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Abstract

Analysing the variations in hydrological cycle components is essential for water resources planning and management. In this study,
the relationship between the streamflow data belonging to five discharge gauging stations in the Eastern Black Sea Basin in Tiirkiye
and the Arctic Oscillation (AO), East Atlantic-Western Russia (EAWR), North Atlantic Oscillation (NAO) and North Sea Caspian
Pattern (NCP) was investigated. For this purpose, Spearman’s correlation test, ensemble empirical mode decomposition (EEMD) and
relative importance analysis were used. Accordingly, Spearman’s correlation coefficients were calculated between raw streamflow
data, decomposed streamflow data via EEMD and atmospheric teleconnections. Then, the relative importance analysis was applied to
determine the atmospheric teleconnections’ influences on streamflow data. The findings showed that the relationship between raw
streamflow data and atmospheric teleconnections is generally more significant and negative in the winter and spring. Furthermore, it
was observed that the linkage between the decomposed streamflow data and atmospheric teleconnections could differentiate. Although
no significant correlation between atmospheric teleconnections and raw streamflow data was detected in some months, significant
correlations were detected between atmospheric teleconnections and decomposed streamflow data. This reveals the importance of
examining the relationship between atmospheric teleconnections and streamflow data for different periods. The relative importance
analysis revealed that the influence of atmospheric teleconnections on streamflow data could change from station to station and from
component to component. This study showed that investigating the effects of atmospheric teleconnections on streamflow data for
different components and periods is important.
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Turkiye’nin Dogu Karadeniz Havzasi’nda Atmosferik Tele Baglantilarin Akarsu
Rejimi Uzerindeki Etkilerinin Analiz Edilmesi

Ozet

Hidrolojik dongii bilesenlerindeki degisimlerin analiz edilmesi su kaynaklarimin planlanmasi ve yénetilmesi agisindan énem arz
etmektedir. Bu ¢alismada, Tiirkiye’nin Dogu Karadeniz Havzasi’'nda yer alan bes farkli akim gézlem istasyonuna ait akim verileri ile
Arktik Salinim (AO), Dogu Atlantik-Bati Rusya Paterni (EAWR), Kuzey Atlantik Salinimi (NAO) ve Kuzey Denizi Hazar Paterni (NCP)
arasindaki iliski arastiriimistir. Bu amagla, Spearman’s korelasyon testi, toplu ampirik mod ayristirma metodu (EEMD) ve nispi 6nem
analizi kullanilmigtir. Buna gore, Spearman’s korelasyon katsayilart hem ham akim verileri hem de EEMD ile bilesenlerine ayrilmig
akim degerleri ile atmosferik tele baglantilar arasimda hesaplanmistir. Daha sonra, atmosferik tele baglantilarin akim verileri
tizerindeki etkisini belirlemek amaciyla nispi 6nem analizi uygulanmistir. Elde edilen bulgular, ham akim verileri ile atmosferik tele
baglantilar arasindaki iliskinin genel olarak ki ve ilkbahar aylarinda daha énemli ve negatif oldugunu gostermistir. Bununla birlikte,
bilesenlerine ayrilmis akim verileri ile atmosferik tele baglantilar arasindaki iligkinin her bir bilesen i¢in farklilik gosterebildigi
gozlenmistir. Atmosferik tele baglantilar ile ham akim verileri arasinda bazi aylar igin herhangi bir iliski bulunmamasina ragmen,
bilesenlerine ayrilmis akim verileri ile atmosferik tele baglantilar arasinda énemli korelasyonlar tespit edilmistir. Bu durum,
atmosferik tele baglantilar ile akim verileri arasindaki iliskinin farkli periyotlarda incelenmesinin énemini ortaya koymaktadir. Nispi
onem analizi atmosferik tele baglantilarin akim verileri iizerindeki etkisinin istasyondan istasyona ve bilesenden bilesene gosterdigini
ortaya koymustur. Bu ¢alisma, atmosferik tele baglantilarin akim verileri iizerindeki etkisinin farkli bilesenler ve periyotlar igin
arastirllmasinin onemini gostermistir.

Anahtar S6zciikler
Akim, Atmosferik Tele Baglantilar, EEMD, Korelasyon, Nispi Onem, Dogu Karadeniz

1. Introduction

Analysing the changes in hydrological cycle components are essential for water resources management. In addition, the
effects of fluctuations in climatic parameters are essential for addressing extreme cases, such as floods and droughts.
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The possible drivers behind the changes in hydrometeorological variables have been widely investigated (Oertel et al.,
2020; Sharma et al., 2020; Gan et al., 2023). In these studies, the relationship between atmospheric teleconnections and
different hydrometeorological variables has been put forward. Oertel et al. (2020) analysed the linkage between drought
indices, namely Standardised Precipitation Evapotranspiration Index (SPEI) and Standardized Streamflow Index (SSI)
and El Nifio Southern Oscillation (ENSO) in central Chile. They revealed that ENSO could be efficient in dry periods in
the summer and winter for SPEI-6 and SSI-6. Forootan et al. (2019) examined the linkage between hydrological droughts
from 2003-2016 and atmospheric teleconnections, globally. They pointed out that the ENSO was influential in the greater
parts of many continents, such as Asia and the Australian continent in different periods. They also stated that the Indian
Ocean Dipole (10D) and North Atlantic Oscillation (NAO) had regional effects on hydrological droughts. Sharma et al.
(2020) investigated the impacts of the ENSO, 10D on the hydrometeorological extremes in the Tapi Basin, India. They
revealed that positive IOD and weak El Niflo conditions could be more efficient on higher flood risk in the basin. Zhang
et al. (2020a) analysed the global variations of short-term concurrent hot and dry extremes (SCHDE) and their linkage
with climate indices. They stated that the Pacific Decadal Oscillation (PDO)’s cold phases during the La Nifia events
could be a driver on the fortification of the SCHDE events in southern South America and Australia. Zhang et al. (2020b)
scrutinized the tendencies in hydrometeorological variables in the Yarlung Zangbo River Basin in China and the potential
relationship between trends and large-scale circulation. In some stations, they detected significant negative correlations
between streamflow, temperature, precipitation, and the PDO, multivariate ENSO index (MEI). Gan et al. (2023)
scrutinised the variations in hydrometeorological events (precipitation and drought) and analysed the effects of potential
factors on the variations in the Huaihe River Basin, China. They revealed that the extreme precipitation and drought had
significant and changeable characteristics across the basin. They also showed that the Arctic Oscillation (AO) was the
most efficient index on the extreme hydrological index of the basin, and the Southern Oscillation Index (SOI) and NAO
were influential on drought.

