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Öz 
Dayanma yapıları, geoteknik mühendisliğinde zemin seviyelerini desteklenmesi, şev göçmelerinin önlenmesi ve 
tesfiye yüzeylerinin oluşturulması açısından önem arz etmektedirler.  Bu yapıların tasarımı, malzeme kullanımını 
ve maliyeti en aza indirirken iç ve dış stabilite için optimizasyonu içerir. Bu çalışma, betonarme konsol istinat 
duvarlarının Öğretme-Öğrenme Tabanlı Optimizasyon (TLBO) algoritması ve aracılarla geliştirilmiş bir versiyonu 
(I-TLBO) kullanılarak optimize edilmesine odaklanmaktadır. Konsol istinat duvarı tasarım süreci iki amaç 
fonksiyonunu dikkate almaktadır: ağırlığı ve maliyeti en aza indirme. Çalışma, geometrik ve yapısal tasarım 
değişkenlerini, geoteknik ve yapısal kısıtları ve optimizasyon süreçlerini incelemektedir. Optimizasyon sonuçları, 
genetik algoritmalar, evrimsel stratejiler ve parçacık sürüsü optimizasyonu gibi literatürdeki diğer algoritmalarla 
karşılaştırılmıştır. Geliştirilmiş TLBO algoritması, daha düşük tasarım boyutları ve daha düşük maliyetler elde 
ederek görece daha başarılı sonuçlar vermiştir. Geliştirilmiş TLBO algoritması tasarım kısıtlamalarını sınırlarına 
yaklaştıran daha verimli çözümler sunmuş, daha uygun maliyetli ve yapısal olarak daha stabil konsol istinat duvarı 
tasarımları elde edilmesini olanak tanımıştır. Çalışma sonucunda, I-TLBO algoritmasının konsol istinat duvarı 
tasarımının optimizasyonunda diğer yöntemlere göre daha düşük maliyet ve daha düşük ağırlıkların ede edilmesi 
bakımından etkin sonuçlar sunduğu görülmüştür. 
 
Anahtar kelimeler: İstinat duvarı tasarımı, Konsol istinat duvarı, Stabilite analizleri, Optimizasyon, Öğretme-
öğrenme tabanlı optimizasyon (TLBO) 
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Abstract 
Retaining structures play a crucial role in geotechnical engineering to support soil levels, prevent slope failure, 
and create flat surfaces for construction.  Designing these structures involves optimizing internal and external 
stability while minimizing material usage and cost. This study focused on optimizing reinforced concrete 
cantilever retaining walls using the Teaching-Learning Based Optimization (TLBO) algorithm and an improved 
version (I-TLBO) with agents. In the context of the study, geometric-structural design variables, geotechnical -
structural constraints, and optimization processes were examined. Minimizing weight and minimizing cost of the 
wall were the objectives considered in the cantilever retaining wall design process. The optimization results were 
compared with other algorithms in the literature, such as genetic algorithms, evolutionary strategies, and particle 
swarm optimization. The improved TLBO algorithm demonstrated superior performance, achieved lower design 
dimensions, and reduced costs. It provided more efficient solutions that pushed design constraints closer to their 
limits, resulting in a cost-effective and structurally sound cantilever retaining wall design. As a result of the study, 
the I-TLBO algorithm was found to be more cost and weight-effective than other methods in the optimization of 
cantilever retaining wall design. 
 
Keywords: Retaining wall design, Cantilever retaining wall, Stability analyses, Optimization; teaching-learning-
based optimization (TLBO) 
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1. Introduction 
 
Retaining structures used to support different soil levels, prevent slope failure, or create flat surfaces for 
construction projects have vital importance in geotechnical engineering. Various forms of the retaining 
structure, such as gravity walls, cantilever walls, sheet pile walls, gabion walls, or reinforced soil, can be used 
to support the forces exerted by the retained soil, water pressure, seismic load, or surcharge loads. The major 
matter in the design of retaining structures is to provide internal stability and external stability requirements 
cost-effectively. Determination of optimal balance between structural integrity and the use of the material 
has great significance in the engineering aspects. The essence of optimization applications for this purpose is 
to find cost-effective solutions, reduce material usage and at the same time provide structural efficiency. 
 
