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Analysis and Modeling of Photovoltaic Arrays for Sustaining Power
Generation in Geostationary Satellite Solar Panels using Machine
Learning

Highlights

<+ The study concentrates on modeling satellite solar panels using artificial neural networks.
< A non-linear time series neural network with feedback is proposed.

« Asignificantly enhanced and more efficient modeling of solar panels is attained.

Graphical Abstract

Geostationary satellite solar panels are vital energy sources for space-borne systems. Underst
generation and accurately modeling performance is crucial for satellite design, manufacturln

ing their power

optimization. This study explores how solar panel power fluctuates in response to varying co ationary
satellites. A method employing neural networks was presented to effectively model this powe lity over time
Non-linear autoregressive neural networks with exogenous inputs were employed, ulljzi Wgle-input and six-
input configurations with feedback. The comprehensive analysis yields a Mean S d ErroN(M3E) of 0.0477 and
a regression value of 0.9999, indicating exceptional performance. These results vafy trong correlation between
predicted and actual power values, underscoring the accuracy of our neural netwo pproach in capturing

perators can employ this
technique to monitor and forecast solar panel-generated power effecive
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Figure. The solar panﬁand actual power generated using 6- inputs over 8 years.
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Aim
Explores how solar panel power fluctuates in response to varying conditions on geostationary satellites.
Design & Methodology
Employ non-linear autoregressive neural networks with exogenous inputs, utilizing both single-input and six-input
configurations with feedback
Originality
Neural network-based approach in capturing the dynamics of solar panel power generation on geostationary
satellites
Findings
7
Analysis yields a Mean Squared Error (MSE) of 0.0477 and a regression value of 0.9999, indicating exceptional
performance.
Conclusion

Results validate a strong correlation between predicted and actual power values, underscoring the accuracy of our
neural network-based approach in capturing the dynamics of solar panel power generation on geostationary
satellites. Satellite operators can employ this technique for effective monitoring and forecasting of solar panel-
generated power.
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ABSTRACT

Geostationary satellite solar panels are vital energy sources for space-borne systems. Understagdi
accurately modeling performance is crucial for satellite design, manufacturing, and operatio® opti
how solar panel power fluctuates in response to varying conditions on geostationary satelli
neural networks to model this power variability over time effectively. To achieve this, we

networks with exogenous inputs, utilizing both single-input and six-input conflguratlons i

analysis ylelds a Mean Squared Error (MSE) of 0. 0477 and a regression value of 0.99

based approach in capturing the dynamics of solar panel power generation on
this technique for effective monitoring and forecasting of solar panel-gener

degisen kosullara yanit olarak
etkili bir sekilde modellemek i

Presently, Photovoltaic (PV) solar array systems stand as
the prevailing method for generating power in satellite.
The cornerstone of any satellite lies in its electrical power
system, as it serves as the lifeblood for all onboard
subsystems. The PV array, comprised of solar panels
linked in series and parallel, fulfills the entire power
demand, thereby sustaining the spacecraft's mission
throughout its operational life. While solar PV cells
represent the most dependable power generation system
for aerospace applications, the aerospace industry often
leans towards the more cost-effective Si-based solar cells
to offset satellite launch expenses. Notably, the inaugural
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s enerjili hava kollektorii, konik yay, bulanik mantik, modelleme, ¢ikis sicakhigl, termal verim.

solar-powered satellite, Vanguard 1, embarked on its
journey into space on March 17, 1958 [1]. These PV
arrays encompass Vvarious solar panel substrates,
strategically housing solar cells in series and parallel
configurations to meet power requirements. This
adaptability in solar panel design facilitates their
integration into a multitude of mission profiles and space
environments. Progressive strides in solar array
technology have embraced the optimization of structural
platforms, lightweight substrates, innovative distribution
systems, and high-efficiency photovoltaics. An array of
technical solutions now caters to missions spanning from
interplanetary voyages to low Earth orbit endeavors [2].



