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Abstract: Advancements in bioinstrumentation have facilitated the easier monitoring of biometric signals such as electrocardiogram 

(ECG) and respiration. This development is particularly crucial for the diagnosis and management of various conditions like stress and 

sleep disorders. Two commonly used features in heart rate variability (HRV) analysis derived from ECG data are standard deviation 

and serial correlation coefficients of R-R intervals (the time durations between heartbeats). The former utilizes the fundamental 

components of QRS complexes, while the latter is designed to extract relationships between respiration and heart rate. In the proposed 

methodology, R-R wave detection is performed on processed ECG data using the Pan-Tompkins algorithm, and the respiration duration 

for each R-R interval from respiration data is selected. Additionally, missing respiration data for selected R-R intervals is interpolated 

based on the interpolation method. The results of this study are compared with the standard interpolation and cubic spline 

interpolation models to assess the effectiveness of the proposed method and its ability to capture temporal fluctuations. Since standard 

interpolation fails to accurately detect respiration data from R-R intervals and cannot precisely handle missing R-R intervals in short 

samples, cubic spline interpolation is recommended as a replacement and its results are presented. The obtained results provide 

insights into the effectiveness and application of the Pan-Tompkins algorithm, FFT (Fast fourier transform) implementation, and cubic 

spline interpolation in the selection of respiration and R-wave features. According to the findings of the study, in the analysis 

conducted on 2-second samples with a 1000 Hz sampling frequency created from each participant's respiratory data set, missing 

respiratory data were successfully reconstructed from the R-R intervals of the ECG data using standard and cubic curve interpolation 

methods. Upon examination of RMSE (Root mean square error) values, it was observed that for 30% of the participants, as RMSE 

values increased, completion counts for standard interpolation increased, while completion counts for cubic curve interpolation 

decreased. Conversely, when RMSE values decreased, 60% of the participants showed a decrease in completion counts for standard 

interpolation and an increase in completion counts for cubic curve interpolation. A 10% participant group was identified where there 

was no apparent relationship between RMSE values and interpolation method. This indicates that in 90% of the participants, there is a 

linear relationship between the study's interpolation method, RMSE values, and completion counts for missing R-R intervals. 
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1. Introduction 
Electrocardiogram (ECG) is a graphical representation of 

electrical waves generated during a process, providing 

crucial information about the cardiac cycle (Kohler et al., 

2002; Luz et al., 2016). Cardiologists utilize ECG to 

diagnose and monitor heart diseases, including 

conditions such as arrhythmia detection (Ye et al., 2010; 

Apandi et al., 2018; Marinho et al., 2019). A normal 

rhythmic ECG signal includes P-waves, QRS complexes, 

and T-waves. QRS complexes and R-peaks play a 

significant role in automated ECG analyses, forming the 

basis for many algorithms (Harikumar and Shivappriya, 

2011; Benosman et al., 2017). By identifying QRS 

complexes and R-peaks, other waves and features in the 

ECG can be detected (Kohler et al., 2002). The 

measurement of biological information such as 

electrocardiogram (ECG) and respiration has become 

possible in recent times using devices like wearable 

sensors and cameras (Rahman et al., 2016; Dias and 

Paulo Silva Cunha, 2018). Advanced technologies in 

bioinstrumentation enable the monitoring of physical 

and psychological conditions in daily life. For instance, it 

is employed to monitor the elderly based on heart rate 

(Shin et al., 2012), assess parasympathetic activity using 

high-frequency components of R-R intervals (the 

durations between heartbeats) (Hayano and Yuda, 2019), 

and measure sleep stages using heart rate and 

respiration (Suzuki et al., 2009). The reliability of vital 

data obtained from devices is crucial for accurate 

monitoring. When a portion of vital data is lost due to 
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external factors such as noise, the reliability of indices 

calculated from vital data will be low. 

For example, R-R intervals are commonly used in the 

calculation of various indices like heart rate. However, 

movements of the body causing electrode displacement 

or potential fluctuations caused by artifacts can lead to 

incorrect measurements of the R-wave. Since missing 

vital data results in missing R-R intervals, the reliability 

of indices based on R-R intervals will be low. To fill in 

missing data or predict values in a specific range of the 

dataset, linear interpolation and curve interpolation 

(Choi and Shin, 2018) methods are used. Standard and 

cubic spline interpolation are two commonly used 

methods for this purpose. These two methods are 

employed to predict missing or specific interval data. 

