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Abstract 
 
Analysing the variations in hydrological cycle components is essential for water resources planning and management. In this study, 

the relationship between the streamflow data belonging to five discharge gauging stations in the Eastern Black Sea Basin in Türkiye 

and the Arctic Oscillation (AO), East Atlantic-Western Russia (EAWR), North Atlantic Oscillation (NAO) and North Sea Caspian 

Pattern (NCP) was investigated. For this purpose, Spearman’s correlation test, ensemble empirical mode decomposition (EEMD) and 

relative importance analysis were used. Accordingly, Spearman’s correlation coefficients were calculated between raw streamflow 

data, decomposed streamflow data via EEMD and atmospheric teleconnections. Then, the relative importance analysis was applied to 

determine the atmospheric teleconnections’ influences on streamflow data. The findings showed that the relationship between raw 

streamflow data and atmospheric teleconnections is generally more significant and negative in the winter and spring. Furthermore, it 

was observed that the linkage between the decomposed streamflow data and atmospheric teleconnections could differentiate. Although 

no significant correlation between atmospheric teleconnections and raw streamflow data was detected in some months, significant 

correlations were detected between atmospheric teleconnections and decomposed streamflow data. This reveals the importance of 

examining the relationship between atmospheric teleconnections and streamflow data for different periods. The relative importance 

analysis revealed that the influence of atmospheric teleconnections on streamflow data could change from station to station and from 

component to component. This study showed that investigating the effects of atmospheric teleconnections on streamflow data for 

different components and periods is important. 
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Türkiye’nin Doğu Karadeniz Havzası’nda Atmosferik Tele Bağlantıların Akarsu 
Rejimi Üzerindeki Etkilerinin Analiz Edilmesi 
 
Özet 
 
Hidrolojik döngü bileşenlerindeki değişimlerin analiz edilmesi su kaynaklarının planlanması ve yönetilmesi açısından önem arz 

etmektedir. Bu çalışmada, Türkiye’nin Doğu Karadeniz Havzası’nda yer alan beş farklı akım gözlem istasyonuna ait akım verileri ile 

Arktik Salınım (AO), Doğu Atlantik-Batı Rusya Paterni (EAWR), Kuzey Atlantik Salınımı (NAO) ve Kuzey Denizi Hazar Paterni (NCP) 

arasındaki ilişki araştırılmıştır. Bu amaçla, Spearman’s korelasyon testi, toplu ampirik mod ayrıştırma metodu (EEMD) ve nispi önem 

analizi kullanılmıştır. Buna göre, Spearman’s korelasyon katsayıları hem ham akım verileri hem de EEMD ile bileşenlerine ayrılmış 

akım değerleri ile atmosferik tele bağlantılar arasında hesaplanmıştır. Daha sonra, atmosferik tele bağlantıların akım verileri 

üzerindeki etkisini belirlemek amacıyla nispi önem analizi uygulanmıştır. Elde edilen bulgular, ham akım verileri ile atmosferik tele 

bağlantılar arasındaki ilişkinin genel olarak kış ve ilkbahar aylarında daha önemli ve negatif olduğunu göstermiştir. Bununla birlikte, 

bileşenlerine ayrılmış akım verileri ile atmosferik tele bağlantılar arasındaki ilişkinin her bir bileşen için farklılık gösterebildiği 

gözlenmiştir. Atmosferik tele bağlantılar ile ham akım verileri arasında bazı aylar için herhangi bir ilişki bulunmamasına rağmen, 

bileşenlerine ayrılmış akım verileri ile atmosferik tele bağlantılar arasında önemli korelasyonlar tespit edilmiştir. Bu durum, 

atmosferik tele bağlantılar ile akım verileri arasındaki ilişkinin farklı periyotlarda incelenmesinin önemini ortaya koymaktadır. Nispi 

önem analizi atmosferik tele bağlantıların akım verileri üzerindeki etkisinin istasyondan istasyona ve bileşenden bileşene gösterdiğini 

ortaya koymuştur. Bu çalışma, atmosferik tele bağlantıların akım verileri üzerindeki etkisinin farklı bileşenler ve periyotlar için 

araştırılmasının önemini göstermiştir. 

     

Anahtar Sözcükler  

Akım, Atmosferik Tele Bağlantılar, EEMD, Korelasyon, Nispi Önem, Doğu Karadeniz  

 
1. Introduction 
 
Analysing the changes in hydrological cycle components are essential for water resources management. In addition, the 

effects of fluctuations in climatic parameters are essential for addressing extreme cases, such as floods and droughts.  
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The possible drivers behind the changes in hydrometeorological variables have been widely investigated (Oertel et al., 

2020; Sharma et al., 2020; Gan et al., 2023). In these studies, the relationship between atmospheric teleconnections and 

different hydrometeorological variables has been put forward. Oertel et al. (2020) analysed the linkage between drought 

indices, namely Standardised Precipitation Evapotranspiration Index (SPEI) and Standardized Streamflow Index (SSI) 

and El Niño Southern Oscillation (ENSO) in central Chile. They revealed that ENSO could be efficient in dry periods in 

the summer and winter for SPEI-6 and SSI-6. Forootan et al. (2019) examined the linkage between hydrological droughts 

from 2003-2016 and atmospheric teleconnections, globally. They pointed out that the ENSO was influential in the greater 

parts of many continents, such as Asia and the Australian continent in different periods. They also stated that the Indian 

Ocean Dipole (IOD) and North Atlantic Oscillation (NAO) had regional effects on hydrological droughts. Sharma et al. 

(2020) investigated the impacts of the ENSO, IOD on the hydrometeorological extremes in the Tapi Basin, India. They 

revealed that positive IOD and weak El Niño conditions could be more efficient on higher flood risk in the basin. Zhang 

et al. (2020a) analysed the global variations of short-term concurrent hot and dry extremes (SCHDE) and their linkage 

with climate indices. They stated that the Pacific Decadal Oscillation (PDO)’s cold phases during the La Niña events 

could be a driver on the fortification of the SCHDE events in southern South America and Australia. Zhang et al. (2020b) 

scrutinized the tendencies in hydrometeorological variables in the Yarlung Zangbo River Basin in China and the potential 

relationship between trends and large-scale circulation. In some stations, they detected significant negative correlations 

between streamflow, temperature, precipitation, and the PDO, multivariate ENSO index (MEI). Gan et al. (2023) 

scrutinised the variations in hydrometeorological events (precipitation and drought) and analysed the effects of potential 

factors on the variations in the Huaihe River Basin, China. They revealed that the extreme precipitation and drought had 

significant and changeable characteristics across the basin. They also showed that the Arctic Oscillation (AO) was the 

most efficient index on the extreme hydrological index of the basin, and the Southern Oscillation Index (SOI) and NAO 

were influential on drought.  