In the demanding space environment of geosynchronous
orbit (GEO), spacecraft surface materials contend with
harsh conditions characterized by the flow of electrons
exhibiting a wide energy distribution. Consequently,
satellites can accrue negative charges reaching tens of
thousands of volts relative to the surrounding space
plasma. These electric fields may trigger localized
discharges, or arcs, compromising satellite operations
[3]. To address this, comprehensive spacecraft charge
analyses, employing tools like the Multi-Purpose
Spacecraft Charge Analysis Tool, have been undertaken
for large GEO satellites. These analyses vyield the
expected count of electrostatic discharges over a 15-year
orbital period, serving as the basis for primary
electrostatic discharge (ESD) evaluations in future solar
cell coupon ESD tests. In this context, solar panel
substrate design is pivotal for fixed satellites. The process
involves calculating the total solar array area, eclipse
duration, voltage, and power output, considering worst-
case scenarios aligned with satellite power requisites.
Various solar panel distribution mechanisms are assessed
based on their merits and drawbacks [4,5]. Furthermore,
understanding the potential and requirements of
photovoltaic arrays in catering to the unique demands of
spacecraft missions across diverse celestial bodies is
paramount. Whether stationed in Earth's orbits, the dusty

terrains of Mars and the Moon, the searing climates ofy

Venus and Mercury, or amidst the distant Gas Giarf®
each environment presents distinct challenges for sola
powered spacecraft. Therefore, not all ]
photovoltaic technologies have been fully opti
navigate this array of conditions [6, 7].

As satellite power demands continue
fusion of emerging thin-film PV technol
Copper Indium Gallium Seleni
gallium-arsenide  (GaAs)
distribution  technologies
significantly augment po
[8]. Changes in temper,

emperature leads to a
nt output. Conversely,

Telecommunication satellites in geostationary orbit
(GEQ) often bear sizable communication antennas and
external attachments. These appendages cast varying
shadows on the solar arrays. This phenomenon exerts a
pronounced adverse impact on solar array power
generation and the management of spacecraft payload
capacity. Simulation across varying lighting conditions
should be performed to accurately forecast array power
changes and solar cell performance [10].

The exploration of neural style transfer performance in
deep learning models is a well-established subject in both
academic and industrial realms. Studies primarily target
the improvement of quality and performance, as

highlighted in the reference Comparison of Neural Style
Transfer Performance of Deep Learning Models [11].

One application of Artificial Neural Networks (ANN)
involves predicting the monthly average soil temperature
for the upcoming year. This prediction relies on
meteorological parameters encompassing historical
monthly averages collected over an extended period. Five
distinct artificial neural network estimation models,
including feed-forward neural networks and Levenberg-
Marquardt algorithm-based networks, have been devised
to estimate soil temperatures at various depths: five, ten,
twenty, fifty, and one hundred centimeters. The
comparison reveals that estimatiops generated by
artificial neural network models outp m those from
regression models. The st
Temperature With Artif'gia

iaQQosis In Photovoltaic System Using
cquiged by UAV [13]. Experimental

erature have demonstrated that
igantly influences the performance of
panels, impacting current, voltage,
mwand electrical efficiency, as outlined in the
Experimental Investigation of The Efficiency
anel Over Which Water Film Flows [14].

2 solar cell technologies are relentless in their
pursuit of heightened solar cell efficiency and
adaptability to specific mission environments.
Consequently, assessing the performance of photovoltaic
arrays throughout their operational lifespan becomes
imperative to gauge their suitability for past and future
missions. The present study encompasses the simulation
of solar panels that are used by artificial intelligence tools
to predict power output based on environmental
parameters. This holds the potential to enhance the
utilization of photovoltaic arrays for space applications.
In this article, geostationary satellite solar panels as
sources of power generation was analysed. Additionally,
employing neural networks to model power generation
were investigated. Furthermore, the research findings and
discussions that originate from the models are
comprehensively summarized and discussed.

Thermal

2. GEOSTATIONARY  SATELLITE
PANELS FOR POWER GENERATION

Geostationary satellite solar panels are designed to
harness solar energy in space and provide electrical
power to satellites. The power generation characteristics
of geostationary satellite solar panels depend on a range
of factors that evolve over time. These factors include the
distance to the Sun, sun incidence angle, panel
orientation, temperature variations, and the solar cells'
efficiency and degradation rates. Understanding these
factors is decisive for assessing and optimizing the long-

SOLAR



term performance of solar panels in geostationary
satellites [6].

