣∣∣]dµ (x) . (3.19)

Proof. Let (x,y) , (u,v) ∈ (0,∞)× (0,∞) . If we take F : (0,∞)× (0,∞)→ R given by

F (t,s) =
f (t)+ f (s)

2
−
∫ 1

0
f ((1− τ) t + τs)dτ

then

∂F (t,s)
∂x

=
1
2

f ′ (t)−
∫ 1

0
(1− τ) f ′ ((1− τ) t + τs)dτ

=
∫ 1

0
(1− τ)

[
f ′ (t)− f ′ ((1− τ) t + τs)

]
dτ

and

∂F (t,s)
∂y

=
1
2

f ′ (s)−
∫ 1

0
τ f ′ ((1− τ) t + τs)dτ

=
∫ 1

0
τ
[

f ′ (s)− f ′ ((1− τ) t + τs)
]

dτ

and since F is convex on (0,∞)× (0,∞) , then by (3.1) we get

(t−u)
∫ 1

0
(1− τ)

[
f ′ (t)− f ′ ((1− τ) t + τs)

]
dτ +(s− v)

∫ 1

0
τ
[

f ′ (s)− f ′ ((1− τ) t + τs)
]

dτ

≥ f (t)+ f (s)
2

−
∫ 1

0
f ((1− τ) t + τs)dτ− f (u)+ f (v)

2
+
∫ 1

0
f ((1− τ)u+ τv)dτ

≥ (t−u)
∫ 1

0
(1− τ)

[
f ′ (u)− f ′ ((1− τ)u+ τv)

]
dτ +(s− v)

∫ 1

0
τ
[

f ′ (v)− f ′ ((1− τ)u+ τv)
]

dτ

(3.20)
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for all (t,s) , (u,v) ∈ (0,∞)× (0,∞) .
If we take u = v = 1 in (3.20), then we have

(t−1)
∫ 1

0
(1− τ)

[
f ′ (t)− f ′ ((1− τ) t + τs)

]
dτ +(s−1)

∫ 1

0
τ
[

f ′ (s)− f ′ ((1− τ) t + τs)
]

dτ

≥ f (t)+ f (s)
2

−
∫ 1

0
f ((1− τ) t + τs)dτ ≥ 0

(3.21)

for all (u,v) ∈ (0,∞)× (0,∞) .

If we take t = p(x)
w(x) and s = q(x)

w(x) in (3.21) then we get(
p(x)
w(x)

−1
)∫ 1

0
(1− τ)

[
f ′
(

p(x)
w(x)

)
− f ′

(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)]
dτ (3.22)

+

(
q(x)
w(x)

−1
)∫ 1

0
τ

[
f ′
(

q(x)
w(x)

)
− f ′

(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)]
dτ

≥
f
(

p(x)
w(x)

)
+ f

(
q(x)
w(x)

)
2

−
∫ 1

0
f
(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)
dτ ≥ 0.

Since f ′ is Lipschitzian with the constant K > 0, hence

0≤
f
(

p(x)
w(x)

)
+ f

(
q(x)
w(x)

)
2

−
∫ 1

0
f
(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)
dτ

≤
∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣∫ 1

0
(1− τ)

∣∣∣∣ f ′( p(x)
w(x)

)
− f ′

(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)∣∣∣∣dτ

+

∣∣∣∣ q(x)
w(x)

−1
∣∣∣∣∫ 1

0
τ

∣∣∣∣ f ′( q(x)
w(x)

)
− f ′

(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)∣∣∣∣dτ

≤K
∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣ ∣∣∣∣ p(x)

w(x)
− q(x)

w(x)

∣∣∣∣∫ 1

0
(1− τ)τdτ +K

∣∣∣∣ q(x)
w(x)

−1
∣∣∣∣ ∣∣∣∣ p(x)

w(x)
− q(x)

w(x)

∣∣∣∣∫ 1

0
(1− τ)τdτ

=
1
6

K
∣∣∣∣ p(x)
w(x)

− q(x)
w(x)

∣∣∣∣[∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣+ ∣∣∣∣ q(x)

w(x)
−1
∣∣∣∣] .

If we multiply this inequality by w(x)> 0 and integrate, then we get the desired result (3.19).