The linkage between hydrometeorological variables and atmospheric teleconnections in Türkiye has been analysed in 

many studies (Kutiel et al., 2002; Turkes & Erlat, 2003; Turkes & Erlat, 2008). Tosunoglu et al. (2018) examined the 

impacts of the NAO, SOI, North-Sea Caspian Pattern (NCP) on Standard Precipitation Index (SPI) in Türkiye. They 

found that the NAO was more efficient in the central and west Anatolia regions, whereas the NCP is more dominant in 

the eastern and northern regions. Duzenli et al. (2018) investigated the potential effects of atmospheric teleconnections, 

such as NAO, AO, SOI, and Western Mediterranean Oscillation (WMO), on the extreme precipitation variability in 

Türkiye. They found that the NAO is impactful on the extreme precipitation variability in the regions mostly affected by 

the Mediterranean climate, particularly in winter. Vazifehkhah and Kahya (2018) examined the influences of the NAO 

and AO extreme phases on hydrological drought, focusing on the standardised streamflow index (SSFI) in Türkiye and 

northern Iran. They found that NAO’s and AO’s negative extreme phases could lead to wetter conditions in the winter 

and spring in Türkiye, whereas the NAO and AO could be influential in Iran during only winter. Demir (2019) analysed 

the effects of the SOI on rainfall data of Central Anatolia, Turkey. Demir (2019) stated that La Nina could be influential 

in increasing precipitation, whereas El Nino could be efficient in decreasing precipitation. Yilmaz et al. (2020) 

investigated the relationship between NAO and precipitation in the Black Sea region. They found a negative, weak linkage 

between NAO and precipitation data. Abdelkader and Yerdelen (2022) scrutinised the linkage between the standardised 

streamflow index (SSFI) and atmospheric teleconnections, such as the ENSO, NAO, and Atlantic Multidecadal 

Oscillation (AMO) in Meriç Basin, Türkiye. They revealed that positive NAO and negative AMO phases could be related 

to the drought events. They also stated that the maximum dry conditions correspond to the La Nina events, whereas the 

maximum wet conditions coincide with the El Nino events. Akbas and Ozdemir (2023) investigated the impacts of 

atmospheric teleconnections on hydroclimatic variables (i.e., rainfall and runoff) using principal component analysis 

(PCA) and trend analysis approaches in the Marmara Sea River basins in Türkiye. They revealed that the NAO had high 

correlations with rainfall and runoff PC scores, especially in winter. Sezen (2023) analysed trends in streamflow using a 

wavelet-based approach (i.e., Innovative Polygon Trend Analysis (W-IPTA)) in the Konya Closed Basin, Türkiye. 

Significant short-term and long-term trends were found in the basin, and a significant negative relationship between the 

variability in streamflow and the NAO, AO, and NCP was obtained, particularly in winter. The implementation of data 

decomposition techniques has increased in recent years for analysing the trends in hydrometeorological variables and the 

effects of atmospheric teleconnections on the hydrometeorological variables (Abdelkader & Yerdelen, 2022; Sezen, 

2023). In these studies, it was revealed that examining the changes in hydrometeorological variables using data 

decomposition techniques can be helpful for a periodical analysis. However, investigating the impacts of atmospheric 

teleconnections on hydrometeorological variables using the decomposition techniques has been comparatively less.  

Analysing and determining the tendencies in hydrological components is substantial for efficient water resources 

management. Within this scope, using different approaches is significant to investigate the variability in 

hydrometeorological variables and the effects of atmospheric teleconnections on these variables.  

In this study, the NAO, AO, NCP, and East Atlantic/Western Russia (EAWR) indexes’ influence on the streamflow data 

in the Eastern Black Sea basin in Türkiye were investigated. First, Spearman’s rank correlation analysis was used to 

analyse the linkage between streamflow data and related atmospheric teleconnections. Then, the Ensemble Empirical 

Mode Decomposition (EEMD) method was applied to streamflow data for the decomposition process. Thus, the linkage 

between streamflow data and atmospheric teleconnections was examined for different frequency components.  
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Finally, the relative importance of the atmospheric teleconnections regarding their effects on streamflow data was 

analysed. Investigating the potential impacts of atmospheric teleconnections by implementing the EEMD and relative 

importance analysis represents the novel aspects of this research. 

 
2. Data and Methodology 
 
2.1 Study area and data used 
 
The linkage between streamflow data and atmospheric teleconnections was analysed in the Eastern Black Sea Basin 

situated in the north-eastern part of Türkiye (Figure 1). The Eastern Black Sea Basin generally has a regular precipitation 

regime, especially in the coastal parts, whereas dry weather conditions are dominant in the interior parts during summer. 

The geographical formations affect the precipitation regime across the basin. In this regard, the coastal parts have mild 

and wet conditions in winter and moderate and relatively wet during summer. On the other hand, interior parts have wet 

and cold climate conditions in winter and dry and hot climate characteristics in summer. The basin has significant water 

resources based on the precipitation characteristics, and rivers generally are not dry due to the redundant precipitation and 

snowmelt and relatively less evaporation in mild climate conditions (General Directorate of Water Management, 2020). 

The streamflow data from five discharge gauging stations was obtained from the General Directorate for State Hydraulic 

Works. The stations' spatial information and streamflow data statistics are given in Table 1 and Table 2, respectively. 

Accordingly, the data length changes from 35 to 36 years, and the altitude varies between 41 and 1296 m, as seen in Table 

1. The annual mean streamflow is higher in the eastern regions than the western part, according to Table 2. The standard 

deviation and maximum values are also high in the eastern part of the basin. 