Three-axis body-stabilized satellites typically employ
flat solar panels. These panels can be rotated to optimally
intercept solar energy, thereby maximizing electric
power generation. For instance, 60 m? flat solar panels
can produce about 9 kW of power on geostationary
satellites. However, since these solar panels constantly
face the Sun, they operate at relatively higher
temperatures, which can lead to reduced efficiency. On
the other hand, spin-stabilized satellites utilize
cylindrical solar panels. These panels offer their own set
of advantages and disadvantages. The spin-stabilized
design allows the solar cells to cool down when they are
in the satellite's shadow. As a result, these panels can
maintain better efficiency compared to the flat solar
panels used in three-axis body-stabilized satellites.
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solid line,
Solar panels c of a series and parallel connection of
numerous solar cells. These solar cells are the
fundamental building blocks that convert solar energy
into electrical power. The need to produce sufficient
power necessitates a large surface area of solar panels.
However, this requirement must be balanced with the
satellite's objective of being compact and lightweight.
For this reason, careful consideration is given to the
selection of solar panel type based on the satellite's
stabilization mechanism.

Like all satellites, geostationary satellites with solar
arrays are susceptible to various factors. As the Earth
orbits the Sun, the distance between them varies from a

nge over a year due to the sun
incidence angle left vertical axis

minimum of 0.983 astronomical units (AUs), where 1
AU is the mean distance from the Earth to the Sun
(approximately 149,597,870 km), to a maximum of 1.067
AU. This difference amounts to 12,518,000 km. If the
energy received from the Sun at 1 AU is considered as
100%, the energy received by the geostationary satellite
varies from approximately 97% to 103% due to the
changing distance. These variations are depicted in
Figure 1. a), illustrating the fluctuation in energy received
by the solar arrays throughout the year. These changes in
solar energy availability impact the power generation
capacity of the solar arrays and must be accounted for in

satellite system design and power management
strategies. [15]
H 0(
— =1+ 0 1
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where; H radiant er@ensityjoutside the Earth's
on # solar constant 1353

on 1st of January.

it, known as the ecliptic. This
of the equatorial plane with the ecliptic

2d in Figure 1b). This declination angle can be
gssed in Equation 2.

§ = 23°+ (5)° + sin [ 2|

365.25 )
where d: day of the year passed after the spring equinox
which is March 21.

The solar cycle is a recurring pattern of solar activity that
spans approximately 11 years. It is characterized by Sun's
magnetic field variations, sunspot activity, and overall
solar output. Throughout the solar cycle, the Sun
undergoes periods of high and low activity, directly
influencing the flux density of solar radiation reaching
the Earth.

A geostationary satellite eclipse refers to the period when
a satellite is in the Earth's shadow, causing a temporary
loss of direct sunlight. Due to this fixed position, the
satellite can experience eclipses when the Earth blocks
the Sun's direct rays. The eclipse duration can be
estimated, providing valuable information for power
system design, battery performance assessment, and
thermal design in geostationary satellites.

It is important to note that these eclipses persist for
approximately 45 days in the geostationary orbit and
occur twice per year. The maximum eclipse period was
estimated to be around 69 minutes in practice [18].



Table 1. Categorized performance metrics of different solar cell technologies for space spplications

Solar Cell Technology ngoolé)eﬁ'C' (% at ggs\z:lc Mass E((J)e\:,;?i::ient Radiation (P/P0) ?ﬁgg)t on (Rpa/gg)t on
Unit (°C) (W/m?) (kg/m?) (% /°C) 1x10% 5x10% 1x10%

Si 13.7 185 0.55 -0.045 0.92 0.82 0.77
High ef. Si 16 216 0.28 -0.042 0.92 0.83 0.79
GaAs /GESJ 19 253 0.83 -0.022 0.90 0.85 0.75
GalnP?/ GaAs/ GeDJ 22 297 0.85 -0.030 0.96 0.89 0.83
GalnP?/ GaAs/ Ge TJ 25 337 0.85 -0.060 0.96 0.82 0.83

Hi 3J 28 378 0.86 -0.060 0.93 0.89 0.86

Satellite panels solar cells, commonly composed of
silicon, are semiconductor materials capable of
conducting electricity under specific conditions. When
sunlight strikes the solar cell, the semiconductor material
absorbs a portion of the light, transferring its energy. This
energy absorption causes some electrons within the
material to become free, allowing them to move and
create a flow of electrons known as a current [16]. By
understanding the current voltage and power-voltage
characteristics, designers can optimize the solar cell's
performance and harness its maximum power generation
capabilities for various applications. [17]

There are various types of solar cells, with silicon and
multijunction solar cells particularly interesting. Silicon
solar cells are widely used and have been a predominant
technology for many years. They are known for thﬁi’
reliability and reasonable efficiency in converti
sunlight into electricity.Solar cells are designed t
convert solar energy into electrical energy, utilizj
Sun's radiation, which is approximately 1360
AU (Astronomical Unit). These cells have
conversion efficiency rates depending the
used, ranging from 20% for silicon to 359
efficient multijunction Ga-As cells, iti
such as cell aging and working
reduce efficiency.

