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Assessing the Impact of RPL Attacks in Challenging 

Environments: An Evolution-assisted Study 

Highlights 
 The use of genetic algorithm to enhance the attack environment. 

 The impact of enhanced RPL attacks on the performance of IoT networks. 

 Thorough evaluation using packet delivery ratio, overhead, power consumption, and end-to-end delay. 

 

Graphical Abstract 
In this study, we aim to assess the performance change of RPL-based networks when they are under attack. We 

considered the most effective attack scenarios that are evolved by the genetic algorithm. 

 

Figure. Flowchart for the evolution of the most effective attack environment. 
 

Aim 
To analyze the impact of RPL attacks at their highest effectiveness in the IoT network. 

Design & Methodology 
We first use the genetic algorithm to evolve malicious environments separately for seven RPL attacks. The 

malicious environment is achieved by finding the position as well as the density of attackers in the topology. Then, 

we evaluate the impact of attack on such learned environment using different evaluation metrics. 

Originality 
The use of genetic algorithm is first explored to achieve the most effective malicious environment. 

Findings 
Depending on the position and density of attackers, the operating performance of IoT network notably deteriorates 

as compared to baseline performance for all evaluation metrics. 

Conclusion 
Rather than a human-crafted environment, the use of the most effective attack environment learned by the genetic 

algorithm is very essential for performance analysis as it helps the security practitioner secure IoT networks 

considering such environment. 
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ABSTRACT 

The integration of IoT-enabled smart technologies into our daily lives offers numerous benefits in many ways. This, however, 

requires well-founded security concerns because the protocols designed for IoT networks exhibit numerous vulnerabilities today. 

One such protocol is the IPv6 Routing Protocol for Low Power Lossy Networks (RPL) which is frequently used in IoT networks 

to enable routing between the heterogeneous devices. RPL has exhibited significant shortcomings and has become a target for 

various attacks up to now. Evaluating the performance of RPL attacks is a non-trivial task for securing IoT network effectively. 

Although performance analysis studies are numerous in literature, all of them rely on ‘human-crafted’ attack environments. In 

contrast, this study considers the most challenging malicious environments for performance evaluation. To achieve such 

environments, the use of genetic algorithm is explored in this study. The findings reveal that the impact of the attack is greatly 

influenced by the position as well as the density of the attackers in the network.   

Keywords: IoT, RPL attacks, genetic algorithm, performance assessment.  

Zorlu Ortamlarda RPL Saldırılarının Etkisinin 

Değerlendirilmesi: Evrim Destekli Bir Çalışma 
ÖZ 

IoT destekli akıllı teknolojilerin günlük yaşamımıza entegrasyonu birçok açıdan sayısız fayda sağlamaktadır. Fakat, protokollerin 

günümüzde çok sayıda güvenlik açığı sergilemesi, beraberinde güvenlik endişelerini de getirmiştir. Bu protokollerden biri, 

heterojen cihazlar arasında yönlendirmeyi sağlamak için IoT ağlarda sıklıkla kullanılan RPL (IPv6 Routing Protocol for Low Power 

Lossy Networks) protokolüdür. RPL bugüne kadar önemli eksiklikler sergilemiş ve çeşitli saldırıların hedefi haline gelmiştir. RPL 

saldırılarının performansını değerlendirmek, IoT ağının etkili bir şekilde güvenliğini sağlamak önemli bir görevdir. Performans 

analizi literatürde çok sayıda çalışılmasına rağmen tamamı 'insan yapımı' saldırı ortamlarına dayanmaktadır. Buna karşılık, bu 

çalışma performans değerlendirmesi için en güçlü saldırı ortamlarını dikkate almaktadır. Bu tür ortamları elde etmek için genetik 

algoritmanın kullanımı bu çalışmada araştırılmıştır. Bulgular, saldırının etkisinin, saldırganların ağdaki konumundan ve 

yoğunluğundan büyük ölçüde etkilendiğini ortaya koymaktadır. 

Anahtar Kelimeler: IoT, RPL saldırıları, genetik algoritma, performans değerlendirme. 

 

1. INTRODUCTION 

The Internet of Things (IoT) paradigm, which enables 

heterogeneous devices to communicate with each other 

wirelessly and instantly transmit data over the Internet, 

has greatly influenced our daily lives over the last few 

decades. This has provided numerous beneficial 

applications, such as domotics, e-health services, smart 

agricultural applications, military and defense 

operations, smart city designs, and intelligent 

transportation systems, to facilitate people’s lives  [1], 

[2]. The rapid diversification of IoT applications has 

resulted in an increase in the number of IoT devices. It is 

expected that 75 billion IoT devices will be in use 

worldwide by 2025 [3]. Such a widespread adoption 

evidently brings security risks that threaten all humanity. 

This security risk mostly arises from communicating 

devices or protocols that are specifically developed for 

IoT networks. One of these protocols is RPL [4] that 

manages the routing process on IoT networks. RPL, 

selected as the default routing protocol for Low Power 

Lossy Networks (LLNs) enabling IoT, is effective for 

establishing routes between nodes having the high packet 

loss and low throughput characteristic. Despite its 

effectiveness in routing within LLNs, it is vulnerable 

against different types of routing attacks. 

The weakness in RPL has motivated adversaries to 

continually enhance malicious attempts, resulting in the 

emergence of various routing attacks within LLN 

networks. These attacks exploit vulnerabilities in RPL, 

targeting its routing functioning to disrupt 

communication and compromise the integrity of data 

transmissions. This underscores the requirement for 

security analysts to rigorously evaluate the impacts of 

these attacks, highlighting the significance of 

*Sorumlu Yazar  (Corresponding Author)  

e-posta :  selimyilmaz@mu.edu.tr 



Özlem CEVİZ, Selim YILMAZ / POLİTEKNİK DERGİSİ  Politeknik Dergisi, 2025; 28(1) : 123-135 

 

124 

comprehensive assessment to understand their 

implications on network integrity and functionality. 

There are several attempts in existing literature to address 

this issue, primarily focused on static scenarios where the 

attacker is located in a fixed position in the network. 