 
Table 1: Location, data period and length of the discharge gauging stations 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Statistical data regarding annual streamflow data 
 

Station no Station name Location 
Altitude 

(m) 

Data period 

 

Data length 

(years) 

EİE 2202 
Kara Dere-Değirmencik  

Köyü 
40.007° E-40.85° N 78 1980-2015 36 

EİE 2215 Çamlık Dere-Dereköy 40.6° E-40.73° N 942 1980-2014 35 

EİE 2233 Tozköy Deresi-Tozköy 40.58° E-40.67° N 1296 1980-2015 36 

EİE 2245 Terme Çayı-Gökçeli 36.83° E-41.08° N 66 1980-2015 36 

EİE 2247 
Melet Çayı-Gocallı  

Köprüsü 
37.9° E-40.89° N 41 1980-2014 35 

 Statistics 

Station no Station name 
Minimum 

(m3/s) 

Mean 

(m3/s) 

Standard  

Deviation 

(m3/s) 

Maximum 

(m3/s) 
Skewness Kurtosis 

EİE 2202 
Kara Dere-Değirmencik  

Köyü 
6.34 10.99 2.02 15.89 0.20 0.76 

EİE 2215 Çamlık Dere-Dereköy 10.13 13.68 1.83 17.24 0.02 -0.44 

EİE 2233 Tozköy Deresi-Tozköy 4.75 6.66 1.04 8.62 0.07 -0.70 

EİE 2245 Terme Çayı-Gökçeli 3.91 7.34 1.64 10.37 -0.15 -0.43 

EİE 2247 
Melet Çayı-Gocallı  

Köprüsü 
3.26 27.15 8.9 43.75 -0.45 1.07 
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Figure 1: The study area’s location and used discharge gauging stations. The blue circles refer to the discharge gauging 
stations 

 
2.2 Atmospheric teleconnections 
 
The NAO represents the variability of atmospheric mass between the subtropical Atlantic and Arctic, and changes in 

NAO’s phases can lead to remarkable alterations in hydrometeorological parameters, such as surface temperature, winds, 

and precipitation in the Northern Hemisphere (Hurrell & Deser, 2010). The NAO's negative and positive phases can 

significantly affect changes in climatic variables. Turkes and Erlat (2003) revealed that precipitation tended to increase 

during the negative phase of the NAO (NAO (-)) for the winter and spring seasons and annually, while dry conditions 

were more dominant during the positive phase of the NAO in Türkiye. The AO is similar to the NAO; however, its main 

action centre envelops more of the Arctic, which gives the AO a more zonally symmetric view (Thompson & Wallace, 

1998). The AO is an influential atmospheric teleconnection in the northern hemisphere. The negative and positive phases 

of the AO could trigger the variability in hydrometeorological variables. Turkes and Erlat (2008) pointed out that warmer 

signals dominate during the AO’s negative phase, and cold signals are more influential during the AO’ positive phase in 

Türkiye. The NCP is identified between the grids of the North Sea and northern Caspian by Kutiel and Benaroch (2002). 

The NCP’s distinctive phases can significantly affect the changes in climatic parameters. Kutiel et al. (2002) found that 

temperature and precipitation had different tendencies under the NCP (-) and NCP (+) in the greater part of Türkiye. The 

EAWR is zonally oriented and has two principal anomaly centres across the Caspian Sea and Western Europe (Barnston 

& Livezey, 1987; Krichak & Alpert, 2005).  
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During the EAWR’s negative phase, wetter conditions than typical weather characteristics were observed in most regions 

of the Mediterranean, whereas vice versa was obtained for the EAWR’s positive phase (Barnston & Livezey, 1987; 

Krichak & Alpert, 2005). The NAO, AO, and EAWR data were obtained from the National Oceanic and Atmospheric 

Administration (NOAA) National Weather Service Climate Prediction Centre (NWS CPC) 

(https://www.cpc.ncep.noaa.gov). The NCP data were obtained from the University of East Anglia (UEA) Climatic 

Research Unit (CRU) (https://crudata.uea.ac.uk/cru/data/ncp/) and Sezen and Partal (2019). 

 
2.3 Correlation analysis 
 
Different correlation analysis approaches, such as Pearson’s correlation and Spearman’s rank correlation methods, have 

been generally used for investigating the effects of the atmospheric teleconnections on the hydrological variables. In this 

study, Spearman’s rank correlation analysis was implemented since it has advantages, such as not having an assumption 

that both variables have a normal distribution. The Spearman’s rank correlation coefficient formula is calculated as 

follows (Best & Roberts, 1975): 

 

𝑆 =  ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                                                                                                                                              (1) 

 

𝑟𝑠 = 1 −
6𝑆

𝑛(𝑛2−1)
                                                                                                                                                                   (2) 

 

where, S stands for the difference between the two ranks of each variable (i.e., xi and yi), rs stands for the Spearman’s 

rank correlation coefficient, and n for the number of samples. Then, the significance of Spearman’s rank correlation 

coefficients was evaluated according to the p values based on the AS89 algorithm (Best & Roberts, 1975).  

 
2.4 Ensemble Empirical Mode Decomposition (EEMD) 
 
The Ensemble Empirical Mode Decomposition (EEMD) is a time-space analysis technique which includes the white-

noise-added data and an enhanced version of the Empirical Mode Decomposition (EMD) method (Wu & Huang, 2009). 

The EEMD is used for the original time series’ decomposition in different modes which are called as finite intrinsic mode 

functions (IMFs) and a trend term (Wang et al., 2020). The steps for the EEMD analysis can be given as follows (Prasad 

et al., 2018; Wang et al., 2020): 

 

1) Using the original time series (x(t)) and setting the EEMD parameters. 

2) Adding a normally distributed white noise time series w (t) to x(t). 

 

𝑥′(𝑡) = 𝑥(𝑡) + 𝑤𝑖(𝑡)                                                                                 (3) 

 

3) 𝑥′(𝑡) is decomposed into IMFs and trend or residue components. 

4) The steps 2 and 3 are repeated for with various white noise series until the maximum ensemble number. 

5) All IMF components’ mean and residue components’ mean avoiding the white noise are computed and time series 

can be obtained as follows: 

 

𝑥′(𝑡) = ∑ 𝐼𝑀𝐹𝑗 + 𝑅𝑚
𝑚
𝑗=1                                                                    (4) 

 

where, IMFj represents the intrinsic mode functions, Rm denotes the residue component, and m is the total number of 

IMFs. The IMF1 represents the highest frequency and maximum amplitude, whereas increasing IMFs refers to decreasing 

frequencies. In this study, the IMFs’ number was obtained depending on the equation of m=log2 (N)-1, where N stands 

for the time series’ length (Guan, 2014). The empirical mode decomposition techniques were implemented in many 

hydrological modelling studies (Citakoglu & Coskun, 2022; Coskun & Citakoglu, 2023), and their usefulness was 

indicated in these studies. 

 
2.5 Relative importance analysis 
 
The relative importance of the atmospheric teleconnections regarding their effects on the streamflow regime was 

computed based on the R2 partitioned by averaging over orders (Lindeman et al., 1980; Chevan & Sutherland, 1991). 