Considering all these fact

approximately 150 t
combination of 8L
and environmge
efficiency
remain

amay. Nonetheless, solar arrays
icient means of converting solar

applications.

Table 1 provides a comprehensive overview of various
solar cell technologies along with their respective
performance metrics. These metrics include the
Beginning-of-Life (BOL) efficiency at 28°C, specific
power coefficient, and mass characteristics under
different radiation conditions. The table outlines the solar
cell technologies, each with its corresponding BOL
efficiency percentage at 28°C, specific power coefficient,
and mass values. Table 1 provides a comprehensive
comparison of solar cell technologies based on their
efficiency, power coefficient, mass, and radiation
response, offering valuable information for selecting and

optimizing solar cell technologies for space applications
[18].
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Figure 2. a) Sun flux density variation at geo altitude over a
year b) Satellite solar panel lifetime power performance.

When combining the information depicted in Figure 1.
a), which illustrates the variation in sun distance to Earth
and its corresponding flux, with Figure 1. b),
demonstrating the flux variation due to the Sun's
incidence angle on the Earth's equator and the solar panel
of the satellite, we obtain Figure 2. a). This resultant
figure represents the flux density, which directly and
significantly impacts the power generated by the solar
panel. Analyzing Figure 2. a), we can assess the primary
influencing factor on the solar panel's power generation
capability [3, 19].

Suppose the effects of variations in solar distance, solar
cycle, solar angle, temperature, and eclipses over a year
were combined. In that case, new results are obtained,
and the total solar energy available varies 12%—from a
low of 89% to a high of 101% [20]. The effects of
degradation on the solar cells and their optical coverings
due to the space environment and a nominal nine-year



satellite lifetime are shown in Figure 2. b. The size of a
spacecraft subsystem is determined not only by the power
needed to operate the equipment and its duty cycle but
also by considering factors such as power requirements
during eclipses and peak power consumption. Ensuring
reliable power supply throughout the satellite's mission is
crucial, considering the limited lifespan of solar cells and
batteries. At the beginning of life, the power requirement
should be considered the potential degradation in the
solar array. This degradation is influenced by factors
such as the orbit altitude and radiation environment.

When designing the power subsystem for a spacecraft,
ensuring a continuous and reliable power supply
throughout its planned lifetime is of utmost importance.
A power margin of approximately 33% is incorporated
into the design to achieve this. This means that the power
subsystem is designed to provide an initial power
capacity of approximately 133% of the maximum power
demand required for normal operations, where 100%
represents the power needed for standard functioning. By
implementing this power margin, the satellite can sustain
normal operations while accommodating any potential
variations or increased power demands that may arise
over its lifetime. This additional power capacity acts as a
safety buffer, preventing the available power from
dropping below the threshold necessary for smooth
operation throughout the satellite's planned missigl.
duration.

The spacecraft's power subsystem ensures a robust ang
reliable power supply over an extended pep
strategically providing an initial power capagity t

a result, the spacecraft can
effectively, fulfilling its missi

ure the complex and non-linear
t in the process. These limitations
can result inYfaccurate predictions, especially in
scenarios with varying weather conditions and
environmental factors. Consequently, optimizing the
efficiency and reliability of solar energy utilization
becomes challenging.

In recent years, advancements in artificial intelligence
have paved the way for more sophisticated modeling
techniques. Neural networks, a subset of machine
learning algorithms inspired by the human brain's neural
structure, have demonstrated significant potential in
addressing the shortcomings of traditional analytical
models. Unlike traditional approaches, neural networks
excel at learning patterns and correlations directly from

relationships

data, making them well-suited for capturing intricate
relationships present in solar panel power generation.

By leveraging their powerful learning capabilities, neural
networks can process vast amounts of historical data
related to solar panel power output and associated
environmental parameters. This includes data on solar
irradiance, panel temperature, sun position, and other
relevant factors. Through the training process, neural
networks identify complex patterns and dependencies
within the data, creating a model that can accurately
predict solar panel power generation under various
conditions.

