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Oz

Dayanma yapilari, geoteknik mithendisliginde zemin seviyelerini desteklenmesi, sev gogmelerinin dnlenmesi ve
tesfiye yiizeylerinin olusturulmasi a¢isindan dnem arz etmektedirler. Bu yapilarin tasarimi, malzeme kullanimini
ve maliyeti en aza indirirken i¢ ve dig stabilite i¢in optimizasyonu igerir. Bu ¢alisma, betonarme konsol istinat
duvarlarinin Ogretme-Ogrenme Tabanli Optimizasyon (TLBO) algoritmasi ve aracilarla gelistirilmis bir versiyonu
(I-TLBO) kullanilarak optimize edilmesine odaklanmaktadir. Konsol istinat duvart tasarim siireci iki amag
fonksiyonunu dikkate almaktadir: agirligi ve maliyeti en aza indirme. Calisma, geometrik ve yapisal tasarim
degiskenlerini, geoteknik ve yapisal kisitlar1 ve optimizasyon siireglerini incelemektedir. Optimizasyon sonuglari,
genetik algoritmalar, evrimsel stratejiler ve pargacik siiriisii optimizasyonu gibi literatiirdeki diger algoritmalarla
karsilagtirtlmistir. Gelistirilmis TLBO algoritmasi, daha diisiik tasarim boyutlar1 ve daha diisiik maliyetler elde
ederek gorece daha basarili sonuglar vermistir. Gelistirilmis TLBO algoritmasi tasarim kisitlamalarint sinirlarina
yaklastiran daha verimli ¢dziimler sunmusg, daha uygun maliyetli ve yapisal olarak daha stabil konsol istinat duvari
tasarimlari elde edilmesini olanak tanimistir. Caligma sonucunda, I-TLBO algoritmasinin konsol istinat duvari
tasariminin optimizasyonunda diger yontemlere gore daha diisitk maliyet ve daha diisiik agirliklarin ede edilmesi
bakimindan etkin sonuglar sundugu goériilmiistiir.
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Abstract

Retaining structures play a crucial role in geotechnical engineering to support soil levels, prevent slope failure,
and create flat surfaces for construction. Designing these structures involves optimizing internal and external
stability while minimizing material usage and cost. This study focused on optimizing reinforced concrete
cantilever retaining walls using the Teaching-Learning Based Optimization (TLBO) algorithm and an improved
version (I-TLBO) with agents. In the context of the study, geometric-structural design variables, geotechnical -
structural constraints, and optimization processes were examined. Minimizing weight and minimizing cost of the
wall were the objectives considered in the cantilever retaining wall design process. The optimization results were
compared with other algorithms in the literature, such as genetic algorithms, evolutionary strategies, and particle
swarm optimization. The improved TLBO algorithm demonstrated superior performance, achieved lower design
dimensions, and reduced costs. It provided more efficient solutions that pushed design constraints closer to their
limits, resulting in a cost-effective and structurally sound cantilever retaining wall design. As a result of the study,
the I-TLBO algorithm was found to be more cost and weight-effective than other methods in the optimization of
cantilever retaining wall design.

Keywords: Retaining wall design, Cantilever retaining wall, Stability analyses, Optimization; teaching-learning-
based optimization (TLBO)
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1. Introduction

Retaining structures used to support different soil levels, prevent slope failure, or create flat surfaces for
construction projects have vital importance in geotechnical engineering. Various forms of the retaining
structure, such as gravity walls, cantilever walls, sheet pile walls, gabion walls, or reinforced soil, can be used
to support the forces exerted by the retained soil, water pressure, seismic load, or surcharge loads. The major
matter in the design of retaining structures is to provide internal stability and external stability requirements
cost-effectively. Determination of optimal balance between structural integrity and the use of the material
has great significance in the engineering aspects. The essence of optimization applications for this purpose is
to find cost-effective solutions, reduce material usage and at the same time provide structural efficiency.

