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Abstract 

We introduce a four-parameter distribution, called odd Burr power Lindley distribution, which 

extends the Lindley distribution and has increasing, upside-down and bathtub shapes for the 

hazard rate function. Our purpose is to provide a generalization that may be useful to still more 

complex situations. It includes as special sub-models some well-known distributions such as 

Lindley, power Lindley, odd log-logistic Lindley, among others. Several statistical properties of 

the distribution are explored. A simulation study is performed to assess the maximum likelihood 

estimations of introduced distribution parameters in terms of bias and mean square error, 

estimated average length and coverage probability. 
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1. INTRODUCTION  

The Lindley distribution is a very well-known distribution that has been extensively used over the past 

decades for modeling data in reliability, biology, insurance, finance, and lifetime analysis. The Lindley 

distribution was introduced by Lindley (1958) to analyze failure time data. The motivation for introducing 

the Lindley distribution arises from its ability to model failure time data with increasing, decreasing, 

unimodal and bathtub shaped hazard rates. This distribution represents a good alternative to the exponential 

failure time distributions that suffer from not exhibiting unimodal and bathtub shaped failure rates.  

 

The need for extended forms of the Lindley distribution arises in many applied areas. The emergence of 

such distributions in the statistics literature is only very recent. For some extended forms of the Lindley 

distribution and applications, the reader is referred to Kumaraswamy Lindley (Cakmakyapan and Ozel, 

2014), beta odd log-logistic Lindley (Cordeiro et al., 2015), generalized Lindley (Nadarajah et al., 2011), 

quasi Lindley distribution (Shanker and Mishra, 2013), inverse Lindley (Sharma et al., 2015), power 

Lindley (Ghitany et al. 2013). The pdf and cdf of the Lindley distribution are, respectively, given by  
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It can be seen that this distribution is a mixture of Exponential ( )  and gamma (2, )  distributions. Using 

the transformation 

1

X Y , Ghitany et al. (2013) derived the power Lindley (PL) distribution given by 
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The PL distribution does not provide enough flexibility for analyzing different types of lifetime data. To 

increase the flexibility for modelling purposes, it will be useful to consider further alternatives to this 

distribution. Therefore, the aim of this study is to introduce a new distribution using the Lindley 

distribution. Recently, an important class of univariate distributions is the odd Burr generalized family 

(OBu-G for short) proposed by Alizadeh et al. (2016) with two extra shape parameters. Motivated by OBu-

G family, the main aim of this paper is to provide an extension of the PL distribution using the Burr 

distribution. So, we propose the new Odd Burr Power Lindley (“OBu-PL” for short) distribution by adding 

three extra parameters to the Lindley distribution. The objectives of the research are to study some structural 

properties of the proposed distribution.  

 

The paper is organized as follows. In Section 2, we introduce the OBu-PL distribution and provide plots of 

the density and hazard rate functions. Shapes, quantile function, moments are also obtained. Estimation by 

the method of maximum likelihood and an explicit expression for the observed information matrix are 

presented in Section 3. A simulation study is conducted in Section 4. Applications to real data sets are 

considered in Section 5. Finally, Section 6 presents concluding remarks. 

 

2. MAIN PROPERTIES 

 

2.1. Probability Density and Cumulative Density Functions 

 

The cdf of OBu-G family introduced by Alizadeh et al. (2016)  is given by 
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and the pdf 
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where    G x 1 G x  . OBu-G contains two important family, odd log-logistic-G by Gleaton and Lynch 

(2006) and proportional hazard rate family by Gupta and Gupa  (1998). OBu-G provides more flexibility 

for density and hazard functions for each special case.  Further, for integer b, we consider a system formed 

by b independent components following the Odd-log-logistic family (Gleaton and Lynch, 2006) given by 
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Suppose the system fails if at least one of the b  components fails and let X  denote the lifetime of the entire 

system. Then, the cdf of X  is 
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Altun et al. (2016) studied Odd Burr Lindley (OBu-L), if X  follows OBu-L, then Y X  has OBu-PL 

proposed model. Inserting (4) in (5), the cdf of the OBu-PL with four parameters ( a,b, , 0   ) is defined 

as  
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The corresponding pdf of the OBu-PL is given by 
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where   and   are  scale parameters and the shape parameters a and b govern the skewness of (10). A 

random variable X with the pdf (10) is denoted by X ~ OBu - PL(a,b, , )  . Some special cases of the OBu-

PL distribution is presented in Table 1. 