The ability of neural networks to
relationships and adapt to changing i
particularly valuable in scenag i
uncertain solar energy gepergti
these Al-based model
robustness compared t

Furthermore, neural
and fine-tuned

ndle non-linear
makes them

omes available. This
model remains up-to-date
dictive capabilities over time.
iders, and policymakers can
rgy utilization, improve energy
ance overall system efficiency by
ed and precise forecasts [23, 24, 25].

llite solar panels.
on-linear Autoregressive Neural Networks with
Exogenous Input

A neural network model is constructed with appropriate
input and output layers. Hidden layers with
interconnected neurons enable the network to learn the
underlying patterns and relationships  between
environmental factors and solar panel power generation.

Figure 3 illustrates the architecture of a neural network
employing a single input with feedback.
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Figure 3. Non-linear Autoregressive Neural Networks with
Exogenous Input



In certain time series problems, the goal is to predict
future values of a given time series, denoted as y(t), by
utilizing past values of both that time series and an
additional related time series, denoted as x(t). This type
of prediction is known as non-linear autoregressive with
exogenous input. Mathematically, it can be expressed as
follows:

y®) =fOt-1,.yt-d,xt-1),..,xt-d) )

In this context, the above mentioned network model was
employed to predict future values of generated power by
a solar panel based on previous instances of generated
power. The model considers the historical data of both
the solar panel's power output (y) and other relevant
factors (x), such as environmental conditions, solar
radiation, or panel orientation.

By analyzing the relationships between past power
generation and the associated exogenous inputs, the
network learns patterns and correlations to make
predictions about future power generation. This
predictive capability aids in optimizing power
management, system planning, and decision-making
processes related to solar energy utilization.

The network serves as a valuable tool in harnessing the

potential of solar panels by providing insights into thai’

performance dynamics and enabling accurate predictiong
of future power generation based on historical data.

3.1.1. Training and Validation

The collected data is split into training and v@lidatio
sets. The neural network is trained using thg traini
and the model's performance is ass using
validation set. The network learns predict
inputs

a performance
model's predicted

asuring the discrepancy
o actual values. The Mean

MSE considers the absolute differences between actual
and predicted values. However, by squaring these
differences, the MSE emphasizes larger errors and
provides a measure of the average squared difference
between the actual and predicted values.

In this study, the Levenberg-Marquardt training
algorithm, which yielded superior results compared to
other methods, was employed. The evaluation of training,
validation, and testing results is based on two metrics:
Mean Squared Error (MSE) and Regression R Values.

MSE measures the average squared difference between
predicted outputs and actual targets, with lower values
indicating better accuracy (zero indicates no error).
Regression R Values quantify the correlation between
predicted outputs and targets, where an R-value of 1
indicates a close relationship, and 0 signifies a random
relationship. By utilizing these evaluation metrics and the
effective Levenberg-Marquardt training algorithm, our
study aims to provide accurate and reliable pred'gg')ons
for solar panel power generation, further advancing the
capabilities of neural network modeling in this domain.

3.2. Data Collection and Preprocessing

In our study, the actual power data of
operated at the designated orbital lo
years was utilized. The power
solar panels is used explicigly,
entire dataset covers a®pan

Two distinct metho
solar panel pow e neural network. The

icting solar panel power

values HBsed mprehensive set of parameters
encompaégsi , orbital data, and space
environmen@y condftions. These parameters include

y of the year, sun flux density, sun
, satellite-to-sun distance/AU ratio, cell

es the predicted power values generated by the

o panels, while the parameters mentioned above
constitute the network's input. Conversely, the second
approach exclusively employs the actual generated
power values as input. The network's output continues to
represent the solar panel power, while the input consists
solely of day-of-the-year values commencing from an
established epoch.

Table 2 presents a detailed overview of the input and
output values of the Sat-A dataset utilized for the training
process. Each row corresponds to a specific day,
providing information on parameters such as Sun angle,
flux density, temperature, cell degradation, sun-satellite
distance, and the corresponding power generated by the
solar panel. The dataset spans 2922 days, encapsulating
various conditions and factors contributing to solar panel
power generation.

In this study, both approaches are implemented, and their
respective outcomes are meticulously compared. The
results shed light on the efficacy and performance of each
approach, allowing for a comprehensive evaluation of
their predictive capabilities in modeling satellite solar
panel power generation.

This preprocessed data forms the foundation for training
and validating the neural network model. By using this
comprehensive dataset, we aim to develop a reliable and
accurate model for predicting the power output of Sat-A's
solar panels over time. The neural network model is
trained and evaluated based on this dataset.



