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Abstract
A mathematical model based on a discrete newborn set is proposed to describe the evolution of a sex-age-
structured population, taking into account the temporary pair of sexes, infinite ranges of reproductive age of
sexes, and maternal care of offspring. Pair formation is modeled by a weighted harmonic mean type function.
The model is based on the concept of density of families composed of mothers with their newborns. All individuals
are divided into the pre-reproductive and reproductive age groups. Individuals of the pre-reproductive class are
divided into the newborn and teenager groups. Newborns are under maternal care while the teenagers can live
without maternal care but cannot mate. Females of the reproductive age group are divided into singles and those
who care for their offspring. The model is composed of a coupled system of integro-partial differential equations.
Sufficient conditions for the existence of a one-parameter class of separable solutions of this model are found in
the case of stationary vital rates.
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1. Introduction
The purpose of this work is to analyze a mathematical model for a spatially homogeneous population structured by age

and sex taking into account temporary (only for the mating period) pairs of sexes, infinite reproductive age ranges of sexes, a
discrete set of offspring, and maternal care of them.

In mathematical biology, the Sharpe-Lotka-McKendrick [1], Fredrickson [2], Hoppensteadt-Staroverov [3], [4], and Hadeler
[5] models are well known. The first of them is usually used for the evolution description of the age-structured asexual
populations. The model [2] describes two-sex age-structured populations with temporary pairs of sexes. The Hoppensteadt–
Staroverov model and its Hadeler modification including a maturation period describe the evolution of age-structured two-sex
populations with permanent pairs of sexes. The existence of the separable solutions to model [3], [4], [5] is studied in [6]
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and [7].
But, all these models do not address the child care phenomenon which is native to many species of mammals and birds.

Birds and some species of mammals care for their offspring in pairs. In populations of some species of mammals and fishes
only the mother cares for her offspring. Several models (see [8]–[12] and literature there) were proposed for description of
child care in two-sex populations with temporary and permanent pairs of sexes. In the first case ([9]), only the mother cares for
her offspring. In the second case ([8], [10]-[12]), both parents take care of offspring. Models [8], [10], and[11] are based on the
idea of the newborn density which is described by a corresponding PDE. However, a problem arises when describing spatially
distributed populations using models of this type, because the equations describing the movement of newborns do not guarantee
that they follow the mother or both parents. To overcome this problem, some models have been proposed based on a discrete
set of newborns and density of the family (mother-newborns [9] or both parents-newborns [12]). In addition to child care, work
[9] takes into account the pregnancy of females. It is also assumed that the reproductive age intervals of males and females in
model [9] are finite. To the best of our knowledge, there has been no work in the last decade that has examined the dynamics of
the caregiver population.

In the present paper, we revise model [9] by dropping the Environmental pressure and female’s pregnancy and contrary
to model [9] assume that the age reproductive intervals of both parents are infinite. This is the novelty of the model under
consideration. As in [9], all individuals are divided into pre-reproductive and reproductive age groups. Individuals of pre-
reproductive class are divided into the newborn and teenager groups. Newborns are under maternal care while the teenagers can
live without maternal care but cannot mate. Individuals of the reproductive age class are divided into singles and those who
care for their offspring. The goal of this paper is to find sufficient conditions for the existence of separable solutions of the
proposed model in the case of stationary vital rates.

The plan of this work is the following: In Section 2, the basic notions are given. In Section 3, we describe the model.
Separable solutions are studied in section 4. Some concluding remarks in section 5 conclude the paper.

2. Notations
The following notions are used in this paper:
T , τi∗: child care and maturation period, respectively (i = 1 for males, i = 2 for females);
ui(t,τi): density at time t of individuals of age τi (τi ∈ (T,τi∗) for juveniles, τi ∈ (τi∗,∞) for adult individuals, i = 1 for

males, i = 2 for females);
u2k1k2(t,τ1,τ2,τ3): density at time t of females aged τ2 who take care of k1 sons and k2 daughters of age τ3, born from

fathers of age τ1;
νi(t,τi): mortality at time t of individuals aged τi (i = 1 for males, i = 2 for females);
ν2k1k2(t,τ1,τ2,τ3): mortality at moment t of mothers aged τ2 caring for k1 sons and k2 daughters of age τ3, born from

fathers of age τ1;
ν2k1k2;s1s2(t,τ1,τ2,τ3): mortality at time t of k1 − s1 sons and k2 − s2 daughters of age τ3, born from fathers of age τ1 and

who are under care of mothers aged τ2;
pi(t,τi)ui(t,τi); density of individuals of age τi who wish to mate at time t (i = 1 for males, i = 2 for females);
u0

i (τi): initial density of individuals aged τi (i = 1 for males, i = 2 for females);
u0