 

Table 1. Some Special Cases of the OBu-PL distribution 

a b   
Reduced Distribution 

1 1 1 Lindley 

1 1 - Power Lindley 

- 1 - Odd Log-Logistic Power Lindley 

- 1 1 Odd Log-Logistic Lindley 

- - 1 Odd Burr Lindley 

 

Some of the possible shapes of density functions in (10) for selected parameter values are illustrated in 

Figure 1. As seen from Figure 1, the density function can take various forms depending on the parameter 

values. The pdf of the OBu-PL distribution is unimodal. It increases and decreases for various values of the 

parameters giving the shapes obtained in Figure 1. It is evident that the OBu-PL distribution is much more 

flexible than the PL distribution, i.e. the additional shape parameters a and b allow for a high degree of 

flexibility of the OBu-PL distribution.  
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Figure 1. Plot of the pdf for several values of parameters. 

2.2. Survival and Hazard Rate Functions 

 

We obtain the survival function corresponding to (9) as 

 

1 1
1

S( ; , , , ) 1

1 1 1
1 1

b
a

x

a a

x x

x
e

x a b
x x

e e



 




 
 




 

 

 



 

   
    

   
  

       
                  

      (11) 

 

In reliability studies, the hazard rate function (hrf) is an important characteristic and fundamental to the 

design of safe systems in a wide variety of applications. Therefore, we discuss these properties of the OBu-

PL distribution. The hrf of X takes the form 
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Plots for the hrf of the OBu-PL distribution for several parameter values are displayed in Figure 2. Figure 

2 shows that the hrf of the OBu-PL distribution can have very flexible shapes, such as increasing, upside-

down, and bathtub. This attractive flexibility makes the hrf of the OBu-L distribution useful and suitable 

for non-monotone empirical hazard behaviors which are more likely to be encountered or observed in real 

life situations. 
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Figure 2. Plots for the hrf for several values of parameters. 

2.3. Asymptotic 

 

Proposition 1. The asymptotic of cdf, pdf, and hrf of the OBu-PL distribution as x 0  are given by 

 
aF(x) ~ b( x ) as  0, x 
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Proposition 2. The asymptotic of cdf, pdf, and hrf of the OBu-PL as x  are given by 
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These equations show the effect of parametrs on tail of OBu-PL distribution. 

 

2.4. Quantile Function 

 

Let  X ~ OBu PL(a,  b, , )   , the quantile function, say Q(p) , is defined by F(Q(p)) p .Then, we can 

obtain Q(p)  as the root of the following equation 
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for p 0 1. Substituing Z(p) Q(p)   1 , we can rewrite it as 
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Hence, the equation of Z(p)  is  
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where  W .  is the Lambert function (Corless et al., 1996). Then, we obtain 
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The particular case of (13) for a b 1 has been derived recently by Jόrda (2010). Here, we also propose 

different algorithms for generating random data from the OBu-PL distribution as follows: 

 

Algorithm 1. (Mixture form of the Lindley distribution) 
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Algorithm 2. (Mixture form of the PL distribution) 

 

(a) Generate iU ~ Uniform( , ),0 1  i 1,2,...,n  

(b) Generate iY ~ Weibull( , ),  i 1,2,...,n  
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Algorithm 3. (Inverse Method) 

 

(a) Generate iU ~ Uniform( , ),0 1  i 1,2,...,n  

(b) Set   
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2.5.  Extreme Value 

 

Let nX ,...,X1  be a random variable from (10) and 
nX = (X ... X ) / n 1  denote the sample mean, then by 

central limit theorem, the distribution n X - E(X) / Var(X)    approaches the standard normal 

distribution as n . Sometimes, one would be interested in the asymptotic of the extreme value, 

n nM = max{X ,...,X }1  and n nm = min{X ,...,X }1 . For (1), it can be seen that 
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Thus, it follows from Theorem 1.6.2 in Leadbetter et al. (1983) that they must be norming constant 

n n na ,b ,c 0  and nd 0  such that 
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as n . Using Corollary 1.6.3 of Leadbetter et al. (1983), we can obtain the form of normalizing 

constants n n na ,b ,c  and nd . 