Table 2. Input and output values of Sat-A data for neural network training

Day Sun angle Flux Den Temperature Cell degrade  Sun-Sat Power
(degree) (W/m?) (°C) (%) Dist (AU) (Watt)

1 -23.012 1397.642 28.0239 0.9999 0.983046 10999.885

2 -22.931 1397.649 28.0416 0.9998 0.983031 11004.321

2921 -23.012 1397.642 28.0196 0.9356 0.983121 10292.445

2922 -22.931 1397.649 28.0380 0.9356 0.983093 10297.616

It enables us to assess its forecasting performance and
potential for predicting solar panel power generation in
various conditions and scenarios.

4. THE RESEARCH FINDINGS AND
DISCUSSION

This study encompasses a data collection spanning 2922
days for Sat-A to facilitate neural network training for
predictive purposes. The entire dataset is partitioned
randomly into three distinct segments: 70% (2046) is
allocated for training, 15% (438) for validation, and the
remaining proportion for testing. During the training
phase, the neural network undergoes adjustments in
response to its computed errors. The validation subs
evaluates the network's generalization capacity
prompts the cessation of training upon stagnation i
performance enhancements. Conversely, the tegtin
subset furnishes an independent assessmentof thg
network's operational efficacy both during afid pos
training, all the while preserving the i i
training process.

As previously delineated, the stud
distinct modes of training: a si
involving only day values and

ensity, sun
perature, and

layers and tput. Notably, both configurations
incorporate a of 2 in their respective designs.

Figure 5 compares the actual and predicted values of Sat-
A solar panel output over 8 years using the neural
network time series model with a single input. The model
employs a non-linear autoregressive with external
(exogenous) input architecture. The lower portion of the
figure illustrates the error, representing the difference
between the observed and predicted values. Notably, the
error values in the figure are minimal, indicating the
model's effectiveness in accurately capturing the solar
panel's power generation behavior.
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Figure 4. a) the block diagram of the network generated for

training with a single input and feedback, b) illustrates the
networks utilized for training with six inputs and feedback.

Input Layer Qutput Layer

The neural network model demonstrates its proficiency
in predicting solar panel output with high precision and
reliability, validating its successful performance in this
context.
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In light of these findings, it is evident that the generated
power of Sat-A solar panels is effectively and accurately
modeled by utilizing the neural network. The
combination of the high regression value and the low
MSE demonstrates the reliability and precision of the
neural network model in predicting solar panel power
generation behavior. This success contributes to
advancing our understanding and practical utilization of
neural networks in analyzing and optimizing satellite
solar panel performance.
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Figure 7. offers a comprehensive visual comparison
between the observed and predicted values of Sat-A solar
panel output over an 8-year duration. This analysis is
conducted by applying a neural network time series
model, incorporating 6 inputs encompassing the
aforementioned critical data parameters. For enhanc‘g@
accuracy, the model is structured with a non-lineg
autoregressive  architecture  featuring
(exogenous) input.

The upper segment of Figure 7. provides a fdetai

Panel power generation. This remarkable
between the predicted and actual data
scdres the reliability and effectiveness of the neural
prk time series model.

e findings depicted in Figure 7 validate the chosen
modeling approach's robustness and reinforce the
power derived from Sat-A solar panels t significance of neural networks in understanding and
year span. This representation visually i forecasting satellite solar panel power generation
intri dynamics. The successful alignment of predicted and
actual values paves the way for enhanced decision-
making and optimization in satellite power management.
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Figure 8. The left graph demonstrates the performance of the six-input model, while the right graph showcases the
regression value indicating the correlation between the actual and predicted power.



Figure 8. the left graph provides insight into the behavior
of the Mean Squared Error (MSE) alongside the number
of iterations throughout the iterative modeling process,
displayed on a logarithmic scale. As expected, the errors
consistently diminish as the number of iterations
increases. This pattern aligns with the anticipated
trajectory of iterative optimization algorithms frequently
utilized in training neural networks. The gradual decrease
in errors over successive iterations signifies the model's
progressive enhancement in prediction refinement.
Through iterative learning, the neural network effectively
fine-tunes its predictions, resulting in a notable reduction
in MSE and a heightened precision in capturing the
intricate power generation patterns of the solar panel.
Figure 8. the right graph unveils the comparison between
observed and predicted power regression. The data points
cluster closely around the 45-degree line, indicating a
robust correlation between the predicted and actual solar
array power. This striking proximity underscores the
neural network's commendable accuracy in forecasting
power generation, affirming its competence in accurately
simulating the genuine power output behavior of the solar
array.