First, the linear regression equation was established between target data (i.e., streamflow data) and input data (i.e., AO, 

EAWR, NAO and NCP). The R2 for a model with variables in regression in set S can be stated as follows (Gromping, 

2006): 
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𝑦̂𝑖 =  𝑐0 + 𝑥𝑖1𝑐1 + ⋯ + 𝑥𝑖𝑝𝑐𝑝 

 

𝑅2(𝑆) =
𝑀𝑜𝑑𝑒𝑙 𝑆𝑆(𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠 𝑖𝑛 𝑆)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑆
=

∑ (𝑦̂𝑖−𝑦̅)2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                                                                         (5) 

 

where, 𝑦̂𝑖 stands for the fitted response values, 𝑦̅ for the mean of c for the predicted coefficients, and xi1,…,xip for input 

variables. R2 quantifies the proportion of variation in the target variable (i.e., y) by considering regression input variables 

in the model. The additional R2 in case of the addition of the regression variables in set M to a model with the regression 

input variables in set S can be expressed as follows:  

 

𝑠𝑒𝑞𝑅2(𝑀|𝑆) = 𝑅2(𝑀 ∪ 𝑆) − 𝑅2(𝑆)                                                                                                                      (6) 

 

The order of the regression input data in any model is a permutation of the available regression input variables (i.e., 

x1,…,xp) and can be referred to as the tuple of r= (r1,….,rp) indices. The portion of R2 allocated to the regression variable 

xk can be pointed out as follows: 

 

𝑠𝑒𝑞𝑅2({𝑥𝑘}|𝑆𝑘(𝑟)) = 𝑅2({𝑥𝑘} ∪ 𝑆𝑘(𝑟)) − 𝑅2(𝑆𝑘(𝑟))                                                                                                    (7) 

 

where Sk(r) stands for the regression variables entered into the model before the regression xk in the order r (Gromping, 

2006).  

 
3. Results and Discussion 
 
First, the correlation analysis between atmospheric teleconnections and raw streamflow data was fulfilled in Section 3.1. 

Then, the relationship between atmospheric teleconnections and decomposed streamflow data was presented in Section 

3.2. The findings of the relative importance analysis were given to examine the influences of atmospheric teleconnections 

on streamflow data in Section 3.3. The analysis for investigating the relationship between atmospheric teleconnections 

and streamflow was carried out using Microsoft Excel (Microsoft Corperation, 2023), R programming language (R Core 

Team, 2023), and MATLAB Software (The MathWorks Inc., 2023). The flowchart regarding the adopted analysis is 

presented in Figure 2. 

 

 
 
Figure 2: Adopted approaches for analyzing the relationship between atmospheric teleconnections and streamflow data 
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3.1 Correlation analysis results for raw streamflow data 
 
First, the influences of the atmospheric teleconnections on raw streamflow data were investigated using the Spearman’s 

correlation analysis. The correlations between the AO and streamflow data are not significant in all months, whereas 

significant positive correlations are observed between the NAO and streamflow in August in EİE 2202 (Figure 3). 

Furthermore, the EAWR and NCP are positively and significantly correlated with the streamflow regime, especially in 

the autumn. The highly negative correlations are observed between the AO and streamflow in February and March in EİE 

2215 (Figure 4). The NAO and streamflow have a significant and negative linkage in EİE 2215, particularly in March 

and May. The EAWR has a significant negative relationship with streamflow data in February and April, and the 

significant negative correlations were observed between the NCP and streamflow in February, March, April, and May in 

EİE 2215. The NCP has a more significant relationship with the streamflow regime than other atmospheric 

teleconnections in EİE 2215. In EİE 2233, the relation between the NCP and raw streamflow data is highly negative and 

more significant in the winter and spring than other atmospheric teleconnections, according to Figure 5. There are no 

significant correlations between the AO, NAO and raw streamflow data in EİE 2233. Furthermore, a significant and 

negative correlation was obtained between the EAWR and streamflow data in April. The NCP has a significant and 

positive relationship with streamflow data in November and April, while any significant correlations were not obtained 

for other atmospheric teleconnections in EİE 2245 (Figure 6). In EİE 2247, significant and negative correlations were 

observed in February and April for the AO, and significant correlations were obtained in February and September, 

respectively for the NAO as seen in Figure 7. As for the EAWR and NCP, any significant correlations were not obtained 

in EİE 2247. The correlation analysis revealed that the effects of the atmospheric teleconnections on the streamflow data 

was similar to the findings of previous studies. Kebapcioglu and Partal (2021) showed that the correlations between the 

NAO, AO, and streamflow data were significant and negative correlations, in winter and annually in the Kızılırmak and 

Yeşilırmak basins, Türkiye. Furthermore, they detected that the AO and streamflow had a positive linkage in the autumn. 

Karabork et al. (2005) detected the significant effects of the NAO on precipitation and streamflow regimes in Türkiye in 

winter. Tosunoglu et al. (2018) obtained significant effects of the NAO on the Standard Precipitation Index (SPI) in the 

western and central parts of Türkiye, whereas NCP was more influential, especially in the northern and eastern parts of 

Türkiye. The NAO’s, AO’s, NCP’s, and EAWR’s influence on other meteorological variables were also detected in the 

region (Unal et al., 2012; Baltaci et al., 2018; Sezen & Partal, 2019). Unal et al. (2012) revealed a significant and negative 

linkage between the NCP and annual precipitation in the Eastern Black Sea region. Baltaci et al. (2018) pointed out that 

the EAWR was primarily positively correlated with precipitation anomalies in the Eastern Black Sea region and that 

positive EAWR could lead to wetter conditions. The positive relationship between the EAWR and raw streamflow data, 

especially in autumn, can be evaluated similarly to this finding. Sezen and Partal (2019) revealed a significantly negative 

linkage between the temperature and AO and NCP, whereas there is a positive relationship between the precipitation and 

related atmospheric teleconnections, particularly in the winter season. Similarly, the linkage between the raw streamflow 

and the NCP was mostly obtained positively, particularly in the autumn season in EİE 2202, EİE 2245 and EİE 2247. The 

AO and NAO have mostly negative correlations with the raw streamflow data in winter; however, they have a positive 

linkage with the raw streamflow, especially in the autumn months in EİE 2202, EİE 2245 and EİE 2247. 

 
3.2 Correlation analysis results for decomposed streamflow data 
 
The streamflow data of each station was decomposed into components using the EEMD analysis. In this respect, the four 

IMFs and one residual component belonging to the streamflow data were obtained based on the data length. Then, 

Spearman’s correlation analysis was performed for each component. In EİE 2202, the AO and streamflow data have 

significantly positive linkage for IMF1 and residual components in October and August, respectively (Figure 3). The 

NAO and streamflow data have a significant positive linkage in the residual component in July and August, whereas the 

significant positive correlations were observed in high-frequency components (i.e., IMF2) in October and April in EİE 

2202. The EAWR and streamflow data have significant positive correlations in high-frequency components in October, 

January, and February, while significant positive correlations in low-frequency components in November, March, and 

August in EİE 2202. In addition, significant negative correlations are also seen in February and August for IMF4 and 

IMF2 components, respectively. The NCP and streamflow data have significant positive and negative correlations for the 

IMF2 and IMF3 components in October and August, respectively.  