Cantilever retaining walls are a widely used structure type to sustain lateral earth stability and the use of this
type of walls has been gradually increased since World War 11 [1]. Unlike other retaining wall designs, which
rely on additional support from braces or tiebacks, a cantilever wall derives its strength from a rigid, vertical
stem that extends into the ground. The stem is typically thicker at the base and tapers towards the top, creating
a triangular cross-section. The key feature of a cantilever wall is the presence of a horizontal arm or "heel" at
its base, which provides a counterbalance against the lateral pressure exerted by the retained material. This
arm allows the wall to resist the forces acting on it and maintain stability. Additionally, a shear key subjected
to passive earth pressure can be used to increase the stability of the wall.

There are many studies in the literature about the investigation of optimization methods that can be used to
design reinforced cantilever retaining walls. Genetic algorithms [2], teaching learning-based algorithm [3],
charged system search (CSS) and improved harmony search [4], fuzzy adaptive metaheuristic algorithm [5],
big bang—big crunch [6], particle swarm optimization [ 7], ant colony optimization [8], grey wolf optimization
[9], simulated annealing [10], evolutionary algorithms [11,12], multi-objective optimization, firefly
algorithm (FA), harmony search algorithm (HS) and improved firefly algorithm-harmony search (IFA-HS)
[13] are major methods used in the studies. These optimization methods can be used individually or in
combination with each other to solve optimization problems. Although the optimization of retaining walls in
terms of weight and cost has been investigated using different algorithms in the literature, there are very few
studies investigating the optimization performances of these walls with TLBO and I-TLBO algorithms.

The Teaching-Learning-Based Optimization (TLBO) algorithm is an optimization method that takes its cues
from how students collaborate to grow as individuals [14]. TLBO offers advantages such as simplicity in
implementation, fewer parameters to tune, population-based exploration, analogy to teacher-student
dynamics for better exploration, adaptability to various problems, global exploration, balanced exploration-
exploitation, and no need for gradient information [14—16]. In many studies, the TLBO mechanisms have
demonstrated excellent results, particularly in terms of convergence. However, it has been observed and seen
in studies that the algorithm tends to get stuck in local optima in some problems [17]. To overcome this
disadvantage, this study aims to enhance the TLBO algorithm. If the algorithm does not show improvement
over a certain number of iterations, except for the best individual, individuals in the population are replaced
with randomly generated agents. The studies on optimum design of cantilever retaining walls several soil
properties such as different soil characteristics [18], soil heterogeneity [8], permeability [19], particle size
[20] were considered using above-mentioned optimization algorithms.

This study intended to examine the performance of TLBO and I-TLBO algorithms for the optimal design of
reinforced concrete cantilever retaining walls. The algorithms were coded in C# software considering the
weight and cost of the structure was the object function. In this context, a widely used cantilever retaining
wall example was used in the optimization process to compare the performance of the TLBO and I-TLBO
approaches with other algorithms in the literature.
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2. Optimization Process

General outlines of the study were prepared considering [9]. For the optimal design of a reinforced
concrete retaining wall, two different objective functions were used in the context of variables and
constraints. The first objective function used aims to design the retaining wall in the lightest possible
form, independent of cost. The first objective function can be expressed as follows:

fweiglzt = I/Vst + VVC (1)

W and W, represent the total weight of reinforcement and concrete used in the retaining wall,
respectively. The second objective function used aims to minimize the total cost based on material
weights and can be expressed as follows:

f;:ost = I/Vstcjs + WCCC (2)

Cs and Cc represent the unit cost of reinforcement and concrete, respectively. The design variables given
in Fig.1 were considered for calculating the weight and cost of the wall. Weights of concrete and
reinforcement were taken into account in the determination of the cost of the wall. During the
optimization phase, constraints were established based on safety factors against sliding, overturning,
and bearing capacity parameters.