Furthermore, the majority of these simulations have only 

considered a single attacker, reflecting a limited scope in 

their analyses since the attack's impact is closely 

dependent on both the position and density of attackers 

in the topology. In addition, due to limitations in their 

selection strategies that mostly rely on ‘random’ or 

‘sequential’ selection of the attackers, the existing 

analysis efforts can provide only partial assistance to the 

security community, resulting in a lack of depth and 

efficiency. Because the extent of the attack's impact is 

significantly influenced by the attackers' placement, 

random selection of attackers potentially misleads 

security practitioners, especially if they are positioned in 

an area where their effects are not readily apparent or 

noteworthy. The sequential selection strategy, however, 

is neither realistic nor feasible for the large-scale IoT 

networks. This is due to its impracticality, particularly 

when considering the exponential increase in costs 

associated with attacker placement. These approaches 

become even impractical especially when the number of 

attackers also becomes an additional parameter that 

needs to be investigated. To aid the security practitioners 

in anticipating vulnerabilities in IoT networks before 

implementing crucial measures, it is essential to evaluate 

the impact of the attackers effectively and efficiently in 

an environment that has not been artificially manipulated 

through human-crafted scenarios. This study refers to 

such an environment as the ‘most challenging 

environment’. The main motivation behind this study is 

to address this gap in the literature and provide an 

evaluation of attacker impact in a more realistic setting.  

We have conducted a comprehensive analysis in this 

study to assess how large RPL attacks could affect the 

performance of the network when the attack reaches its 

maximum potential, demonstrating the full impact of 

RPL attacks. To the best of our knowledge, there is no 

study in literature that analyses the impact of the attack 

in such environments. In order to achieve this goal, the 

most challenging environment is first learned through the 

Genetic Algorithm (GA), which is a learning algorithm 

under the umbrella of evolutionary computation [5]. The 

learned environment is then simulated and evaluated 

according to four different evaluation metrics that are 

very important for IoT networks: i) packet delivery ratio 

(PDR), ii) overhead (OVR), iii) average power 

consumption (APC), and iv) end-to-end delay (E2E). The 

results reveal that the network performance is seriously 

affected when the attackers are cooperatively located in 

the critical positions in the topology. The contributions 

of this study are outlined below:  

• The simulation environments in the experiments are 

learned by the GA: Rather than the human-crafted, we 

considered ‘evolved’ scenarios for each attack type 

that dramatically reduces the performance of the 

network, ensuring a more realistic network setting. 

This is the first study that uses GA for exploring such 

challenging environments. 

• A thorough attack analysis is carried out: The analysis 

is carried out based on an environment learned by 

GA, and unlike most of the current studies, we 

consider seven routing attacks targeting different 

aspects of the RPL-based networks.  

The organization of this paper is as follows: Section 2 

briefly explains the background information on RPL, 

RPL attacks, and the GA. The related studies that assess 

the impact of RPL attacks are discussed in Section 3. The 

proposed evolutionary-based method, experimental 

scenarios, simulation settings, and the results are given in 

Section 4. Finally, Section 5 concludes the findings of 

this paper. 

 

2. BACKGROUND 

2.1. RPL 

Satisfying the needs of resource constrained IoT devices, 

RPL is a distance vector protocol that offers efficient and 

adaptable routing for LLNs specifically. It aims to 

support the integration of thousands of interconnected 

devices through a multi-hop network architecture, 

aligning with the vision of the IoT [6]. 

RPL has different characteristics from the other routing 

protocols in LLNs. The system incorporates an on-

demand loop detection mechanism that employs data 

packets. This method effectively preserves energy and 

extends battery life by avoiding frequent updates to the 

routing topology due to transient and infrequent changes 

in connectivity that are commonly encountered in LLNs 

[4]. Moreover, it focuses on scalability and stability, 

which are the key issues in LLNs with potentially 

unstable connections and nodes. These factors led to the 

widespread adoption of RPL in LLNs. 

2.1.1 Protocol overview 

RPL has a special topology called Destination Oriented 

Directed Acyclic Graph (DODAG) to communicate 

among nodes. Four essential control messages are 

responsible for creating and maintaining the route 

required for communication between the nodes: 

Destination Information Object (DIO), DODAG 

Information Solicitation (DIS), Destination 

Advertisement Object (DAO), and Destination 

Advertisement Object Acknowledgment (DAO-ACK). 

The formation of DODAG, which includes a root node 

generally called the sink node and the other leaf nodes, is 

initiated by the root node. The root node initially 
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broadcast DIO control packets, which contain 

information for nodes to join the DODAG, such as 

version number, ID, and other necessary information. 

When a node receives a DIO packet, it includes the 

sender's address in its parent list. Furthermore, it 

computes the rank value and adds the DIO packet with 

its address and rank value prior to transmission. This 

propagation of DIO packets in the network results in an 

upward route. The downward route, however, is 

established by using DAO packets. A receiver responds 

to a unicast DAO message by sending a unicast DAO-

ACK packet. DIS packets, used to request DODAG 

information, enable new nodes to join the DODAG. The 

neighbor node receiving the DIS packet responds by 

sending a DIO packet, sharing the current DODAG 

information.  

There are two categories of repair mechanisms within 

RPL: global repair and local repair. Global repair is a 

process for repairing links and nodes, detecting loops, 

and other inconsistencies [4]. When the global repair 

mechanism is activated within RPL, it triggers a full 

reconstruction of the DODAG by incrementing the 

DODAG's version number [7]. Nodes then compare this 

version number in the DIO with the existing version 

number. If the current version number is greater, the node 

should disregard its existing rank information, reset 

trickle timers, and begin a new procedure to become part 

of the DODAG [8]. This process affects the entire 

network, as each node changes the version number to 

announce the new version and force the DODAG to 

rebuild itself. That’s why global repair is a very costly 

process in terms of network performance and resource 

consumption. In some cases, local repair mechanisms can 

be more suitable, addressing issues without triggering a 

complete DODAG rebuild. There are two alternatives for 

local repair. The first is that if a parent node is not active, 

nodes can temporarily create a route through neighbors 

with the same rank, allowing efficient routing and 

ensuring continued connectivity within the network. The 

other is that by selecting a new parent from their parent 

list, nodes can maintain their position in the DODAG and 

continue functioning without the need for a global repair. 

These local repair mechanisms can be used individually 

or in combination to avoid any loss of connectivity in the 

network. 

2.1.2 Attacks 

Exploiting the weaknesses in the protocol, adversaries 

have been consistently developing routing attacks that 

are categorized based on what they primarily target [9]: 

i) targeting resource, ii) targeting topology, and iii) 

targeting traffic. In this study, the following seven attacks 

are considered: 

• Blackhole (targeting topology): In this attack, the 

intruder drops all the packets that are passed through 

it. Therefore, a dramatic degradation in packet 

delivery performance is observed.  