In EİE 2215, the AO and streamflow have significant negative correlations, especially for IMF2, IMF3, and IMF4 in 

February, May and June (Figure 4). The NAO and streamflow have a significant negative and positive relation in spring 

and summer, respectively in EİE 2215. The NAO and streamflow have a positive relationship, particularly for IMF4 and 

residual components in July and August. The relationship between the EAWR and streamflow is significantly negative 

in February and April for IMF1 and in November and February for IMF4 in EİE 2215. The NCP and streamflow have a 

significant negative linkage for the high-frequency components, especially for IMF1 in February, March, April, and May. 

Significant correlations were not obtained for the low-frequency components between the NCP and streamflow. 
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In EİE 2233, significant positive correlations were observed in October for IMF2 and August for the residual component 

considering the AO’s effect (Figure 5). Significant negative correlations were obtained in February for IMF2 and IMF3, 

whereas positive relationship was observed in August for the IMF4 and residual components between the NAO and 

streamflow. The EAWR and streamflow have negative correlations in the winter season, while they have positive 

correlations in October (for IMF1 and IMF3) and May and August (for the low-frequency components). The NCP and 

streamflow have negative correlations for the high-frequency components in March, April, and May, whereas they have 

positive correlations in the low-frequency components.  

In EİE 2245, the AO’s influence on the streamflow is negative in January, while the positive linkage was detected in 

May and July for high-frequency components, as seen in Figure 6. The NAO and streamflow have significant positive 

correlations in August and September. In addition, the NAO and streamflow has a significant and negative relationship 

in February (for IMF3), July and August (for the residual component). The EAWR and streamflow have a positive linkage 

in May and July and a negative relationship in January for the high-frequency components. The NCP and streamflow 

have a significant positive linkage in the autumn and spring.  

In EİE 2247, the AO’s effect on the streamflow is significantly positive and negative in the winter and summer, 

respectively, according to Figure 7. The NAO and streamflow have significant negative correlations, especially in 

February, and correlations are significantly negative and positive in the summer and autumn. The EAWR only had 

significant positive correlations for the high- and low-frequency components in August. Significant correlations were 

observed positively between the NCP and streamflow only in December and September.  

The correlation analysis with EEMD revealed significant correlations for different components even though the raw 

streamflow data do not have any significant relationship with the atmospheric teleconnections. The correlations are 

primarily negative in winter and spring, while significant positive correlations were seen in summer and autumn. 

Furthermore, significant relationship is available for the high- and low-frequency components. This indicates that 

analysing the impacts of atmospheric teleconnections on hydrometeorological variables using decomposition techniques 

can be useful in revealing the complex linkage between the related variables. The advantages of using data decomposition 

techniques, such as wavelet analysis and EEMD, for the investigation of climatic variability were shown in previous 

studies (Rathinasamy et al., 2019; Wang et al., 2020; Shi et al., 2021). Wang et al. (2020) indicated the usefulness of the 

EEMD regarding the identification of more relevant and reasonable physical indices. Similarly, Wang et al. (2023) 

showed that wavelet analysis can help reveal the relationship between the hydrometeorological variables and atmospheric 

teleconnections. In this regard, implementing the data decomposition methods can be beneficial for comprehensively 

analysing the linkage between climatic variables and atmospheric teleconnections. 

 

 
 

Figure 3: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO, 
c) EAWR, and d) NCP for EİE 2202. * term refers to the significant correlations at the significance level of α=0.05. 
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Figure 4: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO,                      
c) EAWR, and d) NCP for EİE 2215. *  term refers to the significant correlations at the significance level of α=0.05. 

 

 
 

Figure 5: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO,       
c) EAWR, and d) NCP for EİE 2233. *  term refers to the significant correlations at the significance level of α=0.05. 
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Figure 6: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO,                   
c) EAWR, and d) NCP for EİE 2245. *  term refers to the significant correlations at the significance level of α=0.05. 

 

 
 

Figure 7: Spearman’s correlation coefficients between the raw and decomposed streamflow data and a) AO, b) NAO,                         
c) EAWR, and d) NCP for EİE 2247. *  term refers to the significant correlations at the significance level of α=0.05. 
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3.3 Relative importance of the atmospheric teleconnections on the streamflow regime 
 
In this section, the relative impact of the atmospheric teleconnections on the streamflow regime was scrutinized using the 

relative importance analysis. Accordingly, the importance of the atmospheric teleconnections, which can indicate their 

effects on the streamflow regime, was given as a rate for each station, as seen in Table 3, Table 4, Table 5, Table 6, and 

Table 7. As seen in Table 3, the relative importance of the NCP and EAWR is more than other atmospheric 

teleconnections’ relative importance in the autumn and winter seasons, respectively, for EİE 2202. As for the IMF1 

component, the NCP has more relative importance than other atmospheric teleconnections, especially in spring months, 

whereas the EAWR has more relative importance in winter. The NAO has remarkably high relative importance compared 

to AO, EAWR, and NCP in winter and spring for IMF2. The NAO, AO, and NCP have higher relative importance, 

particularly in winter, spring, and summer, respectively, for IMF3. The relative importance of the EAWR and NAO is 

generally over 50% in winter and summer, respectively, for IMF4. For the residual, the EAWR, AO and NAO have 

remarkable relative importance in winter, spring, and summer, respectively, in EİE 2202. 

The relative importance of the atmospheric teleconnections related to their influence on the raw and decomposed 

streamflow data for EİE 2215 was presented in Table 4. Accordingly, the superior relative importance of the NCP is 

observed in winter and spring for raw streamflow data compared to other atmospheric teleconnections. Similarly, the 

NCP has higher relative importance rates in winter and spring than AO, EAWR, and NAO for IMF1, as seen in Table 4. 

Regarding IMF2, the EAWR and NAO have higher relative importance rates in winter and summer, respectively. The 

NCP has more remarkable relative importance rates than AO, EAWR, and NAO, particularly in autumn and spring for 

IMF2. The AO has higher relative importance rates in the spring and autumn seasons than EAWR, NAO and NCP for 

IMF3, while the relative importance of the EAWR is higher, particularly in summer. The NAO has more relative 

importance in spring and summer, whereas the EAWR has more relative importance rates in winter for IMF4. As for the 

residual component, it is observed that the relative importance of the EAWR is remarkably higher in winter and summer. 