 

2.6.  Expansions  

 

In this subsection, we provide alternative mixture representations for the pdf and cdf of X. Despite the fact 

that the pdf and cdf of OBu-PL require mathematical functions that are widely available in modern 

statistical packages, frequently analytical and numerical derivations take advantage of power series for the 

pdf. Some useful expansions for (6) can be derived by using the concept of power series. Let kH (x)  denote 

the cdf of the exponential PL with parameters  ,   and k. We obtain the cdf of OBu-PL as 
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Then, we have  
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where k (x)  and k (x) denote the cdf and pdf of exp-PL, respectively.  

 

2.7.  Moments  

 

Some of the most important features and characteristics of a distribution can be studied through moments 

(e.g. tendency, dispersion, skewness and kurtosis). Now, we obtain ordinary and incomplete moments of 

the OBu-PL distribution. Nadarajah et al. (2011) defined and computed 
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which can be used to produce ordinary moments  n  . Then, we have 
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From using (18) and (19), we obtain 
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The ordinary moments of the OBu-PL distribution can be calculated directly from (20). We now provide a 

formula for the conditional moments of the OBu-PL distribution. Nadarajah et al. (2011) defined and 

computed the following equation for the conditional moments. From (18), we have 
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    (21) 

 

where   1

0
,

z
z tx z t e dt     denotes the incomplete gamma function. 

 

From using equations (18) and (21), we obtain nth incomplete moment of the OBu-PL is found to be 
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Skewness measures the degree of the long tail and kurtosis is a measure of the degree of tail heaviness. For 

the OBu-PL, Galton’s skewness can be computed by using quantile function in (13) as  
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and the Moors’ kurtosis is based on octiles as 
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where  Q   represents the quantile function. When the distribution is symmetric, 0S   and when the 

distribution is right (or left) skewed  0 or 0S S  . As K increases, the tail of the distribution becomes 

heavier. These measures are less sensitive to outliers and they exist even for distributions without moments. 

 

We present skewness and kurtosis of the OBu-PL distribution for various values of parameters in Table 2. 
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Table 2. First four ordinary moments, kurtosis and skewness of the OBu-PL distribution for various values 

of parameters. 

  

0.5, 1     1

 2


 3


 4


   Skewness   Kurtosis 

a 0.5   b 1   4.61 49.33 735.58 13593.73 2.12 5.59 

a 0.5   b 1.5   2.80 20.88 223.75 2984.73 2.35 6.85 

a 0.5   b 2   1.92 10.94 93.28 1021.46 2.58 8.53 

a 0.5   b 5   0.45 0.85 2.68 11.19 3.42 15.49 

a 1  b 1   3.37 19.23 151.36 1499.81 1.79 4.06 

a 1   b 1.5   2.40 9.59 52.13 354.46 1.76 3.85 

a 1   b 2   1.88 6.01 25.82 137.10 1.75 3.80 

a 1   b 5   0.88 1.34 2.70 6.76 1.74 3.76 

a 2   b 1   2.85 10.10 43.41 224.25 1.35 2.20 

a 2   b 1.5   2.37 6.77 22.50 85.52 1.28 1.87 

a 2   b 2   2.09 5.20 14.80 47.16 1.25 1.74 

a 2   b 5   1.46 2.50 4.79 10.04 1.21 1.61 

 

Table 2 reveals that for a 1 , kurtosis and skewness increase when b increases. For a 1 , the kurtosis and 

skewness decrease when b increases. Plots for skewness and kurtosis based on Moors’s and Galton’s 

measures are presented in Figure 3. 

 

 
Figure 3. Plots of Galton skewness and Moor kurtosis of OBu-PL distribution for several values of 

parameters. 

 

3. ESTIMATION 

 

Several approaches for parameter estimation have been proposed in the literature but the maximum 

likelihood method is the most commonly employed. Here, we consider estimation of the unknown 

parameters of the OBu-PL distribution by the method of maximum likelihood. Let 1 2 nx ,x ,..., x  be 

observed values from the OBu-PL distribution with parameters a,b,   and  . The log-likelihood function 

for (a,b, , )   is given by 
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. 

The derivatives of the log-likelihood function with respect to the parameters a,b,  and  are given by, 

respectively, 
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The MLEs of (a,b, , )  , say ˆ ˆˆ(a,b, ) , are the simultaneous solutions of the equations 
log L

0
a





, 

log L
0

b





,  and 

log L
0





.  