• Selective Forwarding (targeting topology): In this 

attack, rather than the entire network, a portion of the 

traffic is discarded by the attackers. As compared to 

the blackhole, this attack is known to be more 

challenging as the malicious pattern may change over 

time, and even attackers can behave almost 

identically to benign nodes to avoid being detected. 

Similar to a blackhole attack, it directly affects the 

PDR of the network. 

• DAG Inconsistency (targeting resources): The 

protocol uses the ‘O’ and ‘R’ flags to cause an 

inconsistency in DODAG. The ‘O’ flag indicates the 

direction in which the packet should be forwarded, 

while the ‘R’ flag indicates whether a sequence error 

has been detected by a node. If the direction of a 

packet is inconsistent with the direction represented 

by the ‘O’ flag, the relevant node forwards the packet 

but also sets the ‘R’ flag. If the ‘R’ flag has been 

previously marked by other nodes, the corresponding 

device drops the incoming packet, sends DIO packets, 

and resets the trickle timer, resulting in a local repair. 

The attacker performs this attack in two ways: i) it 

transmits the incoming packet after setting the ‘O’ 

and ‘R’ flags, ii) it sends a new packet in which these 

flags are already set. This attack leads to unnecessary 

local repairs, consumes resources and increases the 

overhead. 

• Decreased Rank (targeting traffic): Here, the intruder 

intentionally broadcast a lower rank value to the 

neighboring nodes, feigning proximity to the root 

node because a high amount of traffic passes through 

the root node, attracting most of the existing traffic in 

the network. This consequence of this attack can 

become even more severe when it is coupled with 

other attacks. 

• DIS Flooding (targeting resources): It creates a huge 

amount of network traffic, making nodes and 

connections on the network inaccessible. Here, the 

intruder continuously broadcast DIS packets, leading 

neighboring nodes to continuously respond with DIO 

packets. This results in congestion in the network as 

well as additional resource consumption by victim 

nodes. 

• Increased Version (targeting resources): As stated 

earlier, the version number in the DIO package is 

regularly checked by the root node to find out if the 

current DODAG is up to date. Contrary to the 

specification of RPL, the intruder intentionally 

increases the version number to result in continuous 

renewal of DODAG, thus consuming the resources of 

the network. 

• Worst Parent (targeting topology): According to the 

RPL protocol, each packet travels through the parent 
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node before reaching the root node. The parent of a 

node can be one of the nodes in its neighborhood. The 

node chooses the best parent node by inspecting the 

rank value of neighboring nodes. In case of an attack, 

the malicious node makes the ‘worst’ neighbor node 

the parent node instead of the ‘best’ one to forward 

incoming packets. This mainly results in suboptimal 

routing performance. 

2.2. Evolutionary Computation and Genetic 

Algorithm 

Evolutionary computing is a general name given to a set 

of learning algorithms based on the evolution of a 

population to develop solutions to a problem. 

Evolutionary calculation algorithms, or evolutionary 

algorithms, rely on the theory of ‘survival of the fittest’ 

and aim to develop good individuals in the population by 

replacing them with the non-promising ones, thus 

ensuring the production of good-quality solutions at the 

end of the evolution.  

Several evolutionary algorithms have been developed to 

date, and GA is the most popular evolutionary algorithm 

today. Evolutionary algorithms, including GA, follow 

similar processes to evolve better individuals for 

subsequent generations through genetic operators, such 

as selection, crossover, and mutation. Individuals in a GA 

are often randomly generated and represented through a 

vector-like structure in which a few genes take part. 

According to the fitness function, individuals are 

evaluated just after they are generated or bred. The fitness 

functions illustrate an individual's quality or proximity to 

the optimal state. The individuals are selected to form 

pairs concerning the selection strategy, like a roulette 

wheel. The selection strategies take into account the 

fitness scores of individuals, making it more probable for 

individuals with higher fitness to produce offspring. 

Upon selection, the pairs are subject to, in order, 

crossover and mutation. There are several crossover 

strategies in GA, such as one-point, two-point, uniform, 

and the like. The common behavior behind these 

strategies is to swap sub-vectors that the individuals 

represent. As for the mutation, which is applied as the 

final operator in a step, some genes in the vector of 

selected individuals are mutated by flipping (for binary 

values) or disturbing (for real values) them. For a more 

comprehensive discussion on GA, including an in-depth 

analysis of its working principles, applications, and a 

thorough examination of both advantages and 

limitations, refer to [10]. 

 

3. RELATED WORK 

Over the past few decades, researchers have been 

studying on enhancing and analyzing the security 

measures IoT-based networks [11], [12], [13]. However, 

since this paper primarily concentrates on the RPL 

protocol, we here discuss only the important researches 

that analyze attacks on RPL-based IoT networks and their 

impact on network performance.  

According to this protocol, each node has a parent list, in 

which the rank of the parent is always smaller than the 

child's rank, and the parent has the best rank. The earlier 

study [14] presented a type of attack called rank attack to 

aim at selecting the worst parent with a greater rank. The 

attack was applied to four different types of scenarios. In 

the first scenario, the rank attack was implemented 

during the simulation period, enabling DIO packages to 

be updated, while in the second scenario, DIO package 

updating was disabled. In the other scenario, the 

simulation time is divided by a certain period, and the 

attack terminates after the first half of the period. 

Similarly, to the first two scenarios, the DIO package was 

updated in one scenario but not in the other. Proposed 

attack scenarios have the potential to drastically increase 

E2E and decrease PDR. The authors emphasized that the 

impact of attacker collaboration can severely damage 

network performance, especially if it is deliberately 

located in areas with high network traffic. In another 

study [15], a decreased rank attack is presented. Grid and 

random topologies were used to create four different 

topologies with 36 nodes and 1 root. Grid topology is 

used to implement two distinct situations: The first is 

where the root node is in the center, and the second is 

where the root node is in the upper left corner. In random 

topology, static nodes are located first, while mobile 

nodes are utilized in the second scenario. The four 

topologies were evaluated without attack, and then the 

attack was implemented so that all nodes, except the root 

node, were selected as attacker nodes sequentially, called 

‘sequential’ selection in this study, to reveal the impact 

of attacker positions. After each single attacker 

implementation, packet delivery time, OVR and APC 

increased for all four topologies and the PDR decreased. 