The linkage between hydrometeorological variables and atmospheric teleconnections in Tiirkiye has been analysed in
many studies (Kutiel et al., 2002; Turkes & Erlat, 2003; Turkes & Erlat, 2008). Tosunoglu et al. (2018) examined the
impacts of the NAO, SOI, North-Sea Caspian Pattern (NCP) on Standard Precipitation Index (SPI) in Tirkiye. They
found that the NAO was more efficient in the central and west Anatolia regions, whereas the NCP is more dominant in
the eastern and northern regions. Duzenli et al. (2018) investigated the potential effects of atmospheric teleconnections,
such as NAO, AO, SOI, and Western Mediterranean Oscillation (WMO), on the extreme precipitation variability in
Tiirkiye. They found that the NAO is impactful on the extreme precipitation variability in the regions mostly affected by
the Mediterranean climate, particularly in winter. VVazifehkhah and Kahya (2018) examined the influences of the NAO
and AO extreme phases on hydrological drought, focusing on the standardised streamflow index (SSFI) in Tirkiye and
northern Iran. They found that NAO’s and AO’s negative extreme phases could lead to wetter conditions in the winter
and spring in Tirkiye, whereas the NAO and AO could be influential in Iran during only winter. Demir (2019) analysed
the effects of the SOI on rainfall data of Central Anatolia, Turkey. Demir (2019) stated that La Nina could be influential
in increasing precipitation, whereas EI Nino could be efficient in decreasing precipitation. Yilmaz et al. (2020)
investigated the relationship between NAO and precipitation in the Black Sea region. They found a negative, weak linkage
between NAO and precipitation data. Abdelkader and Yerdelen (2022) scrutinised the linkage between the standardised
streamflow index (SSFI) and atmospheric teleconnections, such as the ENSO, NAO, and Atlantic Multidecadal
Oscillation (AMO) in Merig Basin, Tiirkiye. They revealed that positive NAO and negative AMO phases could be related
to the drought events. They also stated that the maximum dry conditions correspond to the La Nina events, whereas the
maximum wet conditions coincide with the El Nino events. Akbas and Ozdemir (2023) investigated the impacts of
atmospheric teleconnections on hydroclimatic variables (i.e., rainfall and runoff) using principal component analysis
(PCA) and trend analysis approaches in the Marmara Sea River basins in Tiirkiye. They revealed that the NAO had high
correlations with rainfall and runoff PC scores, especially in winter. Sezen (2023) analysed trends in streamflow using a
wavelet-based approach (i.e., Innovative Polygon Trend Analysis (W-IPTA)) in the Konya Closed Basin, Tiirkiye.
Significant short-term and long-term trends were found in the basin, and a significant negative relationship between the
variability in streamflow and the NAO, AO, and NCP was obtained, particularly in winter. The implementation of data
decomposition techniques has increased in recent years for analysing the trends in hydrometeorological variables and the
effects of atmospheric teleconnections on the hydrometeorological variables (Abdelkader & Yerdelen, 2022; Sezen,
2023). In these studies, it was revealed that examining the changes in hydrometeorological variables using data
decomposition techniques can be helpful for a periodical analysis. However, investigating the impacts of atmospheric
teleconnections on hydrometeorological variables using the decomposition techniques has been comparatively less.

Analysing and determining the tendencies in hydrological components is substantial for efficient water resources
management. Within this scope, using different approaches is significant to investigate the variability in
hydrometeorological variables and the effects of atmospheric teleconnections on these variables.

In this study, the NAO, AO, NCP, and East Atlantic/Western Russia (EAWR) indexes’ influence on the streamflow data
in the Eastern Black Sea basin in Tiirkiye were investigated. First, Spearman’s rank correlation analysis was used to
analyse the linkage between streamflow data and related atmospheric teleconnections. Then, the Ensemble Empirical
Mode Decomposition (EEMD) method was applied to streamflow data for the decomposition process. Thus, the linkage
between streamflow data and atmospheric teleconnections was examined for different frequency components.

366



Cenk Sezen / Volume:10 - Issue:2 - July 2024

Finally, the relative importance of the atmospheric teleconnections regarding their effects on streamflow data was
analysed. Investigating the potential impacts of atmospheric teleconnections by implementing the EEMD and relative
importance analysis represents the novel aspects of this research.

2. Data and Methodology
2.1 Study area and data used

The linkage between streamflow data and atmospheric teleconnections was analysed in the Eastern Black Sea Basin
situated in the north-eastern part of Tiirkiye (Figure 1). The Eastern Black Sea Basin generally has a regular precipitation
regime, especially in the coastal parts, whereas dry weather conditions are dominant in the interior parts during summer.
The geographical formations affect the precipitation regime across the basin. In this regard, the coastal parts have mild
and wet conditions in winter and moderate and relatively wet during summer. On the other hand, interior parts have wet
and cold climate conditions in winter and dry and hot climate characteristics in summer. The basin has significant water
resources based on the precipitation characteristics, and rivers generally are not dry due to the redundant precipitation and
snowmelt and relatively less evaporation in mild climate conditions (General Directorate of Water Management, 2020).
The streamflow data from five discharge gauging stations was obtained from the General Directorate for State Hydraulic
Works. The stations' spatial information and streamflow data statistics are given in Table 1 and Table 2, respectively.
Accordingly, the data length changes from 35 to 36 years, and the altitude varies between 41 and 1296 m, as seen in Table
1. The annual mean streamflow is higher in the eastern regions than the western part, according to Table 2. The standard
deviation and maximum values are also high in the eastern part of the basin.