2.1. Design variables

Seven geometric and three structural design variables seen in Fig.1 were considered in the optimization
process of the cantilever retaining wall. In accordance with the geometry of the wall, geometric design
factors were selected, and structural design variables were modeled in relation to the critical sections of
the wall. The variables Xi, X, X3, X4, and X5 represent the width of the foundation, width of the toe,
stem thickness at the bottom, stem thickness at the top, and foundation thickness respectively.
Additionally, expressions of the reinforcements of the wall are R;: vertical reinforcement area, R,: the
horizontal reinforcement area of the foundation, and Rj3: the horizontal reinforcement area of the heel
per unit length of the wall.
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Figure 1. Design variables of the wall considered for the optimization process
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The rebar used in the reinforcement design was limited to a range of 3 to 28 units in each direction, with
diameters between 10 and 30. All possible cross-sections in this range that exceeded a total cross-
sectional area of 127.42 cm? were excluded. In this context, a total of 264 cross-sections were used
within the scope of optimization. The reinforcement pool prepared considering the abovementioned
method is presented in Table 1.

Table 1. Reinforcement variable pool

Reinforcement index Number of rebar Bar size (mm)  Total steel area (cm?)

1 3 10 2.356
2 4 10 3.141
3 3 12 3.393
4 5 10 3.927
131 14 18 35.626
132 18 16 36.191
133 8 24 36.191
134 24 14 36.945
261 20 28 123.150
262 28 24 126.669
263 18 30 127.234
264 24 26 127.423

2.1.1. Geotechnical modeling

Loads considered in the checks were presented in Fig. 2. In the context of the study following notation
was assumed. Ws: weight of the wall, Wg: Weight of the soil block above the heel, Qsu: Surcharge load,
Pa: Active earth thrust actin on the soil block above the heel, Ps: Resultant of the base pressure, Ppi:
Passive earth thrust actin on the foundation, and Pp.: Passive earth thrust acting on the stem of the wall.
The plain-strain condition was supposed to simplify the problem. Therefore, loads per unit length of the
wall were taken into account in the analyses.
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Figure 2. The thrusts considered in the optimization process
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Active and passive lateral earth thrusts acting on the wall were calculated with Rankine Theory [21].
Active and passive earth pressure coefficients used for earth thrust calculations were obtained with
Eq.(3) and Eq.(4) respectively. In the equations, the backfill inclination angle was represented with 3
and the internal friction angle of the backfill was represented with ¢.

cosﬁ(cosﬂ—\/(cos ,B)z —(cos gb)2 )
K =
cos B+ \/(cos ﬂ)2 —(cos ¢)2

K - [tan(45 9 )} @)

Overturning, sliding, and bearing capacity checks are the major components required to control the
external stability of the wall. Safety factors were taken into account in the checks. The safety factor for
overturning was determined by dividing the sum of the moments of driving force (¥XMD) by the sum of
the moments of resisting force (EMR) (Eq.5). The moments about the front face of the toe were
considered in the analyses.

3)

M,
NY ZMD

)

Eq.(6) was used in the sliding checks. Fss representing the safety factor for sliding was determined by
dividing the resisting forces (ZFr) into driving forces (ZFp). Resisting forces and driving forces were
determined with Eq.(7), Eq.(8), and Eq.(9). In calculation of the resisting force (Eq.(7)), strength
parameters of the base soil (Qvase, Cbase) Were taken into account. On the other hand, the strength
parameters of the backfill soil were considered in the determination of the driving force (Eq.(8)). Passive
earth thrusts acting on the foundation and the stem were determined using Eq.(10). The term D; is the
depth between foundation base and the soil surface that leads to passive earth pressure.

3F,
5 = (6)

TF,

2
TF, = (2N)tan (% 4. )+ S Bl F, )
XF, =P, cosf ®)
ZN:WS"'WB"'QSU"'Paly"'Pazy )
1

Pp=P +P, = 37 aDI K, +2¢D] K, (10)

The ultimate bearing capacity of the base soil and maximum pressure applied from the foundation was
calculated as follows for the bearing capacity check.

Fo=du (11

SB
9 max

Eq.(12) was used to determine the ultimate bearing capacity of the base soil. The Terzaghi ultimate
bearing capacity theory [22] suggested for strip foundations was used to determine the qu value. Due to
the backfill, the foundation of the wall is subjected to eccentric load. This leads to a decrease in the
ultimate bearing capacity of the base soil and therefore it is required to revise Eq.(12). For that purpose,
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Meyerhof’s Effective Area Method [23] was applied by reducing foundation width by twice the
eccentricity (B-2e).