When the grid topology was used and the root was in the 

corner, the attack had the greatest impact on this network, 

reducing PDR by 13.44%. In addition, it has been 

observed that nodes selected near the root node reduce 

network performance more. The authors expanded the 

network area and experimented with 69 nodes and 1 root, 

using a random static node topology. Experiments were 

conducted by gradually increasing the attacker ratio (up 

to 20%). As the attacker ratio increases, the PDR 

decreases, and the packet delivery time, OVR, and APC 

increase. Similarly, the decreased rank attack was 

presented in [16], in three different ways, with the 

attacker located one, two, and three hops away from the 

root, respectively. However, the attack was only effective 

in terms of PDR and APC when the attacker was located 

three hops away from the root. 

In [17], a rank attack is initiated by an attacker node 

capturing DIO packets and changing the rank value. The 



ASSESSING THE IMPACT OF RPL ATTACKS IN CHALLENGING ENVIRONMENTS: AN EV… Politeknik Dergisi, 2025; 28(1) : 123-135 

 

127 

attacker node replicates the IPv6 address of the victim 

node within the intercepted DIO packets, a form of attack 

referred to as a rank attack with a spoofed IP. It is 

observed that the PDR is greatly reduced because of this 

attack. In [18], the authors propose a novel rank attack in 

which the attacker changes both the rank value and an 

ETX, a routing metric used to measure the quality of a 

path between two nodes. Parameters like APC and radio 

duty cycle were examined in [19] for network 

performance analysis under decreased and increased rank 

attacks. For both attacks, higher APC and loops were 

observed according to the reference network. The 

increased rank consumes more energy than the decreased 

rank because of more loops. 

A different type of attack against RPL routing protocols, 

a version attack, was conducted in [8], [20], [21], which 

increased the number of versions in the DIO package and 

triggered the routing discovery process. In [8], the attack 

was analyzed by using sequential selection to assess the 

position impact of the attacker on OVR, PDR, and E2E. 

As a result of the analysis, the distance between the 

attacker and the root is a crucial factor that affects two 

things: the OVR and the amount of packet loss. 

Additionally, OVR and packet loss increased when the 

attackers were in positions with a greater number of 

neighbors. The PDR has declined by almost 30%, and the 

OVR, E2E, and APC have increased. These factors 

collectively demonstrate the negative impact of the 

attacker's position on the system or network's 

performance and efficiency. Similarly, [20] investigated 

the impact of a single attacker, which was randomly 

selected and located with respect to the root node on the 

network, in terms of PDR, OVR, E2E, and APC. The 

authors used both static and mobile nodes in the 

simulation to observe the impact of the attacker's location 

on performance. In their extended study [21], multiple 

attackers were implemented in an extensive simulation to 

evaluate the cooperation of attackers' effect on the 

network’s performance. Sharma et. al. [22] discussed 

how mobile nodes affect network performance under 

version attacks. The attacker nodes were selected from 

static nodes located at different distances from the root, 

up to a maximum increase of 30%. It was observed that 

a hybrid network consisting of 50% mobile and 50% 

static nodes decreased the PDR more than a network with 

only static nodes.  

DIS flooding is another attack that exploits a process in 

the RPL protocol in which nodes send DIS packets to 

their neighbors to join a topology. In [23], this attack was 

performed by dropping the DIO packets and frequently 

sending illegitimate DIS packets to neighbors. The 

impact of the attack was evaluated for both different data 

generation rates and changes in DIS packet interval time. 

DIS flooding attack causes an increase in control packets 

and consumes network resources. Unlike other studies, 

the positions of attacker nodes are fixed in the 

experiments and are not considered. In contrast to prior 

studies, the positions of attacker nodes were fixed in the 

experiments, and their effects were not considered. 

Similarly, in [24], the authors proposed the DIS flooding 

attack. Multiple experiments were conducted by placing 

potential attackers both within and beyond the 

transmission area of the root. It showed that increasing 

the number of attacker nodes within the range of the root 

node and locating them in important positions negatively 

affects PDR, E2E, and APC. To the best of our 

knowledge, the study [25] is the first to focus on the DAO 

inconsistency attack. The PDR decreases rapidly as the 

ratio of attackers increases in the network. This occurs 

because intruders often intentionally discard received 

data packets and respond with error-forwarding packets 

to their parents, leading them to discard valid downward 

routes. Furthermore, this attack increases both APC and 

OVR. 

The previous studies generally focused on a scenario 

based on a single attacker. However, the coexistence of 

multiple attacks targeting the RPL protocol together 

provides detailed analysis, thus improving future studies 

in attack detection. In [26], three different attacks that 

affect the resource and topology are proposed: DIS 

flooding, increased number, and decreased rank. For 

multiple attacker ratios, the impact of the analyzed 

attacks is summarized based on the most critical 

parameters (i.e., E2E, throughput, PDR, and APC). E2E 

and APC increase as the number of attackers increases, 

while PDR and throughput decrease. It is the increased 

version attack that has the greatest impact on network 

performance. Decreased rank, however, does not have a 

significant impact on PDR. In a recent study [27], version 

number, DIS flooding, and worst parent attacks were 

implemented, with the attacker ratio increasing by up to 

10%. Increased version and DIS flooding attacks have a 

negative impact on all metrics (OVR, PDR, E2E, and 

APC). The worst parent attack could not have a similar 

effect on the network. Similarly, in [28], the authors 

presented decreased rank, increased version, worst 

parent, and replay attack to evaluate network 

performance under single-, multi-, and hybrid-attackers. 

In addition, it also shows the impact of attacks on 

networks of different densities by using different 

numbers of nodes. The result revealed that the 

coexistence of increased version and decreased rank 

attacks causes great damage to the network. 

All studies are summarized in Table 1. In general, all 

prior research has focused on analyzing a single attack 

and implementing a single attacker. Some studies [15], 

[19] have analyzed the attacker's position, but in these 

cases, the evaluation of the attacker's location was limited 

to a superficial analysis due to the lack of the attacker's 

cooperation and the manual selection of attackers. 
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Additionally, there are no clear and detailed explanations 

as to why parameters like PDR, OVR, E2E, and APC 

change depending on attacker positions. Other studies 

[26], [27] that analyze multiple attacks did not mention 

the importance of the positions of attackers. 