Cantilever retaining walls are a widely used structure type to sustain lateral earth stability and the use of this 
type of walls has been gradually increased since World War II [1]. Unlike other retaining wall designs, which 
rely on additional support from braces or tiebacks, a cantilever wall derives its strength from a rigid, vertical 
stem that extends into the ground. The stem is typically thicker at the base and tapers towards the top, creating 
a triangular cross-section. The key feature of a cantilever wall is the presence of a horizontal arm or "heel" at 
its base, which provides a counterbalance against the lateral pressure exerted by the retained material. This 
arm allows the wall to resist the forces acting on it and maintain stability. Additionally, a shear key subjected 
to passive earth pressure can be used to increase the stability of the wall.    
 
There are many studies in the literature about the investigation of optimization methods that can be used to 
design reinforced cantilever retaining walls. Genetic algorithms [2], teaching learning-based algorithm [3], 
charged system search (CSS) and improved harmony search [4], fuzzy adaptive metaheuristic algorithm [5], 
big bang–big crunch [6], particle swarm optimization [7], ant colony optimization [8], grey wolf optimization 
[9], simulated annealing [10], evolutionary algorithms [11,12], multi-objective optimization, firefly 
algorithm (FA), harmony search algorithm (HS) and improved firefly algorithm-harmony search (IFA-HS) 
[13] are major methods used in the studies. These optimization methods can be used individually or in 
combination with each other to solve optimization problems. Although the optimization of retaining walls in 
terms of weight and cost has been investigated using different algorithms in the literature, there are very few 
studies investigating the optimization performances of these walls with TLBO and I-TLBO algorithms. 
 
The Teaching-Learning-Based Optimization (TLBO) algorithm is an optimization method that takes its cues 
from how students collaborate to grow as individuals [14]. TLBO offers advantages such as simplicity in 
implementation, fewer parameters to tune, population-based exploration, analogy to teacher-student 
dynamics for better exploration, adaptability to various problems, global exploration, balanced exploration-
exploitation, and no need for gradient information [14–16]. In many studies, the TLBO mechanisms have 
demonstrated excellent results, particularly in terms of convergence. However, it has been observed and seen 
in studies that the algorithm tends to get stuck in local optima in some problems [17]. To overcome this 
disadvantage, this study aims to enhance the TLBO algorithm. If the algorithm does not show improvement 
over a certain number of iterations, except for the best individual, individuals in the population are replaced 
with randomly generated agents. The studies on optimum design of cantilever retaining walls several soil 
properties such as different soil characteristics [18], soil heterogeneity [8], permeability [19], particle size 
[20] were considered using above-mentioned optimization algorithms.  
 
This study intended to examine the performance of TLBO and I-TLBO algorithms for the optimal design of 
reinforced concrete cantilever retaining walls. The algorithms were coded in C# software considering the 
weight and cost of the structure was the object function. In this context, a widely used cantilever retaining 
wall example was used in the optimization process to compare the performance of the TLBO and I-TLBO 
approaches with other algorithms in the literature. 
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2. Optimization Process 
 
General outlines of the study were prepared considering [9]. For the optimal design of a reinforced 
concrete retaining wall, two different objective functions were used in the context of variables and 
constraints. The first objective function used aims to design the retaining wall in the lightest possible 
form, independent of cost. The first objective function can be expressed as follows: 
 

weight st cf W W= +                                        (1) 
 
𝑊𝑊𝑠𝑠𝑠𝑠 and 𝑊𝑊𝑐𝑐 represent the total weight of reinforcement and concrete used in the retaining wall, 
respectively. The second objective function used aims to minimize the total cost based on material 
weights and can be expressed as follows: 
 

cos t st s c Cf W C W C= +                                          (2) 
 
CS and CC represent the unit cost of reinforcement and concrete, respectively. The design variables given 
in Fig.1 were considered for calculating the weight and cost of the wall. Weights of concrete and 
reinforcement were taken into account in the determination of the cost of the wall. During the 
optimization phase, constraints were established based on safety factors against sliding, overturning, 
and bearing capacity parameters. 
 
2.1. Design variables 
 
Seven geometric and three structural design variables seen in Fig.1 were considered in the optimization 
process of the cantilever retaining wall. In accordance with the geometry of the wall, geometric design 
factors were selected, and structural design variables were modeled in relation to the critical sections of 
the wall. The variables X1, X2, X3, X4, and X5 represent the width of the foundation, width of the toe, 
stem thickness at the bottom, stem thickness at the top, and foundation thickness respectively. 
Additionally, expressions of the reinforcements of the wall are R1: vertical reinforcement area, R2: the 
horizontal reinforcement area of the foundation, and R3: the horizontal reinforcement area of the heel 
per unit length of the wall. 
 