Cubic spline interpolation generally provides smoother 

and more accurate results due to the use of a higher-

degree polynomial. However, depending on the nature of 

the data and the characteristics of the dataset, standard 

interpolation can be sufficient in some cases. However, 

the longer the missing segment, the greater the deviation 

between the calculated R-R intervals and the actual R-R 

intervals. For example, frequencies calculated from 

interpolated R-R intervals will also be incorrect. 

Therefore, to interpolate missing R-R intervals 

accurately, it is necessary to consider heart rate 

variability (HRV) during the missing period to complete 

missing R-R intervals. In this study, a dataset was used 

where 20 healthy and drug-free participants (age ranging 

from 18 to 28; 9 males and 11 females) were subjected to 

tasks requiring arithmetic or attention. 

This article proposes a method for completing missing 

RR intervals based on the respiratory duration using the 

Pan-Tompkins algorithm applied to ECG data in states of 

mental activity and calmness. Along with this method, 

cubic spline interpolation also helps complete missing R-

R intervals and prevents temporal fluctuations occurring 

in R-R intervals. As R-R intervals are biometric data, they 

are influenced by the individual and measurement 

conditions. Therefore, the proposed method selects 

respiratory features according to the measured data. 

1.1. Studies Related to the Data Set 

The dataset known as 'PsPM-CogSF,' created by Bach and 

Staib (2015), comprises measurements of respiration 

and electrocardiogram (ECG) during mental arithmetic 

attention tasks and resting periods. These measurements 

are used to investigate physiological responses 

associated with cognitive processes and relaxation states. 

The matching pursuit algorithm has provided a fast and 

effective method for extracting tonic sympathetic arousal 

from spontaneous skin conductance fluctuations. This 

algorithm has offered a significant alternative for 

assessing autonomous responses during cognitive tasks 

and resting periods. Similarly, dynamic causal modeling 

(DCM) has been employed to predict tonic sympathetic 

arousal arising from spontaneous skin conductance 

fluctuations. This methodology, utilizing data obtained 

from skin conductance fluctuations, has shed light on the 

physiological relationships between sympathetic arousal 

and emotional states, contributing to the understanding 

of cognitive-emotional processes (Bach and Staib, 2015). 

The 'PsPM-CogSF' dataset has played a crucial role in 

developing psychophysiological models for evaluating 

fear learning and sympathetic activity. These models 

have provided valuable insights into the relationship 

between autonomic arousal and cognitive-emotional 

phenomena, deepening the understanding of fear 

memory and sympathetic responses. This dataset, 

utilized by Jelsma and others as well as Cheadle and 

others to investigate the relationship between 

sympathetic arousal and experiences of racial 

discrimination and psychological characteristics, has 

explored the dynamics of the sympathetic nervous 

system arousal by examining responses to real-life 

experiences and psychological features based on 

physiological measurements in the dataset (Cheadle et 

al., 2020; Jelsma et al., 2021). Finally, a study titled 

"Marked Point Process Filtering Approach for Tracking 

Sympathetic Arousal from Skin Conductance" by 

Wickramasuriya and Faghih (2020) has been presented. 

In summary, the 'PsPM-CogSF' dataset has contributed 

significantly to research on sympathetic arousal, fear 

learning, and psychophysiological models. The use of 

matching pursuit algorithms, dynamic causal modeling, 

and psychophysiological models has enhanced the 

understanding of autonomic responses during cognitive 

tasks, emotional experiences, and real-life stress factors. 

 

2. Materials and Methods 
2.1. Completing Missing RRs  

The goal was to fill in the missing R-R intervals in the 

dataset using standard and cubic spline interpolation 

methods, aiming to complete the missing data and 

address the gaps. Figure 1 illustrates how R-R intervals 

can be obtained from the ECG. Initially, a high-amplitude 

R-wave is extracted from the ECG. 

Subsequently, each RR is calculated from the interval 

between one R wave and the next R wave. However, 

when there are artifacts in the ECG and R waves are not 

accurately detected, the R-R intervals will be abnormal. 