In this study, we implemented seven different attack 

types in detail and evaluated the impact of cooperating 

attackers on network performance using a multi-attacker 

scenario. We analyzed the impact of the attacks 

according to the position and density of the attackers. 

Moreover, attacker positions were selected using a GA 

because examining the individual locations of attackers 

in a network with many nodes is a difficult and time-

consuming process. 

 

Table 1. Outline of the studies on RPL attack analysis. 

Reference Year Attack Type 
Selection strategy of 

attackers 
Description 

[14] 2013 Worst Parent Random 
Attacker positions can significantly decrease the 

performance of the network. 

[8] 2014 Version attack Sequential 

The attack was performed with the choice of a 

single attacker, and its position was evaluated. 

However, the cooperation of the attackers is not 

mentioned. 

[18] 2016 Decreased Rank  Random 

In terms of network performance, five different 

simulations are presented, each with randomly 

chosen attackers in various locations. Depending 

on the position of the attackers, the PDR could 

decrease between 30% and 57%. 

[20] 2016 Increased Version Random 

Only a single attacker was adopted. Using static 

and mobile nodes to investigate the effect of the 

attacker's location on performance.  

[17] 2017 Decreased Rank  Sequential 

The importance of location is emphasized, but the 

results are limited to the attacker node that 

affected the network performance the most, and 

there were single attacker scenarios. 

[25] 2018 DAO Inconsistency Random Attacks were evaluated based on the attacker ratio. 

[21] 2020 Increased Version Random 

Using multi-attackers to describe the cooperation 

of attackers and the effect of their location on 

network performance 

[19] 2021 
Increased and 

Decreased Rank 
Random 

A single attacker was selected for the attack, and 

its position was not rigorously assessed. 

[23] 2021 DIS Flooding Random 

Evaluating the attack's impact for various data 

rates as well as variations in DIS packet interval 

time. The impact of attackers' positions on 

performance was not well discussed. 

[22] 2022 Increased Version Random1 

Using static and mobile nodes, analyze the impact 

of the attacker's location relative to their hop away 

from the root. 

[26] 2022 

DIS Flooding 

Increased Version 

Decreased Rank 

Random 
Based on the attacker density, attacks were 

assessed. 

[27] 2022 

Increased Version 

DIS Flooding 

Worst Parent 

Random 
Based on the attacker density, attacks were 

assessed. 

[24] 2022 DIS Flooding Random 
Discussing attacks in terms of the transmission 

range of the attacker to the root. 

[15] 2023 Decreased Rank Sequential 

Discussing the importance of the attacker's 

position, but each attacker was manually selected 

as a single attacker. 

[16] 2023 Decreased Rank Random1 

The impact of the attacker's position is evaluated 

in only three scenarios in terms of the hop distance 

of the attacker to the root. However, there was 

only a single attacker in the scenarios. 

[28] 2023 

Decreased Rank 

Increased Version 

Worst Parent 

Replay Attack 

Random 

Network performance with 3 different densities 

was evaluated by creating single-, multi-, and 

hybrid-attack scenarios. 

1based on the hop count 
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4. ANALYSIS OF EVOLVED ATTACK 

ENVIRONMENT 

As stressed earlier, prior to the attack analysis, we aim to 

learn about an attack environment by finding the 

challenging configuration with respect to the attacker 

location and density, which makes this study 

significantly different from the existing studies. This is 

because not every attack has the same impact on the RPL-

driven networks, even if the environments are nearly 

identical. The proposed approach that yields a learned 

‘attack environment’ at the end of evolution is explained 

below. 

4.1. Evolution of Attack Environment 

Although traditional approaches, like brute-force, can be 

regarded as an alternative to find a typical challenging 

attack environment, they are hardly applicable, 

particularly when the scale of the network greatly 

increases. That’s why the use of a computationally 

effective learning algorithm is worth exploring. This fact 

provides a clear explanation for the adoption of GA, 

which plays a key role in the proposed framework of this 

study. The main objective of GA is to find a subset 

among all configurations that define the challenging 

attack environment for each of the attack types outlined 

in Section 2.1.2. 

The evolutionary-based architecture adopted here is 

illustrated in Figure 1. It is clear from the figure that this 

architecture is mainly based on a continuous interaction 

between the algorithm and the network environment 

throughout the evolution. Speaking concretely, the 

population’s members are evaluated within the testing 

environment during each generation, ultimately yielding 

‘fitness’ scores for each individual. In this context, the 

fitness score denotes the extent to which an individual 

affects the network environment adversely, thereby 

impacting their performance. Therefore, depending on 

the fitness scores of the individuals, they undergo genetic 

operations to breed new, hopefully better, offspring 

individuals. PDR, explained and formulated in Section 

4.3, is considered a fitness function in this study. So, the 

individuals here mainly target this metric for evolving a 

challenging malicious network environment. Note that 

the PDR is particularly chosen as a fitness function since 

it is inevitably affected by a degradation in other network 

performance metrics such as OVR, APC, etc.  

In order to evaluate the individuals in the testing 

environment, we have used the COOJA emulator [29], a 

software developed in Java to emulate IoT nodes running 

the Contiki O.S. (version 3.0 used in this study) [30]. The 

COOJA emulator relies on a configuration file, a typical 

‘xml’ file, to load the network environment. This mainly 

involves i) the number of nodes, ii) their positions as well 

as identities (i.e., root, malicious, benign, etc.), iii) 

additional plugins, and iv) the path to the OS that the 

running nodes load. That’s why this is the only file that 

one can modify to configure a network environment by 

specifying the number of attackers as well as their 

positions. 

The GA is run separately for each attack type to generate 

the malicious network environment. So, depending on 

the state of the individuals in the algorithm, the 

configuration is organized from scratch every time the 

individuals are evaluated in the testing environment. 

Because the individuals are represented through binary 

values (i.e., 0s and 1s) in the algorithm, called ‘genotype’, 

these values should be transformed into another 

representation so that they could be interpretable in the 

problem domain, called ‘phenotype’. To do that, a 

decoding process is applied to the individuals before 

proceeding. This procedure is shown in Figure 2. Note 

that 0s and 1s in genotype represent the benign and 

malicious nodes, respectively. Their positions in the 

chromosome are considered for decoding from 

‘genotype’ to ‘phenotype’. Note also that the algorithm 

tends to make all nodes as malicious nodes to achieve the 

worst PDR score, which is not a realistic scenario. That’s 

why we allow the algorithm to make only 20% of all the 

nodes as attackers. 