4. SIMULATION STUDY 

In this section, we evaluate the performance of the MLEs of the parameters of OBu-PL model by means of 

a simulation study. Inverse transform algorithm is used to generate random data from the OBu-PL 
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distribution. The used algorithm can be found in Section 2.4. The precision of the MLEs is discussed by 

means of bias, mean square error (MSE), estimated average length (AL) and coverage probability (CP). 

We generated N=1000 samples of sizes 50,55,...,1000n   from OBu-PL distribution with

a 0.5,b 0.5, 2, 2      . We obtained MLEs of the parameters for each generated sample and standard 

errors of MLEs are obtained by inverting observed information matrix. The estimated bias, MSEs, CPs and 

ALs can be obtained using following equations:  
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where  a,b, ,   . The numerical results of simulation are shown in the plots of Figures 4-7. It is clear 

from these plots that the estimated biases and MSEs decrease when the sample n increases. The coverage 

probabilities of all parameters are near to 0.95 and approaches to nominal value when the sample size 

increases. Further, the average length of all parameters decreases when the sample size increases. The 

results are obtained for selected parameters but similar results can be obtained for other parameter 

combinations.  

 
Figure 4. Estimated CPs of selected parameter vector 
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Figure 5. Estimated bias of selected parameter vector 

 
Figure 6. Estimated MSEs of selected parameter vector 
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Figure 7. Estimated ALs of selected parameter vector 

 

5. APPLICATION 

 

In this section, real data modeling performance of OBu-PL distribution is compared with several well-

known distributions given in Table 4. The two real data sets are used to prove modeling ability of OBu-PL 

distribution. R statistical software is used for computations. Cramer-von Mises (W*) and Anderson-Darling 

(A*) statistics, log-likelihood values, AIC, CAIC, BIC and HQIC values are obtained for all models and 

used to decide best model. The smaller value of these statistics indicates that the better fit to data.  

 

Table 4. Fitted distributions and their abbreviations 

Distribution Abbreviation References 

Exponentiated Generalized Power Lindley EG-PL Cordeiro et al. (2013) 

Kumaraswamy Power Lindley Kum-PL Oluyede et al. (2016) 

Power Lindley PL Ghitany et al. (2013) 

Odd Log-logistic Power Lindley OLL-PL Alizadeh et al. (2017) 

Beta Power Lindley B-PL Eugene et al. (2002) 

Odd Burr Power Lindley OBu-PL Proposed 

 

The first data set is from Weisberg (2005) and it represents the sum of skin folds in 202 athletes collected 

at the Australian Institute of Sports. Table 5 gives Cramer-von Mises (W*) and Anderson-Darling (A*) 

statistics and log-likelihood values for the all fitted distributions. Based on Table 5, it is clear that OBu-PL 

distribution provides the overall best fit and therefore could be chosen as the more adequate model from 

other models for explaining the data set.  

 

 

 

Table 5. Fitting summary of distributions for first data set 
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Models a  b      A W -LogL 

PL 
  0.002 1.584 

3.067 0.523 968.001 
  0.0001 0.015 

OLL-PL 
458.219  1.097 0.005 

2.234 0.363 962.950 
2.746  0.0006 0.0002 

K-PL 
2.571 0.229 0.012 1.486 

1.773 0.300 957.906 
0.666 0.085 0.002 0.071 

EG-PL 
0.2007 4.646 0.177 1.021 

1.903 0.321 958.573 
0.0145 0.6016 0.002 0.002 

B-PL 
39.690 0.163 0.133 1.071 

0.709 0.103 948.855 
9.283 0.014 0.003 0.006 

OBu-PL 
3.226 0.086 0.008 1.498 

0.503 0.075 947.962 
0.797 0.032 0.001 0.059 

 

 

More information can be provided by a histogram of the data with fitted lines of probability density 

functions for all distributions. Figure 8 also suggests that the OBu-PL fits skewed data very well. Figure 9 

displays plots of the fitted density, cumulative and survival functions with P-P plot for the OBu-PL model. 

They reveal a good adjustment for the data of the estimated density, cumulative and survival functions of 

the OBu-PL distribution. 

 
Figure 8. Fitted densities of distributions for first data set 
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Figure 9. Plots for fitted functions of the OBu-PL model for first data set. 