Consequently, data in that region will be lost. The 

literature suggests various approaches to overcome this 

problem: improving the accuracy of R-wave detection, 

identifying abnormal values in R-R intervals, and 

completing missing R-R intervals. Several methods have 

been proposed to enhance the accuracy of R-wave 

detection, such as noise reduction techniques that 

decrease the impact of noise and enhance the accuracy of 

R-wave detection (Akshay et al., 2010; Sahoo et al., 

2015). Additionally, there is a method using neural 

networks for R-wave detection (Vijaya et al., 1998). The 

main method for removing outliers is to decide whether 

R-R intervals are within the normal range. For example, 

reliability is determined based on whether R-R intervals 

are between 250 ms and 1500 ms (Izumi et al., 2015). 

Linear or second-degree/cubic function-based curve 
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interpolation has been utilized to predict missing R-R 

intervals (Choi and Shin, 2018). As curve interpolation 

requires minimal computation, it can be easily applied 

even in wearable devices. However, as mentioned above, 

the deviation between real and calculated R-R intervals 

grows as the duration of data loss increases. To address 

this issue, methods to complete heart rate using blood 

pressure and blood flow have been suggested (Li and 

Clifford, 2008; Borges and Brusamarello, 2016). 

Respiration has been identified as one of the key factors 

in increasing heart rate variability (HRV) (Berntson et al., 

1993). Moreover, respiration is known to cause changes 

in heart rate through respiratory sinus arrhythmia 

(Berntson et al., 1993). Similarly, heart rate can fluctuate 

with changes in both deep breathing and respiratory rate 

(Sroufe, 1971; Chang et al., 2013). For instance, when 

both respiration and R-R intervals are measured 

simultaneously, both can be recorded as missing. 

However, while R-R intervals fluctuate between 250 ms 

and 1500 ms per beat (Izumi et al., 2015), respiratory 

changes can range from 3000 ms to 5000 ms per breath 

(Berntson et al., 1993). Thus, respiration is expected to 

be useful in completing missing R-R intervals, and 

changes can be more easily observed than in ECG signals. 

It is known that heart rate variability (HRV) varies 

depending on the depth of respiration (Sroufe, 1971). 

HRV deepens during deep breathing (Sroufe, 1971). 

Therefore, in this study, respiration depth is utilized. 

Additionally, changes in respiratory rate will also create 

variability in heart rate (Chang et al., 2013). Moreover, 

HRV is high during slow breathing and low during fast 

breathing. Therefore, in our approach, respiration 

duration is used. Figure 2 illustrates the representation 

of respiration durations in the data set at a sampling 

frequency of 1000 Hz, showing the data numbers in the 

periods of mental activity and resting states (data 

between 0-1400 representing the resting state, and data 

between 1400-2800 representing the mental activity 

state). 

 

 

 

 

 

 

 

 

 

 

Figure 1. R-R intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Respiratory time graph during mental activity and rest (x-axis represents time, y-axis represents the number 

of data). 
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As shown in Figure 2, signal processing on the FFT model 

reveals that the average respiration duration during rest 

is 3.87 seconds at 50 Hz, whereas during mental activity, 

the average respiration duration is 3.69 seconds. From 

this, it can be inferred that the heart rate variability 

(HRV) during rest, indicating the change in heart rate, 

will be more profound. This implies that RR waves can be 

more easily detected during rest. 

2.2. Preprocessing 

Vital signs such as heart rate are known to be 

significantly influenced by individual characteristics such 

as gender (Ryan et al., 1994; Chester and Rudolph, 2011). 

If missing R-R intervals are completed using the same 

method for everyone, the accuracy of the completed R-R 

intervals will be debated. This difference also affects the 

nerves. R-R intervals vary on sympathetic and 

parasympathetic nerves. When the sympathetic nerves 

are active, the heart rate variability (HRV) is low. On the 

other hand, when the parasympathetic nerves are active, 

the HRV is high. Therefore, reflecting the tendency of the 

autonomic nervous system during periods of missing R-R 

intervals is important. The proposed method processes 

time series data using fast fourier transformation (FFT). 

Figure 3 illustrates the workflow of the proposed 

method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Method flow chart. 

 

Initially, the raw ECG data were processed using a low-

pass filter with a cutoff frequency of 100 Hz and a filter 

order of 3. Subsequently, a high-pass filter with a cutoff 

frequency of 10 Hz and a filter order of 3 was applied to 

remove unwanted low-frequency components. 

Additionally, 50 Hz power line noise was eliminated 

using a notch filter (Ay et al., 2017). Following these 

steps, the Pan-Tompkins algorithm was implemented to 

detect R waves. This algorithm was utilized by testing 

threshold values separately for each subject's data. 