 

Figure 1. The architecture of the evolutionary-based attack 

improvement.  

After the decoding process, the individuals are now 

represented by different network configuration files in 

the testing environment that are separately imported as 

network environments in COOJA. As for the 

implementation of genetic algorithm, we have used the 

Evolutionary Computation in Java (ECJ) toolkit in our 

study. The parameter settings of the GA are listed in 

Table 2, and the other settings not listed in the table are 

the default parameters of ECJ.  

 

 

Figure 2. Decoding procedure from genotype to phenotype. 
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Table 2. Parameters and their values used for evolution. 

Parameter Value 

Individual Representation Bit Vector (with 29 Genes) 
Selection Strategy Best Selection (Size: 2) 

Mutation Type and Rate Flip and 20% 

Crossover Type and Rate One-point and 90% 
Generation 100 

Individual and Elite Individual Size 20 and 2 

4.2. Simulation Settings 

An exemplar application in the Contiki project, called 

‘rpl_udp’, is used in the experiments. This application 

simply provides packet exchange between the client and 

the server nodes at certain periods, which takes 15 

seconds in this study. Zolertia 1 (Z1) is selected as the 

device architecture in the experiments due to its ability to 

provide larger memory than the alternative architectures. 

Each network environment is simulated in COOJA for 15 

minutes. A grid topology with 30 nodes, including 29 

client nodes and 1 root node, is adopted in the 

experiments as it is suggested to use at least 25 nodes to 

see the multi-hop characteristic of LLNs [6]. The 

preference for grid topology over random topology stems 

from the fact that, unlike the random arrangement of 

nodes in the latter, nodes in grid topology are deliberately 

and relatively positioned, resulting in reduced 

stochasticity. Figure 3 shows the network topology used 

in the experiments. The nodes shown in the figure are 

located at different DODAG levels, represented by 

different colors based on their rank values. The nodes are 

in a 100 x 80 m area, and they are 20 m away from each 

other. The transmission range (TX) of the nodes was 

selected as 25 m so that any node can communicate with 

one hop away neighboring nodes only.  

 

Figure 3. Grid-based network topology used in simulations. 

4.3. Evaluation Metrics 

The following important evaluation metrics that are 

commonly studied in the literature to assess network 

performance are used in this study: 

• PDR represents the ratio of packets sent by the nodes 

(𝑃𝑠𝑒𝑛𝑡) to the packets received by the root node 

(𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑): 

𝑃𝐷𝑅 =
𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑃𝑠𝑒𝑛𝑡

 (1) 

• OVR refers to the total number of DIO (𝑃𝐷𝐼𝑂), DAO 

(𝑃𝐷𝐴𝑂), and DIS (𝑃𝐷𝐼𝑆) packets propagated in the 

network: 

𝑂𝑉𝑅 = 𝑃𝐷𝐼𝑂 + 𝑃𝐷𝐴𝑂 + 𝑃𝐷𝐼𝑆 (2) 

• APC is the overall power consumption of all nodes 

including the root node, and it evaluated by dividing 

the energy units (𝐸𝑛𝑒𝑟𝑔𝑦) within the time over which 

it has been consumed: 

𝐸𝑛𝑒𝑟𝑔𝑦(𝑚𝐽) = (
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡 × 19.5 + 𝐿𝑖𝑠𝑡𝑒𝑛 × 21.5 +

𝐶𝑃𝑈 × 1.8 + 𝐿𝑃𝑀 × 0.0545
)

× 3𝑉/32768 
(3) 

𝐴𝑃𝐶(𝑚𝑊) =
𝐸𝑛𝑒𝑟𝑔𝑦(𝑚𝐽)

𝑇𝑖𝑚𝑒
 (4) 

where; 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡 is total transmission time, 𝐶𝑃𝑈 is 

time for which mote is active, 𝐿𝑃𝑀 is total time for 

which the node is in low power mode, and finally 

𝐿𝑖𝑠𝑡𝑒𝑛 is total listening time. The constants in eq. (3), 

however, represent the typical operating voltage and 

current values (in mA) of the Z1 motes [31].  

• E2E represents the time taken by a data packet to 

reach the root node (𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑) after it is sent by the 

sender node (𝑇𝑠𝑒𝑛𝑡). Results are obtained in 

microseconds and converted into milliseconds (ms): 

𝐸2𝐸(𝑚𝑠) =
𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑇𝑠𝑒𝑛𝑡

103
 (5) 

4.4. Simulation Results 

We have comparatively assessed performances with and 

without the attackers. To do that, we have initially 

simulated a scenario where all nodes function 

legitimately (i.e., no attacker is present in the network) to 

reveal baseline performance, which is given in Table 3. 

Table 3. The baseline performances. 

PDR OVR APC E2E 

0.995 1781 946.216 483.822 

The baseline performance obtained in an environment 

free from potential attackers (henceforth called a benign 

environment) reveals a remarkable achievement in PDR, 

reaching a score of 99.5%. At this level, the E2E reaches 

approximately 0.5 s. Further examination demonstrates 

that within this same environment, approximately 1800 

control packets are transmitted for the construction and 

maintenance of the DODAG, resulting in an estimated 

energy consumption of around 950 mW. 

After obtaining the baseline performance, we have used 

the GA to evolve a malicious environment by learning 

the positions and density of the attackers that represent 

the most challenging network environment. The 

algorithm has been run five times, and each run spanned 

100 generations. The PDR convergence obtained 

throughout the generations is shown in Figure 4 in 

comparison with the one obtained completely in the 

benign environment. 
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Figure 4. Convergence of the best individuals found by genetic algorithm. 

Considering the constraint that up to 20% of network 

nodes can serve as attacker nodes within the network, the 

GA encounters initial challenges in identifying the 

individuals that meet this constraint, except for the DAG 

inconsistency attack. Consequently, as illustrated in the 

figure above, the performance in the malicious 

environment remains consistent with the performance in 

the benign environment during the early generations. 

In addition, by examining the convergence behavior 

above, one can easily derive the following conclusions: 

i) the GA has a strong capability to acquire knowledge 

about malicious environments resulting in a PDR 

decrease, sometimes dropping below 5% (as evident in 

the case of the increased version attack), ii) the decrease 

in PDR observed for the selective forwarding attack, 

which is approximately 5‰, is not notably significant, 

and also iii) the blackhole attack exhibits the highest 

variance, with individual run performances displaying 

substantial variations, ranging from as low as 0% to as 

high as 78%.  