 

The second data set (n = 40) is from Jorgensen (1982) and it represents the active repair times (h) for an 

airborne communication transceiver. The estimates of the parameters and the numerical values of the 

statistics are listed in Table 7. 

 

Table 7. Fitting summary of distributions for second data set 

Models a  b      A W -LogL 

PL 
  0.586 0.798 

1.090 0.153 95.942 
  0.099 0.082 

OLL-PL 
2.420  0.838 0.408 

0.701 0.101 92.974 
1.195  0.128 0.181 

KUM-PL 
5.224 0.158 3.382 0.761 

0.555 0.072 90.924 
0.026 0.025 0.002 0.002 

EG-PL 
0.206 12.551 10.950 0.369 

0.488 0.068 90.774 
0.029 4.623 0.0175 0.01 

B-PL 
19.760 0.149 5.385 0.603 

0.346 0.045 89.207 
8.549 0.025 0.004 0.003 

OBu-PL 
16.362 0.025 1.555 0.647 

0.154 0.019 86.805 
14.930 0.026 0.179 0.148 

 

As seen from Table 7, OBu-PL model gives the lowest values for the statistics as compared to other models. 

Figure 10 indicates that the OBu-PL distribution provides a better fit to the data than all other models. 

Moreover, Table 8 reveals that OBu-PL model has the lowest values for AIC, CAIC, BIC and HQIC among 

all fitted models. Then OBu-PL model can be chosen as best model for both data sets. 
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Table 8. AIC, CAIC, BIC and HQIC values of fitted models for both data sets 

Data set 1 Data set 2 

Models AIC CAIC BIC HQIC Models AIC AICC BIC HQIC 

PL 1940.01 1940.06 1946.61 1942.67 PL 195.885 196.209 199.263 197.106 

OLL-PL 1931.91 1932.02 1941.82 1935.91 OLL-PL 191.950 192.617 197.017 193.782 

KUM-PL 1923.81 1924.01 1937.04 1929.16 KUM-PL 189.848 190.991 196.603 192.291 

EG-PL 1925.14 1925.14 1938.38 1930.51 EG-PL 189.549 190.692 196.304 191.991 

B-PL 1905.71 1905.91 1918.94 1911.06 B-PL 186.414 187.557 193.169 188.856 

OBu-PL 1903.92 1904.12 1917.15 1909.27 OBu-PL 181.611 182.753 188.366 184.053 

 

 
Figure 10. Fitted densities of distributions for strengths of life of fatigue fracture data set. 
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Figure 11. Plots for fitted functions of the OBu-PL model for strengths of life of fatigue fracture data set. 

 

The histogram of the third data and the fitted pdf, cdf and survival function of the OBu-PL model are 

displayed in Figure 11. It is clear from Figure 11 that the OBu-PL model provides better fits than other 

models. 

 

6. CONCLUSION 

 

In this study, a new four-parameter distribution is introduced. A characteristic of the OBu-PL distribution 

is that its hrf can be increasing, bathtub-shaped, and unimodal depending on its parameter values. Several 

properties of the new distribution such as pdf, hrf, and moments are obtained. The MLE procedure is 

presented. Real data applications and a simulation study indicate the flexibility and capacity of the proposed 

distribution in data modeling. The new model provides consistently a better fit than the other models, 

namely: exponentiated generalized power Lindley, Kumaraswamy power Lindley, power Lindley, odd log-

logistic power Lindley and beta power Lindley distributions. In view of the density function and hrf shapes, 

it seems that the proposed model can be considered as a suitable candidate model in reliability analysis, 

biological systems, data modeling, and related fields.  
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Appendix A 

 

First, by expanding z  in Taylor series, we have 

 

                                                                                                 (1.A) 

    

 
 

and       1 ... 1
k

k        is the descending factorial. 

 

      Second, we use throughout an equation of Gradshteyn and Ryzhik (2007) for a power series raised to a 

positive integer i  given by  

 

                                                                                                                          (2.A) 

 

where the coefficients  ,  for j=1,2,...i jc  are obtained from the recurrence equation (for 1j   ) 

 

                                                                                             (3.A) 
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ja  , although it is not necessary for programming 

numerically our expansions in any algebraic or numerical software. 

 

We now obtain an expansion for    
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where    if i f c . Finally, using equations (23) and (24), we obtain 

 

                                                                                                      (5.A) 
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