Subsequently, the interval wave between Rs and the next 

R wave was calculated, and RR tachograms were 

generated. Finally, the graph illustrating the variation of 

R-R intervals over time was resampled at 30 Hz. To 

address potential high-frequency electrical noise in the 

raw respiratory data, a median filter (window size of 

0.15 seconds) was applied for smoothing (Ay et al., 

2017). Furthermore, the relationship between 

respiratory features and HRVs was observed by applying 

FFT after the median filter to calculate respiratory 

durations. Figure 4 illustrates the preprocessing steps for 

the ECG data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Signal preprocessing steps. 

 

Heart Rate Variability (HRV) analysis is a non-invasive 

measurement that reflects the autonomic nervous 

system's regulation of heart rate, extensively utilized in 

the medical field for evaluating stress, sleep quality, and 

various cardiovascular conditions. This analysis involves 

a sequence of signal processing steps for the accurate 

detection and analysis of R-R intervals, which are the 

time intervals between consecutive R-waves in an 

electrocardiogram (ECG) signal. These steps encompass 

noise reduction, R-wave detection, calculation of R-R 

intervals, and elucidation of the relationship between 

respiratory time and HRV. Noise Reduction is the initial 

step in processing ECG signals for HRV analysis, 

addressing the contamination of signals with various 

types of noise (Ay and Yildiz, 2021; Ay and  

Yildiz, 2023). This phase is crucial for accurate R-wave 

detection. Techniques such as band-pass filtering and 

more advanced methods like wavelet transform are 

employed for effective noise suppression without 

distorting the ECG signal. R-Wave Detection follows noise 

reduction and is pivotal for calculating R-R intervals. The 

Pan-Tompkins algorithm is a popular method in this 

context, involving filtering, differentiation, squaring, and 

integration of the ECG signal to emphasize the R-wave 

feature. Calculation of R-R Intervals is conducted upon 
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accurate R-wave detection. This process measures the 

time between successive R-wave peaks, typically in 

milliseconds, and analyzes the variability within these 

intervals to assess HRV. The relationship between 

respiratory time and HRV is the final step in the signal 

processing for HRV analysis. Respiration affects heart 

rate through respiratory sinus arrhythmia (RSA), 

significantly impacting HRV measurements. To analyze 

this relationship, the respiratory signal can be extracted 

from the ECG signal itself or through other sensors 

measuring thoracic expansion, with techniques like 

spectral analysis or time-frequency analysis used to 

quantify the influence of respiration on HRV. In 

summary, the signal processing steps involved in HRV 

analysis, from noise reduction and R-wave detection to 

the calculation of R-R intervals and understanding the 

respiratory influence on HRV, are complex but crucial for 

an accurate and reliable assessment of heart rate 

variability. These processes enable clinicians and 

researchers to better comprehend the autonomic 

regulation of heart rate and its implications for health 

and disease. 

2.3. Development Methods 

The accuracy of completing incomplete R-Rs was 

evaluated using the following methods. 

2.3.1. Correlation coefficients 

HRV (Heart Rate Variability), is a measure of the 

variability in heart rate and is typically calculated based 

on the R-R intervals (time intervals between heartbeats). 

The changes in the time series of R-R intervals are used 

to assess HRV. The relationship between HRV and 

respiration is often examined through the correlation 

coefficient between respiration and HRV. The correlation 

coefficient is a statistical measure used to quantify the 

relationship between two variables. The Pearson 

Correlation Coefficient is commonly employed to 

calculate the correlation coefficient on R-R intervals and 

respiratory data in ECG recordings, and its formula is 

presented in Equation 1. 
 

𝑟 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − 𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1

 (1) 

 

Equation 1 represents the number of samples, n. Here, 𝑥𝑖 

and 𝑦𝑖  denote each sample in the R-R intervals and 

respiratory data, respectively. Additionally, �̅�, 𝑦 

represent the means of R-R intervals and respiratory 

data. The correlation coefficient takes values between -1 

and +1. A positive (+1) correlation indicates a direct 

linear relationship between the two variables, while a 

negative (-1) correlation signifies an inverse relationship. 

A value of 0 indicates no apparent relationship. 