1
qu = CbaseNc +7/ﬁ[lD1Nq +57/baseN}/ (B_ze) (12)

Maximum and minimum pressure exerted from the foundation was calculated with Eq.(13). Eccentricity
was calculated with Eq.(14). In the equation overturning moment was represented with Mo, the resisting
moment was represented with Mg, and the total axial load was represented with XV,

N4 6e
. =—|1xt— 13
qmm,max B( Bj ( )
oo EMy—EM, (14)
XV

2.1.2. Structural modeling

Shear and moment capacity checks were performed for internal stability. Critical sections of the wall
such as the heel, toe, and stem were taken into account in the checks. The study considered the
parameters specified in Equation (15), where M, represents the nominal flexural strength, Es denotes the
reduction factor, and My represents the design moment for the critical section, which is determined
through the application of factored loads and forces.

EM, >M, (15)

The strength reduction factor was assumed to be 0.9 considering the ACI 318-05 for tension controlled
sections. Equations (16), (17), and (18), where T is the tension force acting on the nodal zone and C is
the compression force acting on the nodal zone, were included in the calculation of M,. Where f; is the
reinforcement's yield strength and is area, f; is the compression strength of the concrete The stress block's
width is denoted by b, its effective depth by d, and its equivalent rectangular stress block's depth by a.

M, :T(d—%j (16)
T=Af, (17)
C=0.85fba (18)

Eq.(21) was derived from Eq.(19) and (20). The equation was used to calculate the depth of the
equivalent rectangular stress block (a) where c is the distance from the extreme compression bar to the
neutral axis and 3, is a factor based on f..

a=pc (19)
A,f, =085 ba (20)
A
a :S—fy (21)
0.85/b

The creteria given in Egs. (22), and (23) were considered in shear capacity design based on ACI 318-05
code.

EV, >V, (22)
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V,=E0.17/f.bd (23)

Shear and moment strengths of the structure of the stem, toe, and heel were determined separately by
taking into account the load factors given in Egs. (24) and (25) where D, L, and H represent dead load,
live load, and earth thrust exerted by earth pressure and groundwater pressure respectively.

U=14D+1.7L+1.7H (24)

U=09D+1.7H 25)

The stem's shear and moment strengths were calculated using Equations (26-29). Ly is the foundation
slab's heel portion, and cc is the depth of the concrete cover in Equations (28 and 29). The critical section
of the toe, ds, is given in Eq. (29) and is situated at dt(Xs-cc) distant from the wall.

(H,+H)
2

+Ka;/ﬁ,, cos [

3
_ (H,+H)
Md,, =1.7|gK, cosf — (26)

6

Hs+H —ds)’
vd, = 1.7[qKa cos f(H, +H—ds)+K,y,, cosﬂ( St > 5) } (27)
H =(L,)tan g (28)
ds=X,—cc (29)

The shear and moment strength calculations for the toe were performed with Egs. (30) and (31). In the
equations D is the depth of soil above the toe. li is the length of the toe q2, qai, qmax and qmin Were
determined from the pressure distribution emanating from the foundation base. g is the pressure acting
on the intersection of stem and toe, and qq is the soil pressure at the critical section of the toe.

q qmax
Md, = {1'7(?”7} ~0.9(7. X, + }/ﬁ”D)};e (30)
vd, = [1 ,{%j ~0.9(y.X;+ yﬁl,D)}(lm ~dt) G1)

The shear and moment strength calculations for the heel were performed with Egs. (32) and (33). In the
equations q; was determined from the pressure distribution of the foundation. The pressure on the
intersection of the heel and stem was considered as q;. Wbs is triangular backfill mass above the stem.
Wisan is the backfill mass of the critical section

1.7¢g+1.4y X . +1.4y . H .
Md,, = q Vs Y fn + 1AW, |4 +2G i L (32)
2 3 6
w, +W, ‘
vd,,, = {(1 Tq+1.4y X, +1 '47/ﬁzzH) +1.4 (%) -0.9 (qummﬂ (Lh - dh) (33)
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The minimum area of flexural reinforcement and minimum steel reinforcement ratio were determined
with Egs. (34) and (35) considering the ACI 318-05.