 
 

Figure 1. Design variables of the wall considered for the optimization process 
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The rebar used in the reinforcement design was limited to a range of 3 to 28 units in each direction, with 
diameters between 10 and 30. All possible cross-sections in this range that exceeded a total cross-
sectional area of 127.42 cm2 were excluded. In this context, a total of 264 cross-sections were used 
within the scope of optimization. The reinforcement pool prepared considering the abovementioned 
method is presented in Table 1.  
 

Table 1. Reinforcement variable pool 
 

Reinforcement index Number of rebar Bar size (mm) Total steel area (cm2) 
1 3 10 2.356 
2 4 10 3.141 
3 3 12 3.393 
4 5 10 3.927 
. . . . 
. . . . 
. . . . 

131 14 18 35.626 
132 18 16 36.191 
133 8 24 36.191 
134 24 14 36.945 

. . . . 

. . . . 

. . . . 
261 20 28 123.150 
262 28 24 126.669 
263 18 30 127.234 
264 24 26 127.423 

 
2.1.1. Geotechnical modeling 
 
Loads considered in the checks were presented in Fig. 2. In the context of the study following notation 
was assumed. WS: weight of the wall, WB: Weight of the soil block above the heel, QSU: Surcharge load, 
PA: Active earth thrust actin on the soil block above the heel, PB: Resultant of the base pressure, Pp1: 
Passive earth thrust actin on the foundation, and Pp2: Passive earth thrust acting on the stem of the wall. 
The plain-strain condition was supposed to simplify the problem. Therefore, loads per unit length of the 
wall were taken into account in the analyses.  

 
 

Figure 2. The thrusts considered in the optimization process 
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Active and passive lateral earth thrusts acting on the wall were calculated with Rankine Theory [21]. 
Active and passive earth pressure coefficients used for earth thrust calculations were obtained with 
Eq.(3) and Eq.(4) respectively. In the equations, the backfill inclination angle was represented with β 
and the internal friction angle of the backfill was represented with φ.   

 

( ) ( )( )
( ) ( )

2 2

2 2

cos cos cos cos

cos cos cos
aK

β β β φ

β β φ

− −
=

+ −
                          (3) 

 

( )
2

tan 45 2pK φ = +  
                                                                                                                        (4) 

 
Overturning, sliding, and bearing capacity checks are the major components required to control the 
external stability of the wall. Safety factors were taken into account in the checks. The safety factor for 
overturning was determined by dividing the sum of the moments of driving force (ΣMD) by the sum of 
the moments of resisting force (ΣMR) (Eq.5). The moments about the front face of the toe were 
considered in the analyses. 
 

R
so

D

MF
M

Σ
=
Σ

                                         (5) 

 
Eq.(6) was used in the sliding checks. FSS representing the safety factor for sliding was determined by 
dividing the resisting forces (ΣFR) into driving forces (ΣFD). Resisting forces and driving forces were 
determined with Eq.(7), Eq.(8), and Eq.(9). In calculation of the resisting force (Eq.(7)), strength 
parameters of the base soil  (φbase, cbase) were taken into account. On the other hand, the strength 
parameters of the backfill soil were considered in the determination of the driving force (Eq.(8)). Passive 
earth thrusts acting on the foundation and the stem were determined using Eq.(10). The term D1 is the 
depth between foundation base and the soil surface that leads to passive earth pressure. 
 

R
ss

D

FF
F

Σ
=
Σ

                                                     (6) 

( ) ( ) 22tan 3 3R base base pF N Bc PφΣ = Σ + +                                    (7) 

cosD AF P βΣ =                                                      (8) 

1 2S B SU a y a yN W W Q P P∑ = + + + +              (9) 

2 2
1 2 1 1

1 2
2p p fill P PPp P P D K cD Kγ= + = +                                   (10) 

 
The ultimate bearing capacity of the base soil and maximum pressure applied from the foundation was 
calculated as follows for the bearing capacity check. 
 

max

u
SB

qF
q

=                                                    (11) 

 
Eq.(12) was used to determine the ultimate bearing capacity of the base soil. The Terzaghi ultimate 
bearing capacity theory [22] suggested for strip foundations was used to determine the qu value. Due to 
the backfill, the foundation of the wall is subjected to eccentric load. This leads to a decrease in the 
ultimate bearing capacity of the base soil and therefore it is required to revise Eq.(12). For that purpose, 
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Meyerhof’s Effective Area Method [23] was applied by reducing foundation width by twice the 
eccentricity (B-2e).  