The atmospheric teleconnections’ relative importance rates showing their relationship with streamflow data for EİE 

2233 are given in Table 5. The NAO's relative importance is remarkably higher in the winter and autumn, while the effect 

of NCP is more dominant in spring for raw streamflow data. For IMF1, the NCP has higher relative importance rates in 

spring, while the AO has more influence in summer. The NAO has higher relative importance rates in autumn and winter, 

while the NCP has higher relative importance rates for IMF2. As for IMF3, the effect of the AO is more substantial in the 

autumn season, and the EAWR is more influential in the summer. The NAO’s relative importance rate is higher in 

February and March and in summer for IMF4. The other atmospheric teleconnections also have high relative importance 

rates, which do not exhibit a seasonal tendency for IMF4. The EAWR has more influential rates than other atmospheric 

teleconnections in the winter and spring, whereas the NAO has more efficient relative importance rates for the residual 

component in summer. 

The relationship between the streamflow data and the atmospheric teleconnections based on the relative importance 

analysis for EİE 2245 was presented in Table 6. It is observed that the EAWR has higher relative importance rates than 

the AO, NAO, and NCP, in winter and spring. The EAWR is efficient in December and January, whereas the NCP has 

higher relative importance in February and March for IMF1. As for IMF2, the AO has higher relative importance rates in 

winter, while the EAWR has higher relative importance rates in spring and summer. Furthermore, the NAO’s relative 

importance rates are highly remarkable in autumn. The EAWR is dominant mainly in most months for IMF3, and higher 

relative importance rates of the EAWR are seen in winter and spring. The AO also has higher relative importance rates 

of over 70% in autumn for IMF3. The dominance of the EAWR is also evident for IMF4, particularly in autumn and 

winter. The NAO’s relative importance rates are primarily high in the summer for IMF4. Regarding the residual 

component, the EAWR is more impactful in winter, while the NAO is more influential in summer.  

The results showing the effects of the atmospheric teleconnection on streamflow data considering the relative 

importance analysis for EİE 2247 is shown in Table 7. The EAWR and NAO have higher relative importance rates for 

the raw streamflow data in autumn and winter, respectively. The EAWR and NAO are influential compared to AO and 

NCP in winter and spring, respectively, for IMF1. The NCP has remarkable relative importance rates, especially in winter 

and spring, whereas the EAWR has higher relative importance rates in summer for IMF2. As for IMF3, the NAO has 

higher relative importance rates in February, March, and summer. The AO and NAO have higher relative importance 

rates in spring and summer for IMF4. As for the residual component, the relative importance of the EAWR is substantially 

higher than the other atmospheric teleconnections’ relative importance rates. Accordingly, it can be stated that the EAWR 

has remarkable relative importance rates in winter, spring, and summer for the residual component. 

The relative importance analysis shows that the relative effect of each atmospheric teleconnection on the raw 

streamflow data and decomposed data for different periods can substantially change. In this regard, examining the impact 

of the atmospheric teleconnections on varied components is very important. Similar findings were emphasized in previous 

studies revealing the effects of atmospheric teleconnections on the hydrometeorological variables (Jiang et al., 2019; 

Sezen, 2023; Wang et al., 2023). All these studies indicated that the effects of atmospheric teleconnections on variables 

such as drought and streamflow can change for different periods. Accordingly, periodically investigating the influence of 

atmospheric teleconnections on hydrological components is substantial for water resources planning.  
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Furthermore, analysing the trends in hydrometeorological variables, using different methods, such as liner regression 

(LR), Man-Kendall (MK) analysis, and Spearman’s Rho (SRHO) could give more comprehensive outlook to examine the 

changes and variations in hydrometeorological variables as indicated in previous studies (Yarbasi, 2019; Demir, 2019; 

Yilmaz et al., 2020; Citakoglu & Minarecioglu, 2021). Accordingly, investigating the relationship between the 

atmospheric teleconnections and hydrometeorological variables for different lags, analysing the trends in 

hydrometeorological variables for different periods and the linkage between the trends and atmospheric teleconnections, 

and using different decomposition techniques can pave the way for a broad perspective to enlarge the scope of this 

research. In this regard, in further studies, the variability in various hydrometeorological variables will be investigated 

using various trend analyses and further correlation analysis for different lags, and periodical analysis will be performed 

using different decomposition techniques such as wavelet transform.  

 
Table 3: Relative importance rates for the EİE 2202 discharge gauging station. 

 
  Months 

Streamflow  

data 

Atmospheric  

teleconnections 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Raw 

AO 18% 16% 26% 3% 31% 5% 21% 25% 57% 23% 33% 3% 

EAWR 19% 7% 54% 58% 30% 14% 11% 2% 11% 43% 8% 1% 

NAO 8% 70% 7% 8% 21% 13% 51% 51% 25% 26% 43% 18% 

NCP 55% 7% 13% 31% 18% 68% 17% 22% 7% 8% 16% 78% 

IMF1 

AO 3% 6% 69% 3% 11% 11% 23% 10% 59% 27% 50% 9% 

EAWR 59% 20% 7% 63% 69% 4% 14% 2% 12% 18% 1% 2% 

NAO 4% 55% 20% 2% 6% 16% 26% 68% 25% 8% 8% 14% 

NCP 34% 19% 4% 32% 14% 69% 37% 20% 4% 47% 41% 75% 

IMF2 

AO 21% 6% 13% 7% 8% 8% 16% 25% 40% 13% 17% 9% 

EAWR 16% 26% 21% 23% 70% 56% 4% 16% 16% 19% 61% 1% 

NAO 13% 58% 42% 40% 10% 22% 67% 40% 14% 43% 19% 52% 

NCP 50% 10% 24% 30% 12% 14% 13% 19% 30% 25% 3% 38% 

IMF3 

AO 14% 79% 40% 25% 18% 16% 38% 67% 20% 9% 7% 6% 

EAWR 4% 2% 12% 13% 24% 48% 14% 3% 22% 15% 7% 29% 

NAO 74% 12% 26% 47% 43% 33% 23% 9% 13% 67% 17% 21% 

NCP 8% 7% 22% 15% 15% 3% 25% 21% 45% 9% 69% 44% 

IMF4 

AO 17% 7% 20% 16% 3% 9% 41% 3% 16% 7% 7% 2% 

EAWR 22% 68% 7% 38% 63% 64% 25% 46% 2% 20% 79% 17% 

NAO 52% 14% 66% 20% 10% 26% 2% 2% 51% 60% 11% 33% 

NCP 9% 11% 7% 26% 24% 1% 32% 49% 31% 13% 3% 48% 

Residual 

AO 22% 63% 14% 3% 7% 10% 73% 41% 12% 24% 16% 11% 

EAWR 24% 16% 64% 48% 62% 66% 16% 37% 18% 10% 35% 67% 

NAO 39% 17% 5% 11% 16% 19% 5% 18% 49% 52% 40% 18% 

NCP 15% 4% 17% 38% 15% 5% 6% 4% 21% 13% 9% 4% 

            Note: The bold rates show the highest relative importance rates for each month. 
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Table 4: Relative importance rates for the EİE 2215 discharge gauging station 
 