Table 1: Location, data period and length of the discharge gauging stations

Station no Station name Location Altitude  Data period  Data length

(m) (years)
EIE 2202 Kar Der;?yeﬁg”menmk 40.007° E-40.85°N 78 1980-2015 36
EIE 2215 Camlik Dere-Derekoy 40.6° E-40.73° N 942 1980-2014 35
EIE 2233  Tozkdy Deresi-Tozkdy ~ 40.58° E-40.67° N 1296 1980-2015 36
EIE 2245 Terme Cayi-Gokeeli 36.83° E-41.08° N 66 1980-2015 36
EIE 2247 ~ MeletCayrGocalll 55900 4000 41 1980-2014 35
Kopriisii
Table 2: Statistical data regarding annual streamflow data
Statistics
Minimum Mean Standard Maximum
Station no Station name 3 3 Deviation 3 Skewness  Kurtosis
(m?/s) (m3/s) (m¥s) (m°/s)
EIE 2202 K&r Der;?;ﬁgmen‘“k 634 1099  2.02 15.89 0.20 0.76
EIE 2215 Camlik Dere-Derekoy 10.13 13.68 1.83 17.24 0.02 -0.44
EIE 2233  Tozkdy Deresi-Tozkdy 4.75 6.66 1.04 8.62 0.07 -0.70
EIE 2245 Terme Cayi-Gokeeli 3.91 7.34 1.64 10.37 -0.15 -0.43
EIE 2247  Melet Cayr-Gocall 326 2715 89 43.75 0.45 1.07

Kopriisii
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Figure 1: The study area’s location and used discharge gauging stations. The blue circles refer to the discharge gauging
stations

2.2 Atmospheric teleconnections

The NAO represents the variability of atmospheric mass between the subtropical Atlantic and Arctic, and changes in
NAO’s phases can lead to remarkable alterations in hydrometeorological parameters, such as surface temperature, winds,
and precipitation in the Northern Hemisphere (Hurrell & Deser, 2010). The NAQO's negative and positive phases can
significantly affect changes in climatic variables. Turkes and Erlat (2003) revealed that precipitation tended to increase
during the negative phase of the NAO (NAO (-)) for the winter and spring seasons and annually, while dry conditions
were more dominant during the positive phase of the NAO in Tiirkiye. The AO is similar to the NAO; however, its main
action centre envelops more of the Arctic, which gives the AO a more zonally symmetric view (Thompson & Wallace,
1998). The AO is an influential atmospheric teleconnection in the northern hemisphere. The negative and positive phases
of the AO could trigger the variability in hydrometeorological variables. Turkes and Erlat (2008) pointed out that warmer
signals dominate during the AO’s negative phase, and cold signals are more influential during the AO’ positive phase in
Tirkiye. The NCP is identified between the grids of the North Sea and northern Caspian by Kutiel and Benaroch (2002).
The NCP’s distinctive phases can significantly affect the changes in climatic parameters. Kutiel et al. (2002) found that
temperature and precipitation had different tendencies under the NCP (-) and NCP (+) in the greater part of Tiirkiye. The
EAWR is zonally oriented and has two principal anomaly centres across the Caspian Sea and Western Europe (Barnston
& Livezey, 1987; Krichak & Alpert, 2005).
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During the EAWR’s negative phase, wetter conditions than typical weather characteristics were observed in most regions
of the Mediterranean, whereas vice versa was obtained for the EAWR’s positive phase (Barnston & Livezey, 1987;
Krichak & Alpert, 2005). The NAO, AO, and EAWR data were obtained from the National Oceanic and Atmospheric
Administration  (NOAA)  National =~ Weather  Service Climate Prediction Centre (NWS CPC)
(https://www.cpc.ncep.noaa.gov). The NCP data were obtained from the University of East Anglia (UEA) Climatic
Research Unit (CRU) (https://crudata.uea.ac.uk/cru/data/ncp/) and Sezen and Partal (2019).

2.3 Correlation analysis

Different correlation analysis approaches, such as Pearson’s correlation and Spearman’s rank correlation methods, have
been generally used for investigating the effects of the atmospheric teleconnections on the hydrological variables. In this
study, Spearman’s rank correlation analysis was implemented since it has advantages, such as not having an assumption
that both variables have a normal distribution. The Spearman’s rank correlation coefficient formula is calculated as
follows (Best & Roberts, 1975):

S = Xkl —y)? (1)

6S

s = 1- n(n2-1)

@)
where, S stands for the difference between the two ranks of each variable (i.e., xj and yi), rsstands for the Spearman’s

rank correlation coefficient, and n for the number of samples. Then, the significance of Spearman’s rank correlation
coefficients was evaluated according to the p values based on the AS89 algorithm (Best & Roberts, 1975).

2.4 Ensemble Empirical Mode Decomposition (EEMD)

The Ensemble Empirical Mode Decomposition (EEMD) is a time-space analysis technique which includes the white-
noise-added data and an enhanced version of the Empirical Mode Decomposition (EMD) method (\Wu & Huang, 2009).
The EEMD is used for the original time series’ decomposition in different modes which are called as finite intrinsic mode
functions (IMFs) and a trend term (Wang et al., 2020). The steps for the EEMD analysis can be given as follows (Prasad
etal., 2018; Wang et al., 2020):

1) Using the original time series (x(t)) and setting the EEMD parameters.
2) Adding a normally distributed white noise time series w (t) to x(t).

x'(6) = x(t) + wi(6) ®)

3) x'(t) is decomposed into IMFs and trend or residue components.

4) The steps 2 and 3 are repeated for with various white noise series until the maximum ensemble number.

5) All IMF components’ mean and residue components’ mean avoiding the white noise are computed and time series
can be obtained as follows:

x'(t) = XM, IMF; + Ry, (4)

where, IMF; represents the intrinsic mode functions, Ry denotes the residue component, and m is the total number of
IMFs. The IMF; represents the highest frequency and maximum amplitude, whereas increasing IMFs refers to decreasing
frequencies. In this study, the IMFs’ number was obtained depending on the equation of m=log, (N)-1, where N stands
for the time series’ length (Guan, 2014). The empirical mode decomposition techniques were implemented in many
hydrological modelling studies (Citakoglu & Coskun, 2022; Coskun & Citakoglu, 2023), and their usefulness was
indicated in these studies.