As . = 0.25Ebd

y

(34

_ As

_ a8 35
P=0 (35)

The following formulations were used to determine the reinforcement ratio (py), development length
(la), and development length of a standard hook (lan).

Josspr | 600
””‘[ / }{600%} -

| 2Ly A
RN
Z _(ufymﬂ
.

20/,

z _£0.24fyjd 39)
dh \/TC b

3. Constraints

}db —>d, <19mm (37)

}db —>d, >19mm (38)

It is necessary to search a limited area for potential optimization problem solutions. The structural and
geotechnical design constraints were established, and together these make up the search spaces[9]. In
the context of the study, a total of 25 constraints were used in the optimization process. The constraints
of the study can be classified into two subcategories: geotechnical constraints and structural constraints.

3.1. Geotechnical constraints
In the geotechnical constraints, factors of safety against slippage, overturning, and bearing capacity were

considered. In this section, the constraints are expressed as follows in comparison with the design factors
to avoid any collapse in the foundation soil.

FS 0 design

g(l)= ~1<0 (40)
-1<0 (41)

~1<0 (42)
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3.2. Structural constraints

Components of a retaining wall have to fulfill the necessary requirements for reinforcing, moment, and
shear capability. The following constraints were used to sustain internal integrity.

g =q,,-1<0 (43)
M
g(5—8)=Vd—1£0 (44)
g(9—12)=%—1£0 (43)
A
g(13-16)=—m —1<0 (46)
AS
A
g(17-20)=—5—-1<0 (47)
ASmaX
gan=22% o (48)
1
g2 =Xt X1 (49)
1
g(23)=l””’$—1<0 or g(23)=ldh$—l<0 (50)
X5-cc X5—-cc B
(24) la 1<0 (24) 12y 1<0 51
=— D _1<0 or = e 1<
& X, —-X,—cc & X —cc 1)
g(25)=%—1<0 or g(25)=%—1<0 (52)
X, +X,—cc a X —cc a

4. Improved Teaching-Learning Based Optimization Algorithm with Agents

The Teaching-Learning-Based Optimization (TLBO) algorithm is an optimization algorithm based on
the process of students in a classroom interacting with each other to improve themselves [1, 24]. The
algorithm consists of two main phases. In the first phase, the individual with the best objective function
value in the population tries to improve other individuals. Individuals that show improvement in terms
of the objective function are updated. In the second phase, individuals in the population engage in one-
to-one interactions, striving for improvement. At this point, the individuals that show progress are
updated to enhance the population. This algorithm has been tested in various optimization problems and
has shown highly effective results in the context of structural optimization [2-5]. In many studies, the
TLBO mechanisms have demonstrated excellent results, particularly in terms of convergence. The local
optimum avoidance mechanisms of population-based algorithms are important for the results obtained.
This study aims to enhance the TLBO algorithm, in this respect. When the algorithm gets stuck at the
local optimum, it is usually due to the population clustering around a particular solution. Therefore, it is
useful to have a mechanism for the algorithm to move out of this clustering area. There are numerous
studies developed in this regard [3, 6]. In this study, a local optimum avoidance approach suitable for
the problem is developed. Before activating the developed mechanism, the algorithm tries to find out
whether it is stuck at the local optimum. This decision is determined as no improvement of the best
solution over a predetermined number of generations. For this problem, this number was set to 10
generations. Then the mechanism switches on and replaces all individuals in the population with new
individuals whose parameters are randomly determined, except for the best solution. These new
individuals injected into the algorithm are identified as agents and the activation of the mechanism is
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tracked by the variable "agentcounter". Once the agents have been activated, the variable is reset to zero
and the algorithm starts following the course of the algorithm again. The flowchart of this improved
version of the TLBO algorithm is shown in Figure 3. The boundary values of the parameters for the
optimization process are presented in table x.