Corollary 3.9. If there exist 0 < r < 1 < R < ∞ such that the condition (r,R) holds and if f is twice differentiable and (3.10) is valid, then

0≤T f (P,Q,W )≤ 1
3

∥∥ f ′′
∥∥
[r,R],∞ (R− r)max{R−1,1− r} . (3.23)

Finally, we also have:

Theorem 3.10. With the assumptions of Theorem 3.2 and if f ′ is Lipschitzian with the constant K > 0, then

0≤M f (P,Q,W )≤ 1
8

K
∫

X
|p(x)−q(x)|

[∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣+ ∣∣∣∣ q(x)

w(x)
−1
∣∣∣∣]dµ (x) . (3.24)

Proof. Let (t,s) , (u,v) ∈ (0,∞)× (0,∞) . If we take F : (0,∞)× (0,∞)→ R given by

F (t,s) =
∫ 1

0
f ((1− τ) t + τs)dτ− f

(
t + s

2

)
then

∂F (t,s)
∂x

=
∫ 1

0
(1− τ) f ′ ((1− τ) t + τs)dτ− 1

2
f ′
(

t + s
2

)
=
∫ 1

0
(1− τ)

[
f ′ ((1− τ) t + τs)− f ′

(
t + s

2

)]
dτ,

∂F (t,s)
∂y

=
∫ 1

0
τ f ′ ((1− τ) t + τs)dτ− 1

2
f ′
(

t + s
2

)
=
∫ 1

0
τ

[
f ′ ((1− τ) t + τs)− f ′

(
t + s

2

)]
dτ

and since F is convex on (0,∞)× (0,∞) , then by (3.1) we get

(t−u)
[∫ 1

0
(1− τ)

[
f ′ ((1− τ) t + τs)− f ′

(
t + s

2

)]
dτ

]
+(s− v)

[∫ 1

0
τ

[
f ′ ((1− τ) t + τs)− f ′

(
t + s

2

)]
dτ

]
≥
∫ 1

0
f ((1− τ) t + τs)dτ− f

(
t + s

2

)
−
∫ 1

0
f ((1− τ)u+ τv)dτ + f

(
u+ v

2

)
≥ (t−u)

[∫ 1

0
(1− τ)

[
f ′ ((1− τ)u+ τv)− f ′

(
u+ v

2

)]
dτ

]
+(s− v)

∫ 1

0
τ

[
f ′ ((1− τ)u+ τv)− f ′

(
u+ v

2

)]
dτ.

(3.25)
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If we take u = v = 1 in (3.25), then we have

(t−1)
[∫ 1

0
(1− τ)

[
f ′ ((1− τ) t + τs)− f ′

(
t + s

2

)]
dτ

]
+(s−1)

[∫ 1

0
τ

[
f ′ ((1− τ) t + τs)− f ′

(
t + s

2

)]
dτ

]
≥
∫ 1

0
f ((1− τ) t + τs)dτ− f

(
t + s

2

)
≥ 0

(3.26)

for all (t,s) ∈ (0,∞)× (0,∞) .

If we take t = p(x)
w(x) and s = q(x)

w(x) in (3.26) then we get

0≤
∫ 1

0
f
(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)
dτ− f

(
p(x)+q(x)

2w(x)

)
≤
(

p(x)
w(x)

−1
)
×
[∫ 1

0
(1− τ)

[
f ′
(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)
− f ′

(
p(x)+q(x)

2w(x)

)]
dτ

]
+

(
q(x)
w(x)

−1
)
×
[∫ 1

0
τ

[
f ′
(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)
− f ′

(
p(x)+q(x)

2w(x)

)]
dτ

]
≤
∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣×[∫ 1

0
(1− τ)

∣∣∣∣ f ′((1− τ)
p(x)
w(x)

+ τ
q(x)
w(x)

)
− f ′

(
p(x)+q(x)

2w(x)

)∣∣∣∣dτ

]
+

∣∣∣∣ q(x)
w(x)

−1
∣∣∣∣

×
[∫ 1

0
τ

∣∣∣∣ f ′((1− τ)
p(x)
w(x)

+ τ
q(x)
w(x)

)
− f ′

(
p(x)+q(x)

2w(x)

)∣∣∣∣dτ

]
≤K

∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣ ∣∣∣∣ p(x)

w(x)
− q(x)

w(x)

∣∣∣∣∫ 1

0
(1− τ)

∣∣∣∣τ− 1
2

∣∣∣∣dτ +K
∣∣∣∣ q(x)
w(x)

−1
∣∣∣∣ ∣∣∣∣ p(x)

w(x)
− q(x)

w(x)

∣∣∣∣∫ 1

0
(1− τ)

∣∣∣∣τ− 1
2

∣∣∣∣dτ.

(3.27)

Since ∫ 1

0
(1− τ)

∣∣∣∣τ− 1
2

∣∣∣∣dτ =
1
8
,

hence

0≤
∫ 1

0
f
(
(1− τ)

p(x)
w(x)

+ τ
q(x)
w(x)

)
dτ− f

(
p(x)+q(x)

2w(x)

)
≤ 1

8
K
∣∣∣∣ p(x)
w(x)

− q(x)
w(x)

∣∣∣∣[∣∣∣∣ p(x)
w(x)

−1
∣∣∣∣+ ∣∣∣∣ q(x)

w(x)
−1
∣∣∣∣]

for all x ∈ X .