2.5 Relative importance analysis

The relative importance of the atmospheric teleconnections regarding their effects on the streamflow regime was
computed based on the R? partitioned by averaging over orders (Lindeman et al., 1980; Chevan & Sutherland, 1991).
First, the linear regression equation was established between target data (i.e., streamflow data) and input data (i.e., AO,
EAWR, NAO and NCP). The R?for a model with variables in regression in set S can be stated as follows (Gromping,
2006):
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Vi = (g + Xi1C1 + -+ x,:pcp

RZ(S) __ Model SS(model with regressorsinS) __ 2?21(371-—37)2 (5)
- Total SS T -2

where, 9; stands for the fitted response values, y for the mean of ¢ for the predicted coefficients, and Xi,...,xip for input
variables. R? quantifies the proportion of variation in the target variable (i.e., y) by considering regression input variables
in the model. The additional R?in case of the addition of the regression variables in set M to a model with the regression
input variables in set S can be expressed as follows:

seqR?*(M|S) = R*(M U S) — R%(S) 6)

The order of the regression input data in any model is a permutation of the available regression input variables (i.e.,
X1,...,Xp) and can be referred to as the tuple of r= (ry,....,rp) indices. The portion of R?allocated to the regression variable
Xk can be pointed out as follows:

seqR?*({x;}|Sk (™) = R2({xx } U S, (1)) — R2(Si (1)) ©)

where Si(r) stands for the regression variables entered into the model before the regression xi in the order r (Gromping,
2006).

3. Results and Discussion

First, the correlation analysis between atmospheric teleconnections and raw streamflow data was fulfilled in Section 3.1.
Then, the relationship between atmospheric teleconnections and decomposed streamflow data was presented in Section
3.2. The findings of the relative importance analysis were given to examine the influences of atmospheric teleconnections
on streamflow data in Section 3.3. The analysis for investigating the relationship between atmospheric teleconnections
and streamflow was carried out using Microsoft Excel (Microsoft Corperation, 2023), R programming language (R Core
Team, 2023), and MATLAB Software (The MathWorks Inc., 2023). The flowchart regarding the adopted analysis is
presented in Figure 2.

Adopted approaches in the research

1. step

Atmosphe_r'C Raw streamflow data
teleconnections

Spearman's correlation
coefficients

2. step

Atmospheric Decomposed streamflow
telecannections data via EEMD

Spearman's correlation
coefficients

Raw streamflow data
Atmospheric /
teleconnections Relative importance
analysis
\, Decomposed streamflow
data via EEMD

Figure 2: Adopted approaches for analyzing the relationship between atmospheric teleconnections and streamflow data

3. step
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3.1 Correlation analysis results for raw streamflow data

First, the influences of the atmospheric teleconnections on raw streamflow data were investigated using the Spearman’s
correlation analysis. The correlations between the AO and streamflow data are not significant in all months, whereas
significant positive correlations are observed between the NAO and streamflow in August in EIE 2202 (Figure 3).
Furthermore, the EAWR and NCP are positively and significantly correlated with the streamflow regime, especially in
the autumn. The highly negative correlations are observed between the AO and streamflow in February and March in EiE
2215 (Figure 4). The NAO and streamflow have a significant and negative linkage in EIE 2215, particularly in March
and May. The EAWR has a significant negative relationship with streamflow data in February and April, and the
significant negative correlations were observed between the NCP and streamflow in February, March, April, and May in
EIE 2215. The NCP has a more significant relationship with the streamflow regime than other atmospheric
teleconnections in EIE 2215. In EiE 2233, the relation between the NCP and raw streamflow data is highly negative and
more significant in the winter and spring than other atmospheric teleconnections, according to Figure 5. There are no
significant correlations between the AO, NAO and raw streamflow data in EIE 2233. Furthermore, a significant and
negative correlation was obtained between the EAWR and streamflow data in April. The NCP has a significant and
positive relationship with streamflow data in November and April, while any significant correlations were not obtained
for other atmospheric teleconnections in EIE 2245 (Figure 6). In EIE 2247, significant and negative correlations were
observed in February and April for the AO, and significant correlations were obtained in February and September,
respectively for the NAO as seen in Figure 7. As for the EAWR and NCP, any significant correlations were not obtained
in EIE 2247. The correlation analysis revealed that the effects of the atmospheric teleconnections on the streamflow data
was similar to the findings of previous studies. Kebapcioglu and Partal (2021) showed that the correlations between the
NAO, AO, and streamflow data were significant and negative correlations, in winter and annually in the Kizilirmak and
Yesilirmak basins, Tiirkiye. Furthermore, they detected that the AO and streamflow had a positive linkage in the autumn.
Karabork et al. (2005) detected the significant effects of the NAO on precipitation and streamflow regimes in Tiirkiye in
winter. Tosunoglu et al. (2018) obtained significant effects of the NAO on the Standard Precipitation Index (SPI) in the
western and central parts of Tiirkiye, whereas NCP was more influential, especially in the northern and eastern parts of
Tirkiye. The NAO’s, AO’s, NCP’s, and EAWR’s influence on other meteorological variables were also detected in the
region (Unal et al., 2012; Baltaci et al., 2018; Sezen & Partal, 2019). Unal et al. (2012) revealed a significant and negative
linkage between the NCP and annual precipitation in the Eastern Black Sea region. Baltaci et al. (2018) pointed out that
the EAWR was primarily positively correlated with precipitation anomalies in the Eastern Black Sea region and that
positive EAWR could lead to wetter conditions. The positive relationship between the EAWR and raw streamflow data,
especially in autumn, can be evaluated similarly to this finding. Sezen and Partal (2019) revealed a significantly negative
linkage between the temperature and AO and NCP, whereas there is a positive relationship between the precipitation and
related atmospheric teleconnections, particularly in the winter season. Similarly, the linkage between the raw streamflow
and the NCP was mostly obtained positively, particularly in the autumn season in EIE 2202, EIE 2245 and EiE 2247. The
AO and NAO have mostly negative correlations with the raw streamflow data in winter; however, they have a positive
linkage with the raw streamflow, especially in the autumn months in EiE 2202, EIE 2245 and EIE 2247.

3.2 Correlation analysis results for decomposed streamflow data

The streamflow data of each station was decomposed into components using the EEMD analysis. In this respect, the four
IMFs and one residual component belonging to the streamflow data were obtained based on the data length. Then,
Spearman’s correlation analysis was performed for each component. In EIE 2202, the AO and streamflow data have
significantly positive linkage for IMF1 and residual components in October and August, respectively (Figure 3). The
NAO and streamflow data have a significant positive linkage in the residual component in July and August, whereas the
significant positive correlations were observed in high-frequency components (i.e., IMF2) in October and April in EIE
2202. The EAWR and streamflow data have significant positive correlations in high-frequency components in October,
January, and February, while significant positive correlations in low-frequency components in November, March, and
August in EIE 2202. In addition, significant negative correlations are also seen in February and August for IMF4 and
IMF2 components, respectively. The NCP and streamflow data have significant positive and negative correlations for the
IMF2 and IMF3 components in October and August, respectively.