( )1
1 2
2u base c fill q baseq c N D N N B eγγ γ= + + −                       (12) 

 
Maximum and minimum pressure exerted from the foundation was calculated with Eq.(13). Eccentricity 
was calculated with Eq.(14). In the equation overturning moment was represented with MO, the resisting 
moment was represented with MR, and the total axial load was represented with ΣV. 
 

min,max
61V eq

B B
Σ  = ± 

 
                                                (13) 

 
R OM Me

V
Σ −Σ

=
Σ

                                       (14) 

 
2.1.2. Structural modeling 
 
Shear and moment capacity checks were performed for internal stability. Critical sections of the wall 
such as the heel, toe, and stem were taken into account in the checks. The study considered the 
parameters specified in Equation (15), where Mn represents the nominal flexural strength, Es denotes the 
reduction factor, and Md represents the design moment for the critical section, which is determined 
through the application of factored loads and forces. 
 

s n dE M M≥                                                  (15) 
 
The strength reduction factor was assumed to be 0.9 considering the ACI 318-05 for tension controlled 
sections. Equations (16), (17), and (18), where T is the tension force acting on the nodal zone and C is 
the compression force acting on the nodal zone, were included in the calculation of Mn. Where fy is the 
reinforcement's yield strength and is area, fc is the compression strength of the concrete The stress block's 
width is denoted by b, its effective depth by d, and its equivalent rectangular stress block's depth by a. 
 

2n
aM T d = − 

 
                                                 (16) 

s yT A f=                                                   (17) 
0.85 cC f ba=                                       (18) 

 
Eq.(21) was derived from Eq.(19) and (20). The equation was used to calculate the depth of the 
equivalent rectangular stress block (a) where c is the distance from the extreme compression bar to the 
neutral axis and β1, is a factor based on fc. 
 

1a cβ=                                                    (19) 

0.85s y cA f f ba=                                                  (20) 

0.85
s y

c

A f
a

f b
=                                                   (21) 

 
The creteria given in Eqs. (22), and (23) were considered in shear capacity design based on ACI 318-05 
code.  
 

ns dE V V≥                                                        (22) 
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0.17n s cV E f bd=                                         (23) 
 
Shear and moment strengths of the structure of the stem, toe, and heel were determined separately by 
taking into account the load factors given in Eqs. (24) and (25) where D, L, and H represent dead load, 
live load, and earth thrust exerted by earth pressure and groundwater pressure respectively. 
 

1.4 1.7 1.7U D L H= + +                                     (24) 
 

0.9 1.7U D H= +                          (25) 
 
The stem's shear and moment strengths were calculated using Equations (26-29). Lh is the foundation 
slab's heel portion, and cc is the depth of the concrete cover in Equations (28 and 29). The critical section 
of the toe, ds, is given in Eq. (29) and is situated at dt(X5-cc) distant from the wall.  
 

( ) ( )2 3

1.7 cos cos
2 6

s s
stem a a fill

H H H H
Md qK Kβ γ β

 + +
= + 

  
                       (26) 

                     
 
                       (27) 

 
 

 
( ) tans hH L β=                                             (28) 

5ds X cc= −                                                   (29) 
 
The shear and moment strength calculations for the toe were performed with Eqs. (30) and (31). In the 
equations D is the depth of soil above the toe. ltoe is the length of the toe q2, qdt, qmax and qmin were 
determined from the pressure distribution emanating from the foundation base. q2 is the pressure acting 
on the intersection of stem and toe, and qdt is the soil pressure at the critical section of the toe. 
 