  Months 

Streamflow  

data 

Atmospheric  

teleconnections 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Raw 

AO 16% 27% 60% 8% 19% 6% 1% 6% 59% 25% 22% 73% 

EAWR 27% 6% 18% 31% 14% 8% 19% 8% 11% 20% 4% 13% 

NAO 33% 44% 15% 21% 24% 15% 1% 21% 15% 18% 58% 3% 

NCP 24% 23% 7% 40% 42% 71% 79% 65% 15% 37% 16% 11% 

IMF1 

AO 5% 33% 52% 4% 28% 8% 1% 3% 35% 29% 80% 10% 

EAWR 63% 7% 6% 20% 17% 0 22% 10% 10% 13% 2% 34% 

NAO 16% 55% 25% 20% 9% 6% 1% 3% 37% 29% 7% 36% 

NCP 16% 5% 17% 56% 46% 86% 76% 84% 18% 29% 11% 20% 

IMF2 

AO 6% 43% 12% 2% 11% 11% 28% 5% 45% 6% 24% 13% 

EAWR 22% 8% 64% 70% 23% 1% 7% 9% 10% 6% 33% 22% 

NAO 31% 8% 8% 2% 32% 33% 43% 20% 37% 72% 36% 13% 

NCP 41% 41% 16% 26% 34% 55% 22% 66% 8% 16% 7% 52% 

IMF3 

AO 65% 77% 4% 4% 17% 41% 16% 72% 7% 4% 2% 53% 

EAWR 12% 2% 68% 27% 43% 11% 1% 2% 61% 47% 0 36% 

NAO 14% 13% 3% 14% 26% 33% 79% 23% 18% 4% 43% 10% 

NCP 9% 8% 25% 55% 14% 15% 4% 3% 14% 45% 55% 1% 

IMF4 

AO 18% 8% 18% 16% 12% 11% 3% 21% 14% 22% 7% 9% 

EAWR 26% 68% 27% 49% 57% 41% 47% 10% 2% 34% 15% 3% 

NAO 24% 13% 30% 12% 7% 45% 24% 54% 56% 35% 66% 79% 

NCP 32% 11% 25% 23% 24% 3% 26% 15% 28% 9% 12% 9% 

Residual 

AO 55% 49% 23% 18% 9% 12% 29% 39% 26% 19% 11% 11% 

EAWR 3% 18% 4% 53% 55% 55% 7% 34% 3% 33% 49% 49% 

NAO 33% 10% 68% 9% 26% 25% 57% 23% 43% 30% 24% 19% 

NCP 9% 23% 5% 20% 10% 8% 7% 4% 28% 18% 16% 21% 

            Note: The bold rates show the highest relative importance rates for each month. 

 

Table 5: Relative importance rates for the EİE 2233 discharge gauging station 
 

  Months 

Streamflow  

data 

Atmospheric  

teleconnections 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Raw 

AO 10% 19% 35% 41% 19% 13% 2% 3% 52% 41% 27% 25% 

EAWR 21% 2% 3% 30% 7% 18% 25% 9% 14% 15% 4% 1% 

NAO 47% 75% 58% 13% 38% 14% 1% 23% 15% 11% 61% 38% 

NCP 22% 4% 4% 16% 36% 55% 72% 65% 19% 33% 8% 36% 

IMF1 

AO 3% 14% 45% 2% 16% 2% 2% 4% 41% 30% 47% 5% 

EAWR 62% 8% 11% 51% 20% 1% 20% 19% 11% 25% 3% 1% 

NAO 13% 72% 10% 9% 6% 3% 3% 6% 31% 23% 40% 34% 

NCP 22% 6% 34% 38% 58% 94% 75% 71% 17% 22% 10% 60% 

IMF2 

AO 15% 41% 19% 62% 22% 3% 5% 3% 39% 5% 4% 1% 

EAWR 14% 4% 9% 10% 4% 11% 22% 13% 26% 36% 27% 74% 

NAO 48% 44% 60% 11% 70% 7% 68% 20% 19% 50% 9% 16% 

NCP 23% 11% 12% 17% 4% 79% 5% 64% 16% 9% 60% 9% 

IMF3 

AO 9% 82% 6% 18% 24% 37% 5% 8% 11% 11% 2% 86% 

EAWR 54% 2% 20% 50% 4% 8% 41% 39% 58% 21% 69% 5% 

NAO 26% 11% 5% 9% 62% 41% 1% 21% 21% 52% 23% 6% 

NCP 11% 5% 69% 23% 10% 14% 53% 32% 10% 16% 6% 3% 

IMF4 

AO 47% 18% 6% 23% 24% 11% 54% 1% 14% 73% 10% 3% 

EAWR 15% 52% 45% 18% 6% 42% 16% 42% 6% 11% 40% 30% 

NAO 17% 6% 25% 7% 64% 43% 8% 4% 54% 9% 42% 57% 

NCP 21% 24% 24% 52% 6% 4% 22% 53% 26% 7% 8% 10% 

Residual 

AO 11% 29% 11% 12% 21% 21% 19% 5% 14% 21% 15% 3% 

EAWR 24% 9% 66% 60% 21% 53% 26% 52% 10% 10% 31% 75% 

NAO 57% 6% 4% 5% 24% 18% 50% 2% 52% 55% 45% 5% 

NCP 8% 56% 19% 23% 34% 8% 5% 41% 24% 14% 9% 17% 

            Note: The bold rates show the highest relative importance rates for each month. 
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Table 6: Relative importance rates for the EİE 2245 discharge gauging station 
 