Table 2. Boundries of the parameters [7]

Design variable Lower Bound Upper Bound

X1 1.3090 m 23333 m

X2 0.4363 m 0.7777 m

X3 0.2000 m 0.3333 m

X4 0.2000 m 0.3333 m

X5 0.2722 m 0.3333 m

R1 Index: 1 ]2.356 cm? Index: 264 | 127.423 cm?
R2 Index: 12.356 cm? Index: 264 | 127.423 cm?
R3 Index: 12.356 cm? Index: 264 | 127.423 cm?

Generate random initial population
(X,,) and define other variables
~ v
Calculate objective functions <
Generate New Random
Select best invidial as "Teacher" Population exluding
Khost
o
: v !
# = Update "students" based on "Teacher"
=
g D=1 TpXi3)
= X5 =X i D
(AgentCounter mod 10)=0
A
Keep (X;) Y—)l Update (X'}
— ¥

Match inviduals one-to-one (X;. Xj)
AgentCounter=0 AgentCounter++

A

o
2
= Xy X P X y) Y= Xy K VX e Xy )
=0
-
Is best solution improved?
Keep (X)) Y- Update (X'p)
—

Termination
cretirion met?

Y
A 4

Print process

Figure 3. Flowchart of the I-TLBO with agents
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A numerical example used by several studies [6, 9, 11, 25] was taken into account to evaluate the
efficiency of the suggested algorithms. Table 3 displays the design parameters and wall measurements
taken into account in the numerical example. The parameters in the Table 3 represents a case used in the
optimizing the cantilever retaining wall. Field or laboratory tests were not performed to obtain the
parameters.

Table 3. Parameters considered for the example [9]

Input parameters Symbol Value Unit
Height of stem H 3 m
Steel reinforcement yield strength fy 400 MPa
Compressive strength of concrete F. 21 MPa
Concrete cover cc 7 cm
Shrinkage and temperature reinforcement pg 0.002 -
percentage

Surcharge load Q 20 kPa
Backfill slope B 10 °
Internal friction angle of base soil Dpase 0 °
Internal friction angle of retained soil ) 36 °

Unit weight of retained soil il 17.5 kN/m?
Unit weight of base soil Ybase 18.5 kN/m?
Unit weight of steel Gs 78.5 kN/m?
Unit weight of concrete Ye 235 kN/m?*
Depth of soil in front of the wall D 0.5 m
Cost of steel Cs 0.4 $/kg
Cost of the concrete Cc 40 $/kg
The factor of safety for overturning stability =~ FSOdesign 1.5 -

The factor of safety for sliding FSSesign 1.5 -

The factor of safety for bearing capacity FSBesign 1.5 -

The base soil's cohesiveness Chase 125 kPa

The performance of TLBO was evaluated by several studies in the literature [26, 27]. In the study, TLBO
was separately applied with both the traditional version and the version developed in this study for the
two objective functions mentioned. As a result, four different optimization processes were planned. For
each process, the stopping criterion of the algorithm was set as not improving the current best solution
for 50 iterations. Each process was run five times, and the variable values and outcomes of the best
solutions obtained were presented in Table 4.

Table 4. Results of optimization processes.

Best-Weight Best-Cost
TLBO I-TLBO TLBO I-TLBO
X1 1.67 1.60 1.72 1.66
X 0.57 0.59 0.60 0.53
X3 0.21 0.21 0.28 0.30
X4 0.20 0.20 0.23 0.20
Xs 0.28 0.28 0.28 0.28
Ry 78 76 38 76
R» 120 33 17 33
R; 76 28 17 28
Best 2659.714 (kg) 2627.293 (kg) 74.8866 (%) 72.0398 ($)
Mean + Std.D.  2779.05 + 53.60 2694.69 + 24.97 81.35+2.62 7536 +1.11