In EiE 2215, the AO and streamflow have significant negative correlations, especially for IMF2, IMF3, and IMF4 in
February, May and June (Figure 4). The NAO and streamflow have a significant negative and positive relation in spring
and summer, respectively in EIE 2215. The NAO and streamflow have a positive relationship, particularly for IMF4 and
residual components in July and August. The relationship between the EAWR and streamflow is significantly negative
in February and April for IMF1 and in November and February for IMF4 in EiE 2215. The NCP and streamflow have a
significant negative linkage for the high-frequency components, especially for IMF1 in February, March, April, and May.
Significant correlations were not obtained for the low-frequency components between the NCP and streamflow.
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In EIE 2233, significant positive correlations were observed in October for IMF2 and August for the residual component
considering the AO’s effect (Figure 5). Significant negative correlations were obtained in February for IMF2 and IMF3,
whereas positive relationship was observed in August for the IMF4 and residual components between the NAO and
streamflow. The EAWR and streamflow have negative correlations in the winter season, while they have positive
correlations in October (for IMF1 and IMF3) and May and August (for the low-frequency components). The NCP and
streamflow have negative correlations for the high-frequency components in March, April, and May, whereas they have
positive correlations in the low-frequency components.

In EIE 2245, the AO’s influence on the streamflow is negative in January, while the positive linkage was detected in
May and July for high-frequency components, as seen in Figure 6. The NAO and streamflow have significant positive
correlations in August and September. In addition, the NAO and streamflow has a significant and negative relationship
in February (for IMF3), July and August (for the residual component). The EAWR and streamflow have a positive linkage
in May and July and a negative relationship in January for the high-frequency components. The NCP and streamflow
have a significant positive linkage in the autumn and spring.

In EIE 2247, the AO’s effect on the streamflow is significantly positive and negative in the winter and summer,
respectively, according to Figure 7. The NAO and streamflow have significant negative correlations, especially in
February, and correlations are significantly negative and positive in the summer and autumn. The EAWR only had
significant positive correlations for the high- and low-frequency components in August. Significant correlations were
observed positively between the NCP and streamflow only in December and September.

The correlation analysis with EEMD revealed significant correlations for different components even though the raw
streamflow data do not have any significant relationship with the atmospheric teleconnections. The correlations are
primarily negative in winter and spring, while significant positive correlations were seen in summer and autumn.
Furthermore, significant relationship is available for the high- and low-frequency components. This indicates that
analysing the impacts of atmospheric teleconnections on hydrometeorological variables using decomposition techniques
can be useful in revealing the complex linkage between the related variables. The advantages of using data decomposition
techniques, such as wavelet analysis and EEMD, for the investigation of climatic variability were shown in previous
studies (Rathinasamy et al., 2019; Wang et al., 2020; Shi et al., 2021). Wang et al. (2020) indicated the usefulness of the
EEMD regarding the identification of more relevant and reasonable physical indices. Similarly, Wang et al. (2023)
showed that wavelet analysis can help reveal the relationship between the hydrometeorological variables and atmospheric
teleconnections. In this regard, implementing the data decomposition methods can be beneficial for comprehensively
analysing the linkage between climatic variables and atmospheric teleconnections.
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Figure 3: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO,
c) EAWR, and d) NCP for EIE 2202. * term refers to the significant correlations at the significance level of a=0.05.
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Figure 4: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO,
¢) EAWR, and d) NCP for EIE 2215. * term refers to the significant correlations at the significance level of a=0.05.
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Figure 5: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAC,
¢) EAWR, and d) NCP for EIE 2233. * term refers to the significant correlations at the significance level of a=0.05.
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Figure 6: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO,
¢) EAWR, and d) NCP for EIE 2245. * term refers to the significant correlations at the significance level of a=0.05.
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Figure 7: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO,
¢) EAWR, and d) NCP for EIE 2247. * term refers to the significant correlations at the significance level of a=0.05.
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3.3 Relative importance of the atmospheric teleconnections on the streamflow regime

In this section, the relative impact of the atmospheric teleconnections on the streamflow regime was scrutinized using the
relative importance analysis. Accordingly, the importance of the atmospheric teleconnections, which can indicate their
effects on the streamflow regime, was given as a rate for each station, as seen in Table 3, Table 4, Table 5, Table 6, and
Table 7. As seen in Table 3, the relative importance of the NCP and EAWR is more than other atmospheric
teleconnections’ relative importance in the autumn and winter seasons, respectively, for EIE 2202. As for the IMF1
component, the NCP has more relative importance than other atmospheric teleconnections, especially in spring months,
whereas the EAWR has more relative importance in winter. The NAO has remarkably high relative importance compared
to AO, EAWR, and NCP in winter and spring for IMF2. The NAO, AO, and NCP have higher relative importance,
particularly in winter, spring, and summer, respectively, for IMF3. The relative importance of the EAWR and NAO is
generally over 50% in winter and summer, respectively, for IMF4. For the residual, the EAWR, AO and NAO have
remarkable relative importance in winter, spring, and summer, respectively, in EiE 2202.

The relative importance of the atmospheric teleconnections related to their influence on the raw and decomposed
streamflow data for EIE 2215 was presented in Table 4. Accordingly, the superior relative importance of the NCP is
observed in winter and spring for raw streamflow data compared to other atmospheric teleconnections. Similarly, the
NCP has higher relative importance rates in winter and spring than AO, EAWR, and NAO for IMF1, as seen in Table 4.
Regarding IMF2, the EAWR and NAO have higher relative importance rates in winter and summer, respectively. The
NCP has more remarkable relative importance rates than AO, EAWR, and NAO, particularly in autumn and spring for
IMF2. The AO has higher relative importance rates in the spring and autumn seasons than EAWR, NAO and NCP for
IMF3, while the relative importance of the EAWR is higher, particularly in summer. The NAO has more relative
importance in spring and summer, whereas the EAWR has more relative importance rates in winter for IMF4. As for the
residual component, it is observed that the relative importance of the EAWR is remarkably higher in winter and summer.