The specific quantitative indicators also underscore the
effectiveness of the model. The MSE is recorded at a
value of 0.047, highlighting the minimal discrepancyy
between predicted and actual values. Simultaneously,
regression value (R) registers at an impressive 0.9999
showcasing the robust relationship between pr
and actual data points.

Upon scrutinizing the performance metrics of th
model in contrast to the 1-input model, i
evident that the former exhibits sh
performance. The 6-input model
metrics, with an MSE of 0.047
model's 0.199. Moreover, the
the 6-input model also
correlation. While the
models is modest,

enhanced
een the two
improvements
superior prowess of

including enhanced power
fficiency in satellite mission
resource management.

be consistently fefined with new telemetry data, allowing
it to stay quick and sensitive to changing circumstances
while improving its capacity to make predictions. The
proposed neural network modeling technique has been
evaluated against other research areas, including the
simulation of satellite temperature sensors [26], the
control of spacecraft power systems [27], and methods
for predicting time series data [28]. These comparisons
demonstrate that our approach is both reliable and
practically applicable, yielding positive results. This
validation across different domains confirms the
robustness and effectiveness of proposed neural network

model in accurately predicting power generation in
geostationary satellite solar panels.

The rationale for employing a neural network in this
study lies in its capacity to effectively capture and model
the complex and non-linear relationships inherent in the
behavior of photovoltaic arrays. Traditional analytical
models may have limitations in accurately representing
the intricate dynamics of solar panel power generation.
Neural networks, a form of artificial intelligence, have
demonstrated promise in learning patterns from data and
providing precise predictions. By leveraging the neural
network’s ability to adapt and learn from the dataset, the
study aims to achieve a more acclfiate and reliable
predictive model for the
geostationary satellite solar p
particularly in the conteyg Of
flexibility to discern p
various input parame
density, sun angle, an
turn, enhances

ing, offers the
tonships among
e, temperature, flux
un distance. This, in

extensively investigated the complex
ower generation in geostationary satellite
, presenting an approach for modeling their

prop@sed technique in accurately forecasting power
output holds substantial potential for optimizing resource
allocation, refining satellite operations, and enhancing
mission planning.

The findings of our research demonstrate the efficacy of
the neural network-based model in accurately capturing
the power generation patterns of geostationary satellite
solar panels. A remarkable Mean Squared Error (MSE)
of 0.0477 and a regression value of 0.9999 were achieved
through the utilization of a non-linear autoregressive with
exogenous input architecture. This level of performance
underscores the robust correlation between predicted and
actual power values.

The neural network-based model offers satellite
operators a powerful tool for efficient resource
management, mission planning, and operational

decision-making. The accurate prediction of power
output empowers operators to allocate resources more
effectively and plan satellite activities with a heightened
understanding of energy availability.

Nevertheless, like any scientific investigation, this study
comes with its own set of limitations. The accuracy of the
proposed model could be influenced by external factors,
such as space weather conditions, short circuits in solar
panel strings, or unforeseen anomalies in solar panel
performance. Additionally, the model's predictive
capability is constrained by the data on which it was
trained. This limitation could hinder the model's ability
to adapt to new and unique scenarios that were not
represented in the training data. Addressing these



constraints in future work could involve incorporating a
wider range of data inputs and further refining the model
to enhance its robustness and adaptability to various
conditions.

For future research, there are promising avenues to
explore. Similar neural network-based modeling
techniques could be applied to solar panels on satellites
in Low Earth Orbit (LEO) or other orbital configurations.
Furthermore, the model could be refined by incorporating
additional variables such as satellite orientation or
environmental conditions, potentially enhancing its
predictive accuracy. Additionally, exploring the
feasibility of applying this approach to other space-based
solar power systems holds the potential for advancing our
understanding of power generation dynamics in various
satellite environments.

In conclusion, our research showcases the potential of
neural network-based modeling in understanding and
predicting power generation in geostationary satellite
solar panels. This approach enhances our comprehension
of energy dynamics in space and has substantial
implications for improving satellite operations. By
continually refining and expanding upon this modeling
technique, new insights into solar panel behavior and
further optimize space-based energy utilization can be

unlocked.
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