Figure 5 provides the locations of the top-performing 

individuals within the network topology, representing an 

influential decrease in PDR across five runs. Further, we 

also performed a detailed analysis of the performance 

achieved for each attack type, considering the evaluation 

metrics explained in Section 4.3. A comprehensive 

overview of network performances is outlined in Table 

4, and the subsequent sections give an elaborate 

discussion of the results. Please observe the table where 

the shading is used to highlight the poorest performances 

in comparison to the baseline performance that is given 

in Table 3, and the changes in the poorest performance 

are denoted by (▲, ▼) along with respective 

percentages. 

 
Figure 5. The positions of attackers resulting in the most challenging environment (Note: Light and dark colors represent, 

respectively, the ‘most’ and ‘least’ preferred positions).  
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Table 4. Network performances obtained in malicious environments. 

Attack # Attacker IDs PDR OVR APC E2E 

B
la

ck
h

o
le

 

1 1,5,9,12,17,22 0.000(▼100.0%) 493 395.2 0.0 

2 1,5,9,16,29 0.000(▼100.0%) 493 395.2 0.0 

3 7,10,12,14,25,27 0.700 6428(▲260.92%) 1694.4(▲79.1%) 580.9(▲20.1%) 

4 2,9,11,17,27,28 0.784 3977 1170.5 455.7 

5 1,3,5,19,21,26 0.000(▼100.0%) 493 395.2 0.0 

S
el

ec
ti

v
e 

F
o

rw
a

rd
in

g
 1 9,22,26,28 0.992 1904 988.0 507.6 

2 2,4,5,6,21 0.990 1827 910.8 478.3 

3 14,17,20,21,29 0.995 1823 913.4 447.3 

4 3,5,14,26,27 0.997 1974 949.8 462.4 

5 4,17,20,22 0.972(▼2.3%) 2090(▲17.3%) 993.0(▲4.9%) 566.6(▲17.1%) 

D
A

G
 

In
co

n
si

st
en

cy
 1 5,11,13,19,25,29 0.068 3406 1091.6 21.1 

2 5,12,14,17,27 0.068 3647 1130.9 21.5 

3 7,11,14,23,26,27 0.241 3479 1125.5 141.7 

4 5,7,10,20,29 0.066(▼93.3%) 3605 1194.2(▲26.2%) 30.7 

5 6,7,11,15,17 0.184 3840(▲115.6%) 1193.3 164.5 

D
ec

re
a

se
d

 

R
a

n
k

 

1 8,20,23 0.172(▼82.7%) 1315 760.4 84.9 

2 3,4,5,7,21,27 0.379 1469 762.9 224.5 

3 4,5,17,23,25,26 0.590 1570 827.3 293.8 

4 17,19,21,24,25 0.995 1795 944.0 457.5 

5 8,9,11,14,20 0.172(▼82.7%) 2976(▲67.1%) 1209.8(▲27.9%) 84.0 

D
IS

 F
lo

o
d

in
g
 1 3,4,5,8,23,28 0.359 113654(▲6281.5%) 9431.6 1596.8 

2 3,5,7,8,10,19 0.168 113610 9444.1 1523.2 

3 5,10,13,16,25 0.170 95529 9942.6 1348.3 

4 1,4,6,10,17,21 0.155(▼84.4%) 113361 11289.3 2161.1 

5 2,5,11,23,26 0.229 96211 11741.7(▲1140.9%) 2469.0(▲410.3%) 

In
cr

ea
se

d
 

V
er

si
o

n
 

1 2,4,9,11,13,27 0.044 5429 1493.8 204.5 

2 8,11,12,13,18,28 0.036 5317 1469.5 76.1 

3 3,9,11,17,18 0.047 5967 1765.1(▲86.5%) 118.1 

4 10,11,20,22,24,26 0.086 6252(▲251.0%) 1681.8 168.1 

5 6,8,16,17,18,24 0.034(▼96.6%) 5258 1477.5 91.9 

W
o

rs
t 

P
a

re
n

t 1 1,3,6,11,21,25 0.762 9750 2781.5 1696.0 

2 1,7,8,9,11,15 0.165 11934 3857.7(▲307.7%) 799.7 

3 1,7,10,11,19,24 0.157(▼84.2%) 12025(▲575.2%) 3729.9 1728.3(▲257.2%) 

4 6,10,11,17,22,27 0.617 9676 2944.2 872.3 

5 1,14,24 0.995 2138 1036.4 558.2 

4.4.1 Performance evaluation 

Blackhole: As stated earlier, the attacker discards all 

incoming packets in this attack. Therefore, positioning 

the attacker on the active routes where the majority of the 

data traffic is passed can significantly prevent packet 

transmission to other nodes. Given that a majority of data 

traffic in LLNs traverses through the root node, attacker 

nodes near the root node deliberately discard packets, 

significantly reducing the PDR. The attackers are found 

to be in ‘active’ routes in this attack (nodes 1 and 5, see 

Figure 5), and they drop all packets before being 

transmitted to the root node. Additionally, it has been 

observed that DIO and therefore DAO packages 

decreased, preventing DODAG from being established, 

and intermediate nodes constantly sent requests to join 

DODAG with DIS packets, thus causing an increase in 

DIS packets in the network (run 1, 2, and 5; see Table 4). 

The decrease in the number of DIO packets is because 

they are sent by the root node but dropped by malicious 

nodes before reaching the sensor nodes. The decrease in 

the number of DAO packets is closely related to that in 

DIO packets, as DIO packets announce DODAG 
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information exploited by other nodes to establish the 

upward routing path. For these runs, a notably decreased 

APC is observed as DODAG cannot be established. As 

for the other runs, the attacker nodes are far away from 

the ‘traffic-heavy’ regions and the root. They are unable 

to completely deteriorate the data and control packet 

transmission performance because they cannot drop all 

the packets. In this case, new routes could be established, 

causing an increase in OVR, APC, and E2E. 

Selective Forwarding: It is found that the change in 

network performance, particularly the PDR performance, 

is not notable here as compared to other attacks. The main 

reason for that the locations of attackers found by the GA 

are often far away from the root node where only few data 

traffic passes on. However, it is inevitable that the impact 

of this attack increases with an increase in the attacker 

density, especially when they are in critical positions. To 

sum up, it has been observed that the effect of this attack 

is generally limited compared to the blackhole attack, and 

threshold value for attacker to drop packets (adopted as 

50% in this study) should be increased to significantly 

increase the impact of this attack. In the most challenging 

environment (run 5, see Table 4), in comparison with the 

benign environment (Table 4), the change in PDR and 

APC is less than 5%, whereas it is about 17% for OVR 

and E2E. 