2k1k2
(τ1,τ2,τ3): initial density of females aged τ2 who take care of k1 sons and k2 daughters aged τ3;

|k|= k1 + k2, |s|= s1 + s2 with integer valued k1,k2,s1,s2 where |k|, |s|= 0,1, . . . ,n;
n
∑

|k|=1
ak1k2 =

n−1
∑

k1=0

n−k1
∑

k2=1
ak1k2 ;

p(t,τ1,τ2)α2k1k2(t,τ1,τ2)dt: probability to produce k1 sons and k2 daughters in the time interval [t, t +dt] by a temporal
pair formed of a male aged τ1and female of age τ2;

pk1k2 = p1 p2 pα2k1k2 .
[u2(t,τ)]: jump discontinuity of function u2 at line τ2 = τ .

3. The Model
In this section, we present a deterministic model to describe the evolution of a population structured by sex and age. We

take into account temporary pairs of sexes, a discrete set of offspring, and maternal care for them. By temporary pairs, we mean
pairs that exist during the mating period, duration of which is not taken into account. We use a weighted harmonic mean pair
formation function and assume that when a mother dies all offspring under her care die. Using the balance law, we derive the
following equations for the dynamic description of a population with a discrete set of offspring:
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
∂tu1 +∂τ1u1 +ν1u1 = 0 in (0,∞)× (T,∞),

u1|τ1=T =
∞∫

τ1∗
dτ1

∞∫
τ2∗+T

n
∑

|k|=1
k1u2k1k2 |τ3=T dτ2 in [0,∞),

u1|t=0 = u0
1 in [T,∞),

(3.1)



∂tu2 +∂τ2u2 +ν2u2 = Su
2,

u2|τ2=T =
∞∫

τ1∗
dτ1

∞∫
τ2∗+T

n
∑

|k|=1
k2u2k1k2 |τ3=T dτ2 in [0,∞),

[u2(t,τ)] = 0 in [0,∞), τ = τ2∗,τ2∗+T,
u2|t=0 = u0

2 in [T,∞)

(3.2)

where

Su
2 =



0 in (0,∞)× (T,τ2∗),
n
∑

|k|=0

∞∫
τ1∗

dτ1

(
τ2−τ2∗∫

0
ν2k1k2;00u2k1k2 dτ3 −u2k1k2 |τ3=0

)
in (0,∞)× (τ2∗,τ2∗+T ),

n
∑

|k|=0

∞∫
τ1∗

dτ1

(
T∫
0

ν2k1k2;00u2k1k2 dτ3 +u2k1k2 |τ3=T −u2k1k2 |τ3=0

)
in (0,∞)× (τ2∗+T,∞),



∂tu2k1k2 +
2
∑
j=1

∂τ j u2k1k2 +
(

ν2k1k2 +
|k|−1
∑

|s|=0
ν2k1k2;s1s2

)
u2k1k2 = Su

2k1k2
in (0,∞)× [τ1∗,∞)× (τ2∗+ τ3,∞)× (0,T ),

u2k1k2 |τ3=0 =
pk1k2u1u2

2
∑
j=1

∞∫
τ j∗

p ju j dτ j

in (0,∞)× [τ1∗,∞)× (τ2∗,∞),

u2k1k2 |t=0 = u0
2k1k2

in [τ1∗,∞)× [τ2∗+ τ3,∞)× [0,T ]

(3.3)

where

Su
2k1k2

=

0, |k|= n,
n
∑

|s|=|k|+1
ν2s1s2;k1k2u2s1s2 , |k|= n−1,n−2, . . . ,1.

We add to this system the following compatibility conditions:

u