The obtained correlation coefficient in this manner 

represents the connection between R-R intervals and 

respiratory data. A positive correlation suggests a linear 

relationship between respiration and HRV, while a 

negative correlation indicates an inverse relationship. A 

value close to 0 indicates a lack of a significant 

relationship between the two datasets. In the utilized 

dataset (comprising a total of 20 subjects), positive 

correlations were observed for all but 3 subjects. 

Subjects 1 and 2 exhibited a negative correlation, while 

subject 3 showed a correlation coefficient of 0, indicating 

no discernible relationship between the two variables. 

2.3.2. Root Mean Square Error (RMSE) 

Root Mean Square Error (RMSE) is a measure of the 

difference between actual and predicted values, 

commonly employed to assess the performance of a 

predictive model. It allows evaluating prediction errors 

on HRV and R-R intervals in ECG and respiratory data. 

Denoting the predicted values for HRV and R-R intervals 

as ŷ and the actual values as 𝑦𝑖, the RMSE formula is 

expressed in Equation 2. 
 

RMSE = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
 (2) 

 

For instance, using this formula for the actual and 

predicted values of R-R intervals, we can assess the 

predictive capability of your model. The lower the RMSE 

value, the higher the predictive power of your model. 

This evaluation is commonly preferred as a method to 

measure the prediction performance on R-R intervals or 

HRV. A lower RMSE value indicates that the model makes 

predictions closer to the actual data. In our dataset, the 

RMSE values were measured at a level considered low for 

14 subjects and at a level considered high for 6 subjects. 

This suggests that obtaining more accurate results in 

completing missing R-R intervals can be achieved by 

using the data of the 14 subjects, resulting in a lower 

RMSE. 

2.3.3 Pan-Tompkins Algorithm 

The Pan-Tompkins algorithm is an algorithm used for 

QRS detection and is commonly employed to identify R-

peaks in ECG signals. This algorithm is designed to define 

R-peaks in QRS complexes by utilizing the width, slope, 

and amplitude of an integrated window. The algorithm 

typically consists of two stages: preprocessing and 

decision stages. In the preprocessing stage, the raw ECG 

signal is prepared before entering the QRS detection 

process. This stage involves reducing noise, organizing 

the signal, and enhancing the visibility of QRS complexes. 

It is performed to diminish unwanted noise in the signal 

and make QRS complexes more easily detectable. In the 

decision stage, only significant peak points in the signal 

are considered using a specific threshold, while noise 

peak points are ignored. This step is taken to identify 

crucial points in the signal to clearly determine R-peaks. 

The Pan-Tompkins algorithm, employing these stages, 

identifies R-peaks in QRS complexes and is widely used 

for real-time ECG analysis. Thus, it enables the rapid and 

reliable detection of prominent points of heartbeats in 

the ECG signal. In this article, the missing data in 

respiratory signals will be completed using the curve 

interpolation method based on the R-peaks detected with 

the Pan-Tompkins algorithm. As the R-R intervals are 

identified in the ECG data with the Pan-Tompkins 

algorithm, the respiratory signals containing missing R-R 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Mert Süleyman DEMİRSOY and Ayşe Nur AY GÜL                                          379 
 

intervals will be identified through cubic interpolation. 

Figure 5 illustrates the block diagram of the Pan-

Tompkins algorithm. 

The detection graph of the R peaks of the filtered ECG 

signal, where the Pan-Tompkins algorithm was applied 

and whose threshold value was selected as 60% of the 

maximum signal amplitude (Hamida El Naser and Naser, 

2023), is shown in Figure 6. 

2.3.4. Interpolation method 

Curve interpolation is a method used to fit a smooth 

curve or polynomial to a dataset. In the analysis of HRV 

and R-R intervals in ECG and respiratory data, curve 

interpolation is employed to complete missing data or 

represent the dataset more smoothly. Curve 

interpolation utilizes polynomials to create a smooth 

curve between data points. This process allows the data 

to be combined with a smooth curve and aids in the 

completion of missing or corrupted data. Cubic curves 

(third-degree polynomials) are commonly used for curve 

interpolation (Hao et al., 2021). For both data signals 

(ECG and respiration), cubic curves using these 

polynomials are applied at each data point to create a 

smooth curve. The output of the original and cubic curve 

interpolation applied signals for ECG and respiration data 

is illustrated in Figure 7. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Pan-Tompkins algorithm block diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. R-peaks with Pan-Tompkins algorithm applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Cubic curve interpolation application in ECG and respiratory data. 
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In Figure 7, it can be observed that there is no loss in the 

original ECG data, and when cubic curve interpolation is 

applied, the values are identical to the original signal. 