( ) 2max2
51.7 0.9

6 3toe c fill toe
qqMd X D tγ γ  = + − +    

                      (30) 

( ) ( )max
51.7 0.9

2
dt

toe c fill toe
q qVd X D l dtγ γ +  = − + −    

                    (31) 

 
The shear and moment strength calculations for the heel were performed with Eqs. (32) and (33). In the 
equations q1 was determined from the pressure distribution of the foundation. The pressure on the 
intersection of the heel and stem was considered as q1. Wbs is triangular backfill mass above the stem. 
Wbsdh is the backfill mass of the critical section 
 

5 21 min1.7 1.4 1.4 1.4 2
2 3 6

c fill bs
heel H

q X H W q qMd L
γ γ + +   +   = + +     

    
                   (32) 

( ) ( )min
51.7 1.4 1.4 1.4 0.9

2 2
bs bsdh dh

heel c fill h
W W q qVd q X H L dhγ γ + +    = + + + − −        

     (33) 

 
 
 

( ) ( )2

1.7 cos cos
2stem a s a fill

Hs H ds
Vd qK H H ds Kβ γ β

 + −
= + − + 

  
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The minimum area of flexural reinforcement and minimum steel reinforcement ratio were determined 
with Eqs. (34) and (35) considering the ACI 318–05. 
  

min 0.25 c

y

f
As bd

f
=                                      (34) 

As
bd

ρ =                                                    (35) 

 
The following formulations were used to determine the reinforcement ratio (ρb), development length 
(ld), and development length of a standard hook (ldh). 
 

10.85 600
600

c
b

y y

f
f f
βρ

   
=    

+      
                                    (36) 

12
19

25
y t e

d b b
c

f
l d d mm

f
ψ ψ λ 

= → ≤  
 

                       (37) 

12
19

20
y t e

d b b
c

f
l d d mm

f
ψ ψ λ 

= → >  
 

                       (38) 

0.24 y
dh b

c

f
l d

f

 
=   
 

                                                 (39) 

 
3. Constraints  
 
It is necessary to search a limited area for potential optimization problem solutions. The structural and 
geotechnical design constraints were established, and together these make up the search spaces[9]. In 
the context of the study, a total of 25 constraints were used in the optimization process. The constraints 
of the study can be classified into two subcategories: geotechnical constraints and structural constraints. 
 
3.1. Geotechnical constraints 
 
In the geotechnical constraints, factors of safety against slippage, overturning, and bearing capacity were 
considered. In this section, the constraints are expressed as follows in comparison with the design factors 
to avoid any collapse in the foundation soil. 
 

(1) 1 0design

O

SO

S

F
g

F
= − ≤                                       (40) 

(2) 1 0design

S

SS

S

F
g

F
= − ≤                                      (41) 

(3) 1 0design

B

SB

S

F
g

F
= − ≤                                      (42) 
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3.2. Structural constraints 
 
Components of a retaining wall have to fulfill the necessary requirements for reinforcing, moment, and 
shear capability. The following constraints were used to sustain internal integrity. 
 

min(4) 1 0g q= − ≤                                       (43) 

(5 8) 1 0d

n

Mg
M

− = − ≤                                      (44) 

(9 12) 1 0d

n

Vg
V

− = − ≤                                            (45) 

min(13 16) 1 0S

S

A
g

A
− = − ≤                                     (46) 

max

(17 20) 1 0S

S

Ag
A

− = − ≤                                           (47) 

2 3

1

(21) 1 0X Xg
X
+

= − ≤                                           (48) 

6 7

1

(22) 1 0X Xg
X
+

= − ≤                                           (49) 

(23) 1 0  or  (23) 1 0
5 5

stem stemdb dhl l
g g

X cc X cc
= − ≤ = − ≤

− −
                                          (50) 

1 2 5

12
(24) 1 0  or  (24) 1 0toe toedb dhl l

g g
X X cc X cc

= − ≤ = − ≤
− − −

                                       (51) 

2 3 5

(25) 1 0  or  (25) 1 0heel heeldb dhl l
g g

X X cc X cc
= − ≤ = − ≤

+ − −
                                      (52) 