  Months 

Streamflow  

data 

Atmospheric  

teleconnections 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Raw 

AO 48% 8% 6% 10% 25% 5% 45% 18% 9% 26% 9% 14% 

EAWR 28% 21% 67% 34% 54% 73% 26% 47% 32% 44% 5% 6% 

NAO 16% 36% 3% 27% 8% 6% 5% 24% 18% 25% 74% 38% 

NCP 8% 35% 24% 29% 13% 16% 24% 11% 41% 5% 12% 42% 

IMF1 

AO 6% 8% 7% 24% 6% 3% 36% 17% 5% 76% 11% 4% 

EAWR 74% 21% 45% 37% 32% 42% 25% 23% 33% 9% 3% 3% 

NAO 10% 9% 23% 20% 8% 6% 7% 52% 9% 11% 73% 73% 

NCP 10% 62% 25% 19% 54% 49% 32% 8% 53% 4% 13% 20% 

IMF2 

AO 13% 9% 35% 59% 43% 17% 31% 23% 21% 7% 11% 11% 

EAWR 39% 15% 38% 7% 6% 44% 35% 6% 3% 82% 54% 16% 

NAO 42% 70% 18% 23% 33% 7% 5% 6% 65% 4% 4% 42% 

NCP 6% 6% 9% 11% 18% 32% 29% 65% 11% 7% 31% 31% 

IMF3 

AO 75% 33% 7% 4% 23% 12% 11% 3% 49% 9% 10% 85% 

EAWR 1% 52% 58% 67% 2% 36% 25% 44% 15% 24% 50% 7% 

NAO 18% 5% 4% 2% 73% 21% 26% 17% 22% 54% 34% 5% 

NCP 6% 10% 31% 27% 2% 31% 38% 36% 14% 13% 6% 3% 

IMF4 

AO 17% 18% 4% 14% 17% 11% 31% 3% 14% 76% 7% 9% 

EAWR 32% 53% 58% 42% 29% 51% 18% 37% 7% 5% 0 61% 

NAO 43% 6% 6% 4% 47% 32% 20% 11% 54% 10% 75% 6% 

NCP 8% 23% 32% 40% 7% 6% 31% 49% 25% 9% 18% 24% 

Residual 

AO 34% 17% 24% 8% 14% 17% 76% 35% 12% 20% 9% 8% 

EAWR 21% 20% 3% 64% 52% 58% 14% 43% 28% 9% 7% 75% 

NAO 27% 26% 61% 6% 4% 19% 4% 15% 44% 56% 69% 10% 

NCP 18% 37% 12% 22% 30% 6% 6% 7% 16% 15% 15% 7% 

            Note: The bold rates show the highest relative importance rates for each month. 

 
Table 7: Relative importance rates for the EİE 2247 discharge gauging station 

 
  Months 

Streamflow  

data 

Atmospheric  

teleconnections 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Raw 

AO 25% 4% 10% 13% 19% 3% 86% 18% 32% 19% 30% 3% 

EAWR 32% 57% 58% 25% 29% 14% 4% 49% 19% 22% 61% 20% 

NAO 11% 18% 3% 35% 40% 3% 9% 28% 10% 53% 5% 43% 

NCP 32% 21% 29% 27% 12% 80% 1% 5% 39% 6% 4% 34% 

IMF1 

AO 6% 58% 44% 18% 22% 22% 60% 8% 27% 23% 56% 14% 

EAWR 43% 9% 8% 43% 43% 3% 8% 11% 13% 8% 16% 1% 

NAO 31% 19% 16% 10% 8% 44% 22% 45% 12% 59% 10% 13% 

NCP 20% 14% 32% 29% 27% 31% 10% 36% 48% 10% 18% 72% 

IMF2 

AO 68% 6% 5% 43% 14% 21% 18% 21% 18% 5% 6% 9% 

EAWR 3% 39% 23% 6% 14% 17% 48% 6% 47% 21% 86% 43% 

NAO 19% 40% 5% 42% 36% 7% 3% 22% 8% 59% 1% 17% 

NCP 10% 15% 67% 9% 36% 55% 31% 51% 27% 15% 7% 31% 

IMF3 

AO 37% 3% 5% 69% 20% 27% 66% 3% 19% 11% 2% 23% 

EAWR 28% 82% 21% 10% 6% 29% 2% 24% 9% 14% 66% 5% 

NAO 27% 2% 4% 14% 62% 37% 21% 2% 43% 65% 7% 58% 

NCP 8% 13% 70% 7% 12% 7% 11% 71% 29% 10% 25% 14% 

IMF4 

AO 40% 37% 17% 35% 19% 64% 67% 28% 24% 32% 9% 13% 

EAWR 22% 16% 29% 14% 21% 3% 3% 1% 30% 54% 34% 62% 

NAO 25% 5% 27% 28% 51% 33% 28% 70% 33% 10% 48% 6% 

NCP 13% 42% 27% 23% 9% 0 2% 1% 13% 4% 9% 19% 

Residual 

AO 17% 55% 6% 20% 19% 9% 82% 33% 18% 18% 12% 9% 

EAWR 19% 21% 67% 51% 19% 56% 7% 42% 27% 32% 55% 55% 

NAO 58% 20% 7% 10% 40% 27% 5% 20% 38% 31% 13% 14% 

NCP 6% 4% 20% 19% 22% 8% 6% 5% 17% 19% 20% 22% 

            Note: The bold rates show the highest relative importance rates for each month. 

 
4. Conclusions 
 
Analysing the variability and changes in hydrological components is critical for the efficient usage of water resources and 

for overcoming extreme phenomena. In this study, the relationship between the streamflow data and atmospheric 

teleconnections, namely AO, EAWR, NAO, and NCP, was analysed in the Eastern Black Sea Basin, Türkiye. In this 

respect, Spearman’s rank correlation analysis, EEMD technique and relative importance analysis were implemented. 

According to the analysis results, the following findings were acquired: 
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 Significant correlations between raw streamflow data and atmospheric teleconnections were observed in the winter 

and spring. The significant correlations are mostly negative; however, positive correlations are also detected. 

 The correlations between streamflow decomposed components and atmospheric teleconnections change for each 

component. Significant correlations between decomposed streamflow data and atmospheric teleconnections were 

observed in some cases, even though the raw streamflow data and atmospheric teleconnections did not have 

significant correlations. This shows that investigating the linkage between hydrometeorological data and 

atmospheric teleconnections for different periods is essential. 

 The relative importance analysis reveals that the relative effect of each atmospheric teleconnection on the raw 

streamflow data and decomposed data for different periods can significantly alter. 

This study shows that examining the effects of atmospheric teleconnections on streamflow data having different 

components and investigating their relative importance is significant regarding having a comprehensive outlook for 

investigating the variability in hydrometeorological variables. However, examining the relationship between the 

atmospheric teleconnections and hydrometeorological variables for several lags, analysing the trends in 

hydrometeorological variables for different periods, and implementing different data-decomposition approaches can 

remarkably improve the scope of this research topic and offering a distinctive outlook on this topic. In this respect, to 

improve the scope of this research, in further studies, an elaborate periodical analysis using different decomposition 

techniques, trend analysis methods, and correlation analysis for different lags will be used in various hydrometeorological 

variables.  
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