However, in the respiratory data, deviations are present 

in the original signal, and these discrepancies are 

detected and mitigated by applying cubic curve 

interpolation using R-R intervals from the ECG data. 

Standard interpolation (first-degree polynomials) 

applied to both data signals (ECG and Respiration) is 

illustrated in Figure 8, showing the output of the applied 

signals. 

As depicted in Figure 8, it accurately predicts the ECG 

data similar to cubic curve interpolation, identifying the 

real data as it is. However, it is observed that it falls short 

in detecting the lost respiratory data for the test from the 

respiratory dataset by relying on R-R intervals in the ECG 

data. It failed to identify and apply 10 missing respiratory 

data points between 0.4 and 0.8 seconds in the original 

data. 

 

3. Results and Discussion 
After applying the proposed methods to the ECG and 

respiratory data in the dataset, the R-peak counts and 

associated average respiratory durations of the subjects 

were calculated, and they are presented in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Application of standard interpolation in ECG and respiratory data. 

 

Table 1. R peak numbers and corresponding average breathing times in mental activity and calm states of the subjects 

in the data set 
 

Subject 

Order 

Number of R peaks between 0-2 

min 

Number of R peaks between 2-4 

min 
Average Respiratory Time (sec) 

1 135 130 3.32 

2 161 165 3.11 

3 141 140 3.20 

4 231 178 2.05 

5 246 201 1.84 

6 168 125 2.83 

7 251 177 1.92 

8 250 145 2.01 

9 176 140 2.66 

10 235 171 2.03 

11 191 165 2.41 

12 221 184 1.98 

13 165 141 2.71 

14 201 179 2.34 

15 198 181 2.22 

16 155 139 3.04 

17 199 146 2.69 

18 235 203 1.89 

19 181 168 2.45 

20 228 184 2.11 
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In Table 1, it can be observed that the counts of R-peaks 

during the mental activity state (0-2 minutes) vary 

compared to the counts during the rest state (2-4 

minutes). Generally, R-peak counts tend to be higher 

during mental activity, while decreasing during the rest 

state. Most subjects exhibit higher R-peak counts during 

mental activity, suggesting an increased occurrence of 

heartbeats. Notably, subjects 4, 5, and 7 demonstrate 

significantly higher R-peak counts. Overall, a trend of 

decreased respiratory durations during mental activity 

compared to the rest state is observed. The increased 

heart rate is often associated with faster respiratory 

durations. Additionally, a positive correlation is observed 

except for subject 3 (subjects 1, 2, and 3). Negative 

correlation is observed for subjects 1 and 2, while the 

correlation coefficient for subject 3 is 0, indicating no 

relationship between respiration and heartbeats for this 

subject. 

In summary, Table 1 highlights the relationship between 

R-peak counts and respiratory durations during mental 

activity and rest states. Higher heart rates and shorter 

respiratory durations are observed during mental 

activity, whereas lower heart rates and longer 

respiratory durations are observed during the rest state. 

In Table 2, 2-second samples were created from the 

respiratory data sets for each subject with a sampling 

frequency of 1000 Hz. An equal number of data points 

(200 data points for each subject's data set) were 

randomly removed from the respiratory data sets. Using 

standard and cubic curve interpolation methods, missing 

respiratory data were reconstructed from the R-R 

intervals of the ECG data. The detected data points and 

RMSE values for the subjects' ECG data, based on the 

applied methods, are presented in Table 2. 

In Table 2, the data completion counts for standard 

interpolation are lower compared to cubic curve 

interpolation. This indicates that standard interpolation 

completes fewer missing data points and fills in fewer 

data values. Upon examining the RMSE values, it is 

observed that standard interpolation sometimes has 

lower and sometimes higher values compared to cubic 

curve interpolation. This suggests that both methods can 

exhibit different performances based on the structure of 

the data set and the distribution of missing data, 

emphasizing the need to consider these factors to 

determine which method yields better results. 

Additionally, when RMSE values approach the mean 

value of the ECG signal, it is observed that standard 

interpolation completes more data. However, in this 

scenario, cubic curve interpolation has completed fewer 

data points compared to other RMSE values that can be 

considered low. 