As can be seen, the improved version of the algorithm has produced better results in terms of both
average and best values for both objective functions. The capacity utilization ratios (CUR) values were
used to show the extent to which the algorithm is proportionally challenging the constraints to which it
is subjected. In this way, it is tried to show how effective the optimization algorithm produces effective
results from a different perspective in terms of the problem. The capacity utilization ratios of the
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obtained optimal designs in terms of constraints for each combination are presented in Figure 4. As can
be seen in Figures 4a and 4b, where the CUR values for the weight-optimized designs are presented, the
improved version of TLBO uses limiters with a higher capacity. The corresponding utilization ratios are
on average 0.427 for TLBO and 0.459 for [-TLBO. It can be seen from Figs. 4c and 4d, the same is true
for the optimization process for the best cost. In this context, the average CUR values are 0.476 for
TLBO and 0.484 for I-TLBO. Therefore, it can be argued that for both optimization processes, the
improved version of the TLBO algorithm pushes the bounding capacities to a higher extent than the
original version.
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Figure 4. Capacity utilization ratios (CUR) of best solutions (a) TLBO-Best weight, (b) I-TLBO-best weight
(c) TLBO-Best cost, (d) I-TLBO-Best cost
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It can be observed that the improved TLBO approach brings the constraint capacities closer to their
limits compared to the traditional version. Additionally, the convergence curves of the two algorithms
used separately for each objective function are provided in Figs. 5 and 6 throughout the process.
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Figure 5. Convergence history for weight optimization
120
g 110 * +—e—e TLBO
Nl A—A—A |-TLBO
i‘o 100
]
= ~
A,

70

40 80 120

Generation

Figure 6. Convergence history for cot optimization

The wall’s dimension (X;-Xs) and the sections of reinforcements (R;-R3) of the reinforcements used in
the wall were considered design variables. The optimum values of the X and the R variables were
determined with TLB and I-TLBO algorithms based on minimum weight and minimum cost. In Table
5 and Table 6, the optimum values determined by TLBO and I-TLBO algorithms are compared with
other algorithms in the literature. Grey Wolf Optimization (GWO) [9], Search Group Algorithm (SGA)
and Backtracking Search Algorithm (BSA) [29], Big Bang—Big Crunch Algorithm (BB-BC) [6],
Genetic Algorithm (GA) [11], Differential Evolution (DE), Evolutionary Strategy (ES), Biogeography
Based Optimization Algorithm (BBO), Differential Evolution (DE), Evolutionary Strategy (ES),
Biogeography Based Optimization Algorithm (BBO), Interior Search Algorithm (ISA) [30], Particle
Swarm Optimization (PSO), Accelerated Particle Swarm Optimization (APSO) [28] were evaluated in
the comparison. As can be seen from Table 5, TLBO algorithms yielded significantly lower dimensions
than the other approaches, especially in X, X,, and X3 dimensions. As a result of the evaluation between
TLBO and I-TLBO algorithms, it is seen that the [-TLBO algorithm gives a lower dimension for the X
dimension, and the TLBO algorithm gives a lower dimension for the X, dimension.

Table 5. Low-weight design variables determined with various optimization approaches

Xi X2 X3 X4 Xs Ry Ry R3
TLBO (This study) 1.67 0.57 0.21 0.20 0.28 78 120 76
[-TLBO (This study) 1.60  0.59 0.21 0.20 0.28 76 33 28

GWO 1.80  0.67 0.21 0.20 0.28 82 15 15
SGA 1.71  0.65 0.20 0.20 0.27 77 23 17
BSA 1.71  0.64 0.20 0.20 0.27 77 14 14
BB-BC 1.74  0.65 0.20 0.20 0.27 77 17 17
ISA 1.84 0.75 0.39 0.20 0.27 34 15 15
DE 1.87 0.62 0.29 0.20 0.27 34 19 16
GA 1.91 0.8 0.27 0.20 0.28 50 21 15
BBO 1.84 0.74 0.27 0.20 0.27 37 14 14
ES 1.84 0.69 0.32 0.22 0.28 26 22 29
APSO 1.84 0.57 0.27 0.20 0.27 40 28 17
PSO 1.84 0.74 0.29 0.20 0.27 33 14 14
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The mean and best objective function values for the algorithms are displayed in Table 6. It is seen from
the table that TLBO algorithms are among the algorithms that give the lowest weight value. As a result
of the comparison between TLBO and I-TLBO algorithms, it is seen that the I-TLBO algorithm provides
a lower-weight design.