The atmospheric teleconnections’ relative importance rates showing their relationship with streamflow data for EIE
2233 are given in Table 5. The NAO's relative importance is remarkably higher in the winter and autumn, while the effect
of NCP is more dominant in spring for raw streamflow data. For IMF1, the NCP has higher relative importance rates in
spring, while the AO has more influence in summer. The NAO has higher relative importance rates in autumn and winter,
while the NCP has higher relative importance rates for IMF2. As for IMF3, the effect of the AO is more substantial in the
autumn season, and the EAWR is more influential in the summer. The NAO’s relative importance rate is higher in
February and March and in summer for IMF4. The other atmospheric teleconnections also have high relative importance
rates, which do not exhibit a seasonal tendency for IMF4. The EAWR has more influential rates than other atmospheric
teleconnections in the winter and spring, whereas the NAO has more efficient relative importance rates for the residual
component in summer.

The relationship between the streamflow data and the atmospheric teleconnections based on the relative importance
analysis for EIE 2245 was presented in Table 6. It is observed that the EAWR has higher relative importance rates than
the AO, NAO, and NCP, in winter and spring. The EAWR s efficient in December and January, whereas the NCP has
higher relative importance in February and March for IMF1. As for IMF2, the AO has higher relative importance rates in
winter, while the EAWR has higher relative importance rates in spring and summer. Furthermore, the NAQO’s relative
importance rates are highly remarkable in autumn. The EAWR is dominant mainly in most months for IMF3, and higher
relative importance rates of the EAWR are seen in winter and spring. The AO also has higher relative importance rates
of over 70% in autumn for IMF3. The dominance of the EAWR is also evident for IMF4, particularly in autumn and
winter. The NAQO’s relative importance rates are primarily high in the summer for IMF4. Regarding the residual
component, the EAWR is more impactful in winter, while the NAO is more influential in summer.

The results showing the effects of the atmospheric teleconnection on streamflow data considering the relative
importance analysis for EIE 2247 is shown in Table 7. The EAWR and NAO have higher relative importance rates for
the raw streamflow data in autumn and winter, respectively. The EAWR and NAO are influential compared to AO and
NCP in winter and spring, respectively, for IMF1. The NCP has remarkable relative importance rates, especially in winter
and spring, whereas the EAWR has higher relative importance rates in summer for IMF2. As for IMF3, the NAO has
higher relative importance rates in February, March, and summer. The AO and NAO have higher relative importance
rates in spring and summer for IMF4. As for the residual component, the relative importance of the EAWR is substantially
higher than the other atmospheric teleconnections’ relative importance rates. Accordingly, it can be stated that the EAWR
has remarkable relative importance rates in winter, spring, and summer for the residual component.

The relative importance analysis shows that the relative effect of each atmospheric teleconnection on the raw
streamflow data and decomposed data for different periods can substantially change. In this regard, examining the impact
of the atmospheric teleconnections on varied components is very important. Similar findings were emphasized in previous
studies revealing the effects of atmospheric teleconnections on the hydrometeorological variables (Jiang et al., 2019;
Sezen, 2023; Wang et al., 2023). All these studies indicated that the effects of atmospheric teleconnections on variables
such as drought and streamflow can change for different periods. Accordingly, periodically investigating the influence of
atmospheric teleconnections on hydrological components is substantial for water resources planning.
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Furthermore, analysing the trends in hydrometeorological variables, using different methods, such as liner regression
(LR), Man-Kendall (MK) analysis, and Spearman’s Rho (SRHO) could give more comprehensive outlook to examine the
changes and variations in hydrometeorological variables as indicated in previous studies (Yarbasi, 2019; Demir, 2019;
Yilmaz et al., 2020; Citakoglu & Minarecioglu, 2021). Accordingly, investigating the relationship between the
atmospheric teleconnections and hydrometeorological variables for different lags, analysing the trends in
hydrometeorological variables for different periods and the linkage between the trends and atmospheric teleconnections,
and using different decomposition techniques can pave the way for a broad perspective to enlarge the scope of this
research. In this regard, in further studies, the variability in various hydrometeorological variables will be investigated
using various trend analyses and further correlation analysis for different lags, and periodical analysis will be performed

using different decomposition techniques such as wavelet transform.

Table 3: Relative importance rates for the EIE 2202 discharge gauging station.

Months
Streamflow  Atmospheric Oct Nov Dec Jan Feb Mar Apr May Jun Jul  Aug Sep
data teleconnections

AO 18% 16% 26% 3% 31% 5% 21% 25% 57% 23% 33% 3%

Raw EAWR 19% 7% 54% 58% 30% 14% 11% 2% 11% 43% 8% 1%
NAO 8% 70% 7% 8% 21% 13% 51% 51% 25% 26% 43% 18%
NCP 55% 7% 13% 31% 18% 68% 17% 22% 7% 8% 16% 78%

AO 3% 6% 69% 3% 11% 11% 23% 10% 59% 27% 50% 9%

IMF1 EAWR 59% 20% 7% 63% 69% 4% 14% 2% 12% 18% 1% 2%
NAO 4% 55% 20% 2% 6% 16% 26% 68% 25% 8% 8% 14%
NCP 34%  19% 4%  32% 14% 69% 37% 20% 4% 47% 41% 75%

AO 21% 6% 13% 7% 8% 8% 16% 25% 40% 13% 17% 9%

IME2 EAWR 16% 26% 21% 23% 70% 56% 4% 16% 16% 19% 61% 1%
NAO 13% 58% 42% 40% 10% 22% 67% 40% 14% 43% 19% 52%

NCP 50% 10% 24% 30% 12% 14% 13% 19% 30% 25% 3% 38%

AO 14% 79% 40% 25% 18% 16% 38% 67% 20% 9% 7% 6%

IME3 EAWR 4% 2%  12% 13% 24% 48% 14% 3% 22% 15% 7% 2%
NAO 74% 12% 26% 47% 43% 33% 23% 9% 13% 67% 17% 21%
NCP 8% 7% 22% 15% 15% 3% 25% 21% 45% 9% 69% 44%

AO 17% 7% 20% 16% 3% 9% 41% 3%  16% 7% % 2%

IMF4 EAWR 22% 68% 7% 38% 63% 64% 25% 46% 2% 20% 79% 17%
NAO 52% 14% 66% 20% 10% 26% 2% 2% 51% 60% 11% 33%
NCP 9% 11% 7% 26% 24% 1% 32% 49% 31% 13% 3% 48%

AO 22% 63% 14% 3% 7%  10% 73% 41% 12% 24% 16% 11%
Residual EAWR 24% 16% 64% 48% 62% 66% 16% 37% 18% 10% 35% 67%
NAO 39% 17% 5% 11% 16% 19% 5% 18% 49% 52% 40% 18%