If we look at subjects 15, 1, 6, 9, 11, and 10 in order, as 

RMSE values increase, the completion counts for 

standard interpolation also increase, while the 

completion counts for cubic curve interpolation decrease. 

Conversely, as RMSE values decrease, the completion 

counts for standard interpolation decrease, and the 

completion counts for cubic curve interpolation increase. 

It can be inferred from Table 2 that there is a linear 

relationship with RMSE values. 

 

Table 2. Relationship between data completion numbers of standard and cubic spline interpolation methods and RMSE 

values 
 

Subject 

Order 

Standard interpolation number of 

data completions 

Cubic spline interpolation number of 

data completions 
RMSE values (mV) 

1 18 161 1.67 

2 37 152 2.11 

3 25 112 1.94 

4 39 95 2.21 

5 30 135 1.63 

6 26 154 1.74 

7 20 196 1.51 

8 32 185 1.96 

9 27 126 1.84 

10 63 76 2.47 

11 41 85 2.39 

12 18 169 1.71 

13 19 152 1.79 

14 55 89 2.51 

15 15 133 1.46 

16 37 185 2.02 

17 29 146 1.91 

18 18 105 1.79 

19 28 151 2.09 

20 16 118 1.61 
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Figure 9. Cubic curve interpolation method (a) Standard 

interpolation method (b) (Blue line interpolated signal, 

red circles original respiratory signal points). 

 

For both methods used to complete missing respiration 

data from R-R intervals, the respiration data has been 

reduced to the same number and order for both methods. 

In Figure 9(a), the cubic curve interpolation method 

shows that between 1.2 and 1.4 seconds, the original 

signal is actually in a downward triangular shape. 

However, in Figure 9(b), standard interpolation draws 

the period between 1.2 and 1.4 seconds as a straight line. 

Upon closer examination, cubic curve interpolation 

appears to provide more accurate and precise results in 

completing missing data. 

The method utilizing 3rd-degree cubic curve 

interpolation, which leverages respiration features, has 

yielded significantly more accurate results compared to 

standard (1st-degree) interpolation when compared with 

the proposed method. These results indicate an increase 

in the variability of R-R intervals even in the presence of 

missing R-R intervals during resting conditions. 

However, in other situations (e.g., mental activity or 

arithmetic operations), the autonomic nervous system 

can fluctuate, potentially leading to decreased accuracy. 

On the other hand, short-term repeated results have 

shown very little difference between the proposed 

method and 1st-degree standard interpolation for 

missing R-R intervals (e.g., Figure 8). One possible 

explanation for this is the short duration of the periods in 

Figure 8 and Figure 7. However, it is evident that 1st-

degree standard interpolation is not suitable for 

completing missing data. 1st-degree standard 

interpolation linearly replaces changing R-R intervals 

over time, ultimately producing R-R intervals with 

temporal fluctuations. These results suggest that using 

3rd-degree cubic curve interpolation without temporal 

fluctuations will provide more accurate and precise 

results in completing missing R-R intervals. In the future, 

it is planned to assess what kind of temporal fluctuations 

may occur in missing R-R intervals when the proposed 

methods are used under different conditions. 

 

4. Conclusion 
This study aimed to investigate the relationship between 

heart rate variability (HRV) and respiration and explore 

appropriate methods for accurately completing missing 

R-R intervals. The results obtained using Pearson 

correlation coefficient revealed both positive and 

negative correlations between respiration and HRV 

under specific conditions. Consequently, the cubic curve 

interpolation method facilitated the accurate integration 

of missing R-R intervals in respiration signals. Analyses 

conducted indicated that 3rd-degree cubic curve 

interpolation provided more accurate results compared 

to standard (1st-degree) interpolation and was more 

effective in completing missing R-R intervals. This 

allowed for the more precise completion of changing R-R 

intervals over time. According to the findings of the 

study, 85% of the participants exhibited higher R-peak 

counts during mental activity, particularly noticeable in 

subjects 4, 5, 7, 8, and 10. This indicates an increase in 

heartbeats. The tendency of decreased respiratory 

durations during mental activity compared to the rest 

state was observed, reflecting the common association of 

increased heart rate with shorter respiratory durations. 

These findings suggest that respiration features can be 

utilized to enhance the accuracy of completing R-R 

intervals and warrant further evaluation under different 

conditions in future research. 
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