Table 6. Comparison of low-weight design results (kg/m)

Best Mean
TLBO (This study) 2659.714 2779.05 + 53.60
I-TLBO (This study) 2627.293 2694.69 + 24.97

GWO 2721.7915 2748.7809
SGA 2584.46 2589.00
BB-BC 2608.38 -
ISA 2665.8027 2677.5681
GA 2744.80 2850.90
DE 2726.50 2851.00
ES 2762.40 2845.00
BBO 2665.80 2677.70
PSO 2665.80 2687.60
APSO 2668.00 2687.60
FA 2666.50 2673.40
CS 2665.80 2665.80

The optimum values of the X and the R variables determined with low-cost design objective function
were presented in Table 7. In this section, the cost-based performances of TLBO algorithms were
compared with algorithms such as Genetic Algorithm (GA), Differential Evolution (DE), Evolutionary
Strategy (ES), and Biogeography Based Optimization (BBO) [28]. From Table 7, it is seen that TLBO
algorithms offer lower cross-sections than the other algorithms especially for X; and X,. As a result of
the comparison between I-TLBO and TLBO algorithms, it is seen that lower values are obtained with
the I-TLBO algorithm.

Table 7. Low-cost design variables determined with various optimization approaches ($/m)

Xy X2 X3 X4 Xs Ry R» R;
TLBO (This study) 1.720 0.600 0.280 0.230 0.280 38 17 17
I-TLBO (This study)  1.660 0.530 0.300 0.200 0.280 76 33 28

GA 1.91 0.586 0.272 0.201 0.280 40 21 15
DE 1.872 0.616 0.290 0.206 0.271 34 19 16
ES 1.845 0.691 0.320 0.221 0.280 26 22 29
BBO 1.842 0.737 0.277 0.200 0.270 91 36 44

Table 8 presents the final low-cost design objective function values, including the best, mean, and SD
values. As shown in the table, the best low-cost design was achieved by the I-TLBO algorithm with the
best of $72.0398/m. When the mean values are considered, it is seen that the I-TLBO algorithm offers
the lowest cost design after the BBO algorithm. On a cost basis, the [-TLBO algorithm suggests a
significantly lower cost design compared to the TLBO algorithm.

Table 8. Comparison of design cost for the example ($/m)

Best Mean
TLBO (This study) 74.8866  81.35+2.620
I-TLBO (This study)  72.0398 7536+ 1.110

GA 77.6300  82.16 +1.600
DE 754900 8223 +1.673
ES 78.0700  81.71 +£1.308
BBO 73.0800  73.91 +0.827
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5. Conclusions

This study intended to optimize the design of reinforced concrete cantilever retaining walls using the
Teaching-Learning-Based Optimization (TLBO) algorithm and an improved version of TLBO called I-
TLBO. The design objectives were to minimize the weight and the cost of the retaining wall while
satisfying various geotechnical and structural constraints. The optimization process involved
determining optimal values for design variables related to wall dimensions and reinforcement areas. Key
conclusions drawn from the study are as follows:

e The TLBO algorithms, both the traditional version and I-TLBO, outperformed other
optimization algorithms in terms of achieving lower weights and costs for the retaining wall
design.

e The I-TLBO algorithm provided better results in terms of both mean and best values for both
the weight and cost optimization objectives.

e Both TLBO algorithms, especially I-TLBO, brought the constraint capacities closer to their
limits compared to the traditional version, indicating improved constraint satisfaction.

e The convergence history of the algorithms showed that I-TLBO converged faster and achieved
better solutions compared to the traditional TLBO, highlighting the effectiveness of the
introduced improvements.

In summary, the study demonstrated that the I-TLBO algorithm, an improved version of the TLBO
algorithm, is highly effective for optimizing the design of reinforced concrete cantilever retaining walls.
It consistently provided better results in terms of both weight and cost optimization compared to other
algorithms considered in the study. While the study shows promise for [-TLBO, it would be beneficial
to compare its performance with other well-established optimization algorithms for retaining wall design
problems. This would provide a broader perspective on its effectiveness.
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