NCP 15% 4% 17% 38% 15% 5% 6% 4%  21% 13% 9% 4%

Note: The bold rates show the highest relative importance rates for each month.
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Table 4: Relative importance rates for the EIE 2215 discharge gauging station

Months
Streamflow  Atmospheric Oct Nov Dec Jan Feb Mar Apr May Jun Jul  Aug Sep
data teleconnections
AO 16% 27% 60% 8% 19% 6% 1% 6% 59% 25% 22% 73%
Raw EAWR 27% 6% 18% 31% 14% 8% 19% 8% 11% 20% 4% 13%
NAO 33% 44% 15% 21% 24% 15% 1% 21% 15% 18% 58% 3%
NCP 24%  23% 7% 40% 42% 71% 79% 65% 15% 37% 16% 11%
AO 5% 33% 52% 4% 28% 8% 1% 3% 35% 29% 80% 10%
IMF1 EAWR 63% % 6% 20% 17% 0 22% 10% 10% 13% 2%  34%
NAO 16% 55% 25% 20% 9% 6% 1% 3% 3% 29% % 36%
NCP 16% 5% 17% 56% 46% 86% 76% 84% 18% 29% 11% 20%
AO 6% 43%  12% 2% 11% 11% 28% 5% 45% 6% 24%  13%
IME2 EAWR 22% 8% 64% T70% 23% 1% 7% 9% 10% 6% 33% 22%
NAO 31% 8% 8% 2% 32% 33% 43% 20% 37% 72% 36% 13%
NCP 41% 41% 16% 26% 34% 55% 22% 66% 8% 16% 7% 52%
AO 65% 77% 4% 4% 17% 41% 16% 72% 7% 4% 2%  53%
IMF3 EAWR 12% 2% 68% 27% 43% 11% 1% 2% 61% 47% 0 36%
NAO 14% 13% 3% 14% 26% 33% 79% 23% 18% 4%  43% 10%
NCP 9% 8% 25% 55% 14% 15% 4% 3% 14% 45% 55% 1%
AO 18% 8% 18% 16% 12% 11% 3% 21%  14% 22% 7% 9%
IME4 EAWR 26% 68% 27% 49% 57% 41% 47% 10% 2% 34% 15% 3%
NAO 24% 13% 30% 12% 7%  45% 24% 54% 56% 35% 66% 79%
NCP 32% 11% 25% 23% 24% 3% 26% 15% 28% 9% 12% 9%
AO 55% 49% 23% 18% 9% 12% 29% 39% 26% 19% 11% 11%
Residual EAWR 3% 18% 4% 53% 55% 55% 7% 34% 3% 33% 49% 49%
NAO 33% 10% 68% 9% 26% 25% 57% 23% 43% 30% 24% 19%
NCP 9% 23% 5% 20% 10% 8% % 4% 28% 18% 16% 21%

Note: The bold rates show the highest relative importance rates for each month.

Table 5: Relative importance rates for the EIE 2233 discharge gauging station

Months
Streamflow  Atmospheric Oct Nov Dec Jan Feb Mar Apr May Jun Jul  Aug Sep
data teleconnections
AO 10% 19% 35% 41% 19% 13% 2% 3% 52% 41% 27%  25%
Raw EAWR 21% 2% 3% 30% 7% 18% 25% 9% 14% 15% 4% 1%
NAO 47% 75% 58% 13% 38% 14% 1% 23% 15% 11% 61% 38%
NCP 22% 4% 4% 16% 36% 55% 72% 65% 19% 33% 8%  36%
AO 3% 14% 45% 2% 16% 2% 2% 4% 41% 30% 47% %
IMEL EAWR 62% 8% 11% 51% 20% 1% 20%  19% 11% 25% 3% 1%
NAO 13%  72% 10% 9% 6% 3% 3% 6% 31% 23% 40% 34%
NCP 22% 6% 34% 38% 58% 94% 75% 71% 17% 22% 10% 60%
AO 15% 41% 19% 62% 22% 3% 5% 3%  39% 5% 4% 1%
IME2 EAWR 14% 4% 9% 10% 4% 11% 22% 13% 26% 36% 27% 74%
NAO 48% 44% 60% 11% 70% 7% 68% 20% 19% 50% 9%  16%
NCP 23% 11% 12% 17% 4% 79% 5% 64% 16% 9% 60% 9%
AO 9% 82% 6% 18% 24% 3% 5% 8% 11% 11% 2% 86%
IME3 EAWR 54% 2% 20% 50% 4% 8% 41% 39% 58% 21% 69% 5%
NAO 26% 11% 5% 9% 62% 41% 1% 21% 21% 52% 23% 6%
NCP 11% 5% 69% 23% 10% 14% 53% 32% 10% 16% 6% 3%
AO 47% 18% 6% 23%  24% 11% 54% 1% 14% 73% 10% 3%
IME4 EAWR 15% 52% 45% 18% 6% 42%  16%  42% 6% 11% 40% 30%
NAO 17% 6% 25% 7% 64% 43% 8% 4% 54% 9% 42% 57%
NCP 21%  24% 24% 52% 6% 4% 22% 53% 26% % 8% 10%
AO 11% 29% 11% 12% 21% 21% 19% 5% 14% 21% 15% 3%
Residual EAWR 24% 9% 66% 60% 21% 53% 26% 52% 10% 10% 31% 75%
NAO 57% 6% 4% 5% 24% 18% 50% 2% 52% 55% 45% 5%
NCP 8% 56% 19% 23% 34% 8% 5% 41% 24% 14% 9% 1%

Note: The bold rates show the highest relative importance rates for each month.
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Table 6: Relative importance rates for the EIE 2245 discharge gauging station