 
4. Improved Teaching-Learning Based Optimization Algorithm with Agents 
 
The Teaching-Learning-Based Optimization (TLBO) algorithm is an optimization algorithm based on 
the process of students in a classroom interacting with each other to improve themselves [1, 24]. The 
algorithm consists of two main phases. In the first phase, the individual with the best objective function 
value in the population tries to improve other individuals. Individuals that show improvement in terms 
of the objective function are updated. In the second phase, individuals in the population engage in one-
to-one interactions, striving for improvement. At this point, the individuals that show progress are 
updated to enhance the population. This algorithm has been tested in various optimization problems and 
has shown highly effective results in the context of structural optimization [2-5]. In many studies, the 
TLBO mechanisms have demonstrated excellent results, particularly in terms of convergence. The local 
optimum avoidance mechanisms of population-based algorithms are important for the results obtained. 
This study aims to enhance the TLBO algorithm, in this respect. When the algorithm gets stuck at the 
local optimum, it is usually due to the population clustering around a particular solution. Therefore, it is 
useful to have a mechanism for the algorithm to move out of this clustering area. There are numerous 
studies developed in this regard [3, 6]. In this study, a local optimum avoidance approach suitable for 
the problem is developed. Before activating the developed mechanism, the algorithm tries to find out 
whether it is stuck at the local optimum. This decision is determined as no improvement of the best 
solution over a predetermined number of generations. For this problem, this number was set to 10 
generations. Then the mechanism switches on and replaces all individuals in the population with new 
individuals whose parameters are randomly determined, except for the best solution. These new 
individuals injected into the algorithm are identified as agents and the activation of the mechanism is 
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tracked by the variable "agentcounter". Once the agents have been activated, the variable is reset to zero 
and the algorithm starts following the course of the algorithm again. The flowchart of this improved 
version of the TLBO algorithm is shown in Figure 3. The boundary values of the parameters for the 
optimization process are presented in table x. 
 

Table 2. Boundries of the parameters [7] 
 

Design variable Lower Bound  Upper Bound 
X1 1.3090 m 2.3333 m 
X2 0.4363 m 0.7777 m 
X3 0.2000 m 0.3333 m 
X4 0.2000 m 0.3333 m 
X5 0.2722 m 0.3333 m 
R1 Index: 1 | 2.356 cm2 Index: 264 | 127.423 cm2 

R2 Index: 1 | 2.356 cm2 Index: 264 | 127.423 cm2 

R3 Index: 1 | 2.356 cm2 Index: 264 | 127.423 cm2 

   

 
 

Figure 3. Flowchart of the I-TLBO with agents 
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A numerical example used by several studies [6, 9, 11, 25] was taken into account to evaluate the 
efficiency of the suggested algorithms. Table 3 displays the design parameters and wall measurements 
taken into account in the numerical example. The parameters in the Table 3 represents a case used in the 
optimizing the cantilever retaining wall. Field or laboratory tests were not performed to obtain the 
parameters. 
 

Table 3. Parameters considered for the example [9] 
 

Input parameters Symbol Value Unit 
Height of stem H 3 m 
Steel reinforcement yield strength ƒy 400 MPa 
Compressive strength of concrete Ƒc 21 MPa 
Concrete cover cc 7 cm 
Shrinkage and temperature reinforcement 
percentage 

ρst 0.002 - 

Surcharge load Q 20 kPa 
Backfill slope B 10 ° 
Internal friction angle of base soil φbase 0 ° 
Internal friction angle of retained soil φ 36 ° 
Unit weight of retained soil γfill 17.5 kN/m3 
Unit weight of base soil γbase 18.5 kN/m3 
Unit weight of steel Gs 78.5 kN/m3 
Unit weight of concrete γc 23.5 kN/m3 
Depth of soil in front of the wall D 0.5 m 
Cost of steel Cs 0.4 $/kg 
Cost of the concrete Cc 40 $/kg 
The factor of safety for overturning stability FSOdesign 1.5 - 
The factor of safety for sliding FSSdesign 1.5 - 
The factor of safety for bearing capacity FSBdesign 1.5 - 
The base soil's cohesiveness cbase 125 kPa 

 
The performance of TLBO was evaluated by several studies in the literature [26, 27]. In the study, TLBO 
was separately applied with both the traditional version and the version developed in this study for the 
two objective functions mentioned. As a result, four different optimization processes were planned. For 
each process, the stopping criterion of the algorithm was set as not improving the current best solution 
for 50 iterations. Each process was run five times, and the variable values and outcomes of the best 
solutions obtained were presented in Table 4.  
 

Table 4. Results of optimization processes. 
 

 Best-Weight Best-Cost 
 TLBO I-TLBO TLBO I-TLBO 
X1 1.67 1.60 1.72 1.66 
X2 0.57 0.59 0.60 0.53 
X3 0.21 0.21 0.28 0.30 
X4 0.20 0.20 0.23 0.20 
X5 0.28 0.28 0.28 0.28 
R1 78 76 38 76 
R2 120 33 17 33 
R3 76 28 17 28 
Best 2659.714 (kg) 2627.293 (kg) 74.8866 ($) 72.0398 ($) 
Mean ± Std.D. 2779.05 ± 53.60 2694.69 ± 24.97 81.35 ± 2.62 75.36 ± 1.11 