DAG Inconsistency: It is observed that the overall 

performance significantly decreases in this attack. As 

explained earlier, attackers lead to inconsistency by 

illegitimately manipulating the ‘O’ and ‘R’ flags in this 

attack. This results in continuous local repair in the 

network and, hence, the dropping of packets by the 

nodes. It is observed that the PDR performance 

dramatically downs up to 6% (runs 1, 2, and 4; see Table 

4), especially when the attackers are one hop away from 

the root node. As a result of the attack, DIO packets are 

propagated to restart route discovery. This causes an 

excessive OVR in the network for all runs, resulting in a 

part of the network becoming isolated, and even packets 

may be dropped by the benign nodes. Dropping the 

packets without being transmitted also reduces E2E 

because only successfully transmitted packets are 

considered for evaluation. Finally, the unnecessary 

initiation of the local repair process by the nodes 

increases the APC in the network. 

Decreased Rank: This attack is carried out as a 

preliminary step and used to increase the impact of other 

attacks when they are simultaneously applied in the 

network. Pretending to have a lower rank value, the 

attacker aims to attract most of the network traffic and 

thus exploits the incoming traffic by activating different 

attacks (usually blackhole, selective forwarding, etc.). 

From the results, it is seen that the PDR performance of 

the network drops up to 17%, especially when nodes 8 

and 20 are selected as attacker nodes (runs 1 and 5; see 

Table 4). Moreover, OVR and APC performances 

significantly reduce in such challenging environment, 

while the change in E2E performance is not notable. 

DIS Flooding: The attacker nodes constantly send DIS 

packets in this attack, causing an unnecessary 

propagation of DIO packets and hence traffic congestion. 

The analysis results show that the attack is effective when 

it is far away from each other and has more neighbor 

nodes. In other words, degradation in performance is not 

notable if the attackers are located one hop away from 

each other and have fewer victim neighbor nodes. The 

PDR performance downs up to 15.5% in this attack (run 

4; see Table 4). Because the attackers send DIS packets 

to their neighbors and wait for a DIO, many control 

messages are generated in the network. This causes a 

dramatic increase in OVR, APC, and E2E. 

Increased Version: Increasing illegitimately the version 

number in DIO packets, the attackers continuously 

trigger the repair process, ultimately dropping data 

packet transmission. It is observed in PDR performance 

that a large number of the packets do not reach the root 

node, and especially critically positioned attackers can 

cause significant damage to the network. Based on a 

small number of transmitted packets, the E2E 

performance declines. Since global and local repair 

maintenance is triggered repeatedly, there are too many 

control packets propagating in the network, resulting in 

an increase in OVR (almost a 10-fold increase in DIO 

packets is observed) as well as in APC. 

Worst Parent: The data packets that are supposed to be 

sent to the root are prevented from being transmitted on 

the optimal route according to the objective function. 

However, the attacker selects the worst parent node from 

the parent list and forwards the incoming packets through 

it. In line with the findings, it has been observed that the 

PDR performance decreases more, especially when the 

nodes close to the root node are selected as attackers. This 

is because the traffic flow becomes denser as it 

approaches the root node. For this reason, the attackers 

disrupt the flow of traffic at a higher rate and perform 

suboptimal routing. In such circumstances, the PDR 

reaches approximately 15% (runs 2 and 3; see Table 4). 

Additionally, in comparison to the baseline performance 

(Table 4), a dramatic increase in OVR, APC, and E2E is 

observed in all runs. Note that a lower impact on network 

performance is often achieved when attackers are away 

from the root (run 5; see Table 4). 

In summary, the findings from the experiments reveal 

that the appropriate identification of the position as well 

as the density of attackers through GA significantly 

deteriorates the network performance. Although this 

impact varies depending on the types of attacks, it is 

shown that the adverse effect of the ‘best’ selection by 

GA may reach a catastrophic level where the network is 

nearly not operable. Analysis of the outcomes revealed 
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distinct impacts of each attack on the network. Speaking 

concretely; blackhole, DAG inconsistency, and increased 

version attacks emerged as the most detrimental, 

significantly impairing network performance due to 

dropping large number of packets. In some instances, 

strategically positioned attackers drop all of packets (in 

blackhole attack), resulting in the network becoming 

entirely unusable. In contrast to these attacks, the 

selective forwarding attack, which may easily deceive 

intrusion detection system by selectively dropping 

packets, caused a lowest impact on network performance, 

even when attackers are strategically positioned using 

GA. This clearly proves that the performance evaluation 

of RPL attacks based on a scenario where the attackers 

are positioned in a random manner becomes unhelpful for 

security practitioners seeking to take effective measures 

against these attacks.  

It is worth noting here that certain GA parameters are 

initially set to default values of ECJ, and optimizing these 

parameters can improve the effectiveness of GA, and 

hence the attacks. Although the majority of attacks 

contribute to heightened APC and generate a negative 

impact by increasing OVR, this adversarial performance 

may become even more evident, particularly when the 

positions of attackers are determined with the optimal 

parameter values of GA, which may be regarded as a 

limitation of the current study. 

 

5. CONCLUSION 

This study explores the vulnerabilities of RPL-based 

networks when they are targeted by malicious nodes. 

Because of the extent to which the intruder effect is 

heavily related to position and density, we mainly focus 

on a most challenging network environment where the 

attack diminishes performance at its highest level, which 

is possible by GA in this study. It is found that RPL-based 

networks are vulnerable to attacks and that the use of GA 

plays a critical role in finding how large the selection of 

attacker’s position and density affect the performance. 

This study considers a static environment where the 

nodes are immobile, which is the main limitation when 

contemplating IoT applications, where IoT nodes are 

occasionally mobile during operation. So, analysis of the 

attack on ‘most challenging mobile environment’ can be 

a potential future direction of this study. Additionally, 

investigation of RPL networks under hybrid attacks, 

specifically examining their maximum impact by 

concurrently worsening multiple metrics of the network, 

is worth studying in the future. We plan to broaden the 

scope of this study to explore these issues in the future. 
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