Months
Streamflow  Atmospheric Oct Nov Dec Jan Feb Mar Apr May Jun Jul  Aug Sep
data teleconnections
AO 48% 8% 6% 10% 25% 5% 45% 18% 9% 26% 9% 14%
Raw EAWR 28% 21% 67% 34% 54% 73% 26% 47% 32% 44% 5% 6%
NAO 16% 36% 3% 27% 8% 6% 5% 24% 18% 25% 74% 38%
NCP 8% 35% 24% 29% 13% 16% 24% 11% 41% 5% 12% 42%
AO 6% 8% 7% 24% 6% 3% 36% 17% 5% 76% 11% 4%
IMF1 EAWR T4% 21% 45% 37% 32% 42% 25% 23% 33% 9% 3% 3%
NAO 10% 9% 23% 20% 8% 6% 7% 52% 9% 11% 73% 73%
NCP 10% 62% 25% 19% 54% 49% 32% 8% 53% 4% 13% 20%
AO 13% 9% 35% 59% 43% 1% 31% 23% 21% 7% 11% 11%
IME2 EAWR 39% 15% 38% % 6% 44% 35% 6% 3% 82% 54% 16%
NAO 42% T0% 18% 23% 33% 7% 5% 6% 65% 4% 4% 42%
NCP 6% 6% 9% 11% 18% 32% 29% 65% 11% 7% 31% 31%
AO 75% 33% 7% 4% 23% 12% 11% 3% 49% 9% 10% 85%
IME3 EAWR 1% 52% 58% 67% 2% 36% 25% 44% 15% 24% 50% 7%
NAO 18% 5% 4% 2% 73% 21% 26% 17% 22% 54% 34% 5%
NCP 6% 10% 31% 27% 2% 31% 38% 36% 14% 13% 6% 3%
AO 17% 18% 4% 14% 17% 11% 31% 3% 14% 76% % 9%
IMF4 EAWR 32% 53% 58% 42% 29% 51% 18% 3% 7% 5% 0 61%
NAO 43% 6% 6% 4%  47% 32% 20% 11% 54% 10% 75% 6%
NCP 8% 23%  32% 40% 7% 6% 31% 49% 25% 9% 18% 24%
AO 34% 17% 24% 8% 14% 17% 76% 35% 12% 20% 9% 8%
Residual EAWR 21% 20% 3% 64% 52% 58% 14% 43% 28% 9% 7%  75%
NAO 27% 26% 61% 6% 4%  19% 4%  15% 44% 56% 69% 10%
NCP 18% 37% 12% 22% 30% 6% 6% 7% 16% 15% 15% 7%

Note: The bold rates show the highest relative importance rates for each month.

Table 7: Relative importance rates for the EIE 2247 discharge gauging station

Months
Streamflow  Atmospheric Oct Nov Dec Jan Feb Mar Apr May Jun Jul  Aug Sep
data teleconnections
AO 25% 4% 10% 13% 19% 3% 86% 18% 32% 19% 30% 3%
Raw EAWR 32% 57% 58% 25% 29% 14% 4%  49% 19% 22% 61% 20%
NAO 11%  18% 3% 35% 40% 3% 9% 28% 10% 53% 5% 43%
NCP 32% 21% 29% 27% 12% 80% 1% 5% 39% 6% 4%  34%
AO 6% 58% 44% 18% 22% 22% 60% 8% 27% 23% 56% 14%
IMF1 EAWR 43% 9% 8% 43% 43% 3% 8% 11% 13% 8% 16% 1%
NAO 31%  19% 16% 10% 8% 44% 22% 45% 12% 59% 10% 13%
NCP 20%  14% 32% 29% 27% 31% 10% 36% 48% 10% 18% 72%
AO 68% 6% 5% 43% 14% 21% 18% 21% 18% 5% 6% 9%
IME2 EAWR 3% 39% 23% 6% 14% 17% 48% 6% 47% 21% 86% 43%
NAO 19% 40% 5% 42% 36% 1% 3%  22% 8% 59% 1% 17%
NCP 10% 15% 67% 9% 36% 55% 31% 51% 27% 15% 7% 31%
AO 3% 3% 5% 69% 20% 27% 66% 3% 19% 11% 2%  23%
IME3 EAWR 28% 82% 21% 10% 6% 29% 2% 24% 9% 14% 66% 5%
NAO 27% 2% 4% 14% 62% 37% 21% 2% 43% 65% 7% 58%
NCP 8% 13% 70% 7% 12% 7%  11% 71% 29% 10% 25% 14%
AO 40% 37% 17% 35% 19% 64% 67% 28% 24% 32% 9% 13%
IME4 EAWR 22% 16% 29% 14% 21% 3% 3% 1% 30% 54% 34% 62%
NAO 25% 5% 27% 28% 51% 33% 28% 70% 33% 10% 48% 6%
NCP 13% 42% 27% 23% 9% 0 2% 1% 13% 4% 9% 19%
AO 17% 55% 6% 20% 19% 9% 82% 33% 18% 18% 12% 9%
Residual EAWR 19% 21% 67% 51% 19% 56% 7% 42% 27% 32% 55% 55%
NAO 5800 20% 7% 10% 40% 27% 5% 20% 38% 31% 13% 14%
NCP 6% 4% 20%  19% 22% 8% 6% 5% 17% 19% 20% 22%

Note: The bold rates show the highest relative importance rates for each month.
4. Conclusions

Analysing the variability and changes in hydrological components is critical for the efficient usage of water resources and
for overcoming extreme phenomena. In this study, the relationship between the streamflow data and atmospheric
teleconnections, namely AO, EAWR, NAO, and NCP, was analysed in the Eastern Black Sea Basin, Tiirkiye. In this
respect, Spearman’s rank correlation analysis, EEMD technique and relative importance analysis were implemented.
According to the analysis results, the following findings were acquired:
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¢ Significant correlations between raw streamflow data and atmospheric teleconnections were observed in the winter
and spring. The significant correlations are mostly negative; however, positive correlations are also detected.

e The correlations between streamflow decomposed components and atmospheric teleconnections change for each
component. Significant correlations between decomposed streamflow data and atmospheric teleconnections were
observed in some cases, even though the raw streamflow data and atmospheric teleconnections did not have
significant correlations. This shows that investigating the linkage between hydrometeorological data and
atmospheric teleconnections for different periods is essential.

e The relative importance analysis reveals that the relative effect of each atmospheric teleconnection on the raw
streamflow data and decomposed data for different periods can significantly alter.

This study shows that examining the effects of atmospheric teleconnections on streamflow data having different
components and investigating their relative importance is significant regarding having a comprehensive outlook for
investigating the variability in hydrometeorological variables. However, examining the relationship between the
atmospheric teleconnections and hydrometeorological variables for several lags, analysing the trends in
hydrometeorological variables for different periods, and implementing different data-decomposition approaches can
remarkably improve the scope of this research topic and offering a distinctive outlook on this topic. In this respect, to
improve the scope of this research, in further studies, an elaborate periodical analysis using different decomposition
techniques, trend analysis methods, and correlation analysis for different lags will be used in various hydrometeorological
variables.
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