If we multiply this inequality by w(x)> 0 and integrate, then we get the desired result (3.19).

Corollary 3.11. If there exist 0 < r < 1 < R < ∞ such that the condition (r,R) holds and if f is twice differentiable and (3.10) is valid, then

0≤M f (P,Q,W )≤ 1
4

∥∥ f ′′
∥∥
[r,R],∞ (R− r)max{R−1,1− r} . (3.28)

4. Some Examples

The Dichotomy class of f -divergences are generated by the functions fα : [0,∞)→ R defined as

fα (u) =


u−1− lnu for α = 0;

1
α(1−α)

[αu+1−α−uα ] for α ∈ R\{0,1} ;

1−u+u lnu for α = 1.

Observe that

f ′′α (u) =



1
u2 for α = 0;

uα−2 for α ∈ R\{0,1} ;

1
u for α = 1.

In this family of functions only the functions fα with α ∈ [1,2) are both convex and with 1
f ′′α

concave on (0,∞) .

We have

I fα
(P,W ) =

∫
X

w(x) fα

(
p(x)
w(x)

)
dµ (x) =


1

α(α−1)

[∫
X w1−α (x) pα (x)dµ (x)−1

]
, α ∈ (1,2) ,

∫
X p(x) ln

(
p(x)
w(x)

)
dµ (x) , α = 1,
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and

M fα
(Q,P,W ) =

∫
X

f
[

q(x)+ p(x)
2w(x)

]
w(x)dµ (x) =


1

α(α−1)

[∫
X

[
q(x)+p(x)

2

]α

w1−α (x)dµ (x)−1
]
, α ∈ (1,2)

∫
X

[
q(x)+p(x)

2

]
ln
[

q(x)+p(x)
2w(x)

]
dµ (x) , α = 1.

We also have

∫ 1

0
[(1− t)a+ tb] ln [(1− t)a+ tb]dt =

1
4
(b+a) ln I

(
a2,b2

)
=

1
2

A(a,b) ln I
(

a2,b2
)
.

Therefore

A fα
(Q,P,W ) :=

∫
X

(∫ 1

0
f
[
(1− t)q(x)+ t p(x)

w(x)

]
dt
)

w(x)dµ (x)

=


1

α(α−1)

[∫
X Lα

α

(
q(x)
w(x) ,

p(x)
w(x)

)
w(x)dµ (x)−1

]
, α ∈ (1,2)

1
2
∫

X A
(

q(x)
w(x) ,

p(x)
w(x)

)
ln I
((

q(x)
w(x)

)2
,
(

p(x)
w(x)

)2
)

w(x)dµ (x) , α = 1.

We have

J fα
(P,Q,W ) =

1
2
[
I fα

(P,W )+ I fα
(Q,W )

]
−M fα

(Q,P,W ) ,

T fα
(P,Q,W ) =

1
2
[
I fα

(P,W )+ I fα
(Q,W )

]
−A fα

(Q,P,W )

and

M fα
(P,Q,W ) = A fα

(Q,P,W )−M fα
(Q,P,W ) .

According to Theorem 3.1, for all α ∈ [1,2), the mappings

P×P 3(P,Q) 7→J fα
(P,Q,W ) , M fα

(P,Q,W ) , T fα
(P,Q,W )

are convex for all W ∈P .
If 0 < r < 1 < R, then

∥∥ f ′′α
∥∥
[r,R],∞ = sup

t∈[r,R]
f ′′α (t) =

1
r2−α

for α ∈ [1,2).

If there exists 0 < r < 1 < R < ∞ such that the following condition holds

r ≤ q(x)
w(x)

,
p(x)
w(x)

≤ R for µ-a.e. x ∈ X , ((r,R))

then by (3.18), (3.23) and (3.28) we get

0≤J fα
(P,Q,W )≤ 1

2

∥∥ f ′′
∥∥
[r,R],∞ (R− r)max{R−1,1− r} , (4.1)

0≤T fα
(P,Q,W )≤ 1

3
(R− r)
r2−α

max{R−1,1− r} (4.2)

and

0≤M fα
(P,Q,W )≤ 1

4
(R− r)
r2−α

max{R−1,1− r} , (4.3)

for all α ∈ [1,2) and W ∈P .
The interested reader may apply the above general results for other particular divergences of interest generated by the convex functions
provided in the introduction. We omit the details.
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