 
As can be seen, the improved version of the algorithm has produced better results in terms of both 
average and best values for both objective functions. The capacity utilization ratios (CUR) values were 
used to show the extent to which the algorithm is proportionally challenging the constraints to which it 
is subjected. In this way, it is tried to show how effective the optimization algorithm produces effective 
results from a different perspective in terms of the problem.  The capacity utilization ratios of the 
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obtained optimal designs in terms of constraints for each combination are presented in Figure 4. As can 
be seen in Figures 4a and 4b, where the CUR values for the weight-optimized designs are presented, the 
improved version of TLBO uses limiters with a higher capacity. The corresponding utilization ratios are 
on average 0.427 for TLBO and 0.459 for I-TLBO. It can be seen from Figs. 4c and 4d, the same is true 
for the optimization process for the best cost. In this context, the average CUR values are 0.476 for 
TLBO and 0.484 for I-TLBO. Therefore, it can be argued that for both optimization processes, the 
improved version of the TLBO algorithm pushes the bounding capacities to a higher extent than the 
original version. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Capacity utilization ratios (CUR) of best solutions (a) TLBO-Best weight, (b) I-TLBO-best weight     
(c) TLBO-Best cost, (d) I-TLBO-Best cost 
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It can be observed that the improved TLBO approach brings the constraint capacities closer to their 
limits compared to the traditional version. Additionally, the convergence curves of the two algorithms 
used separately for each objective function are provided in Figs. 5 and 6 throughout the process. 
 

 
Figure 5. Convergence history for weight optimization 

 
 

Figure 6. Convergence history for cot optimization 
 
The wall’s dimension (X1-X5) and the sections of reinforcements (R1-R3) of the reinforcements used in 
the wall were considered design variables. The optimum values of the X and the R variables were 
determined with TLB and I-TLBO algorithms based on minimum weight and minimum cost. In Table 
5 and Table 6, the optimum values determined by TLBO and I-TLBO algorithms are compared with 
other algorithms in the literature. Grey Wolf Optimization (GWO) [9], Search Group Algorithm (SGA) 
and Backtracking Search Algorithm (BSA) [29], Big Bang–Big Crunch Algorithm (BB-BC) [6], 
Genetic Algorithm (GA) [11], Differential Evolution (DE), Evolutionary Strategy (ES), Biogeography 
Based Optimization Algorithm (BBO), Differential Evolution (DE), Evolutionary Strategy (ES), 
Biogeography Based Optimization Algorithm (BBO), Interior Search Algorithm (ISA) [30], Particle 
Swarm Optimization (PSO), Accelerated Particle Swarm Optimization (APSO) [28] were evaluated in 
the comparison. As can be seen from Table 5, TLBO algorithms yielded significantly lower dimensions 
than the other approaches, especially in X1, X2, and X3 dimensions. As a result of the evaluation between 
TLBO and I-TLBO algorithms, it is seen that the I-TLBO algorithm gives a lower dimension for the X1 
dimension, and the TLBO algorithm gives a lower dimension for the X2 dimension. 
 

Table 5. Low-weight design variables determined with various optimization approaches 
 

 X1 X2 X3 X4 X5 R1 R2 R3 
TLBO    (This study) 1.67 0.57 0.21 0.20 0.28 78 120 76 
I-TLBO (This study) 1.60 0.59 0.21 0.20 0.28 76 33 28 
GWO  1.80 0.67 0.21 0.20 0.28 82 15 15 
SGA    1.71 0.65 0.20 0.20 0.27 77 23 17 
BSA    1.71 0.64 0.20 0.20 0.27 77 14 14 
BB-BC 1.74 0.65 0.20 0.20 0.27 77 17 17 
ISA      1.84 0.75 0.39 0.20 0.27 34 15 15 
DE  1.87 0.62 0.29 0.20 0.27 34 19 16 
GA  1.91 0.58 0.27 0.20 0.28 50 21 15 
BBO 1.84 0.74 0.27 0.20 0.27 37 14 14 
ES 1.84 0.69 0.32 0.22 0.28 26 22 29 
APSO 1.84 0.57 0.27 0.20 0.27 40 28 17 
PSO 1.84 0.74 0.29 0.20 0.27 33 14 14 
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The mean and best objective function values for the algorithms are displayed in Table 6. It is seen from 
the table that TLBO algorithms are among the algorithms that give the lowest weight value. As a result 
of the comparison between TLBO and I-TLBO algorithms, it is seen that the I-TLBO algorithm provides 
a lower-weight design. 
 

Table 6. Comparison of low-weight design results (kg/m) 
 

 Best Mean 
TLBO    (This study) 2659.714 2779.05 ± 53.60 
I-TLBO (This study) 2627.293 2694.69 ± 24.97 
GWO 2721.7915 2748.7809 
SGA 2584.46 2589.00 
BB-BC 2608.38 - 
ISA 2665.8027 2677.5681 
GA 2744.80 2850.90 
DE 2726.50 2851.00 
ES 2762.40 2845.00 
BBO 2665.80 2677.70 
PSO 2665.80 2687.60 
APSO 2668.00 2687.60 
FA 2666.50 2673.40 
CS 2665.80 2665.80 

 
The optimum values of the X and the R variables determined with low-cost design objective function 
were presented in Table 7. In this section, the cost-based performances of TLBO algorithms were 
compared with algorithms such as Genetic Algorithm (GA), Differential Evolution (DE), Evolutionary 
Strategy (ES), and Biogeography Based Optimization (BBO) [28]. From Table 7, it is seen that TLBO 
algorithms offer lower cross-sections than the other algorithms especially for X1 and X2. As a result of 
the comparison between I-TLBO and TLBO algorithms, it is seen that lower values are obtained with 
the I-TLBO algorithm. 
 

Table 7. Low-cost design variables determined with various optimization approaches ($/m) 
 

 X1 X2 X3 X4 X5 R1 R2 R3 
TLBO   (This study) 1.720 0.600 0.280 0.230 0.280 38 17 17 
I-TLBO (This study) 1.660 0.530 0.300 0.200 0.280 76 33 28 
GA 1.91 0.586 0.272 0.201 0.280 40 21 15 
DE 1.872 0.616 0.290 0.206 0.271 34 19 16 
ES 1.845 0.691 0.320 0.221 0.280 26 22 29 
BBO 1.842 0.737 0.277 0.200 0.270 91 36 44 

 
Table 8 presents the final low-cost design objective function values, including the best, mean, and SD 
values. As shown in the table, the best low-cost design was achieved by the I-TLBO algorithm with the 
best of $72.0398/m. When the mean values are considered, it is seen that the I-TLBO algorithm offers 
the lowest cost design after the BBO algorithm. On a cost basis, the I-TLBO algorithm suggests a 
significantly lower cost design compared to the TLBO algorithm. 
 

Table 8. Comparison of design cost for the example ($/m) 
 

 Best Mean 
TLBO    (This study) 74.8866 81.35 ± 2.620 
I-TLBO (This study) 72.0398 75.36 ± 1.110 
GA 77.6300 82.16 ± 1.600 
DE 75.4900 82.23 ± 1.673 
ES 78.0700 81.71 ± 1.308 
BBO 73.0800 73.91 ± 0.827 
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5. Conclusions  
 
This study intended to optimize the design of reinforced concrete cantilever retaining walls using the 
Teaching-Learning-Based Optimization (TLBO) algorithm and an improved version of TLBO called I-
TLBO. The design objectives were to minimize the weight and the cost of the retaining wall while 
satisfying various geotechnical and structural constraints. The optimization process involved 
determining optimal values for design variables related to wall dimensions and reinforcement areas. Key 
conclusions drawn from the study are as follows: 

• The TLBO algorithms, both the traditional version and I-TLBO, outperformed other 
optimization algorithms in terms of achieving lower weights and costs for the retaining wall 
design. 

• The I-TLBO algorithm provided better results in terms of both mean and best values for both 
the weight and cost optimization objectives. 

• Both TLBO algorithms, especially I-TLBO, brought the constraint capacities closer to their 
limits compared to the traditional version, indicating improved constraint satisfaction. 

• The convergence history of the algorithms showed that I-TLBO converged faster and achieved 
better solutions compared to the traditional TLBO, highlighting the effectiveness of the 
introduced improvements. 
 

In summary, the study demonstrated that the I-TLBO algorithm, an improved version of the TLBO 
algorithm, is highly effective for optimizing the design of reinforced concrete cantilever retaining walls. 
It consistently provided better results in terms of both weight and cost optimization compared to other 
algorithms considered in the study. While the study shows promise for I-TLBO, it would be beneficial 
to compare its performance with other well-established optimization algorithms for retaining wall design 
problems. This would provide a broader perspective on its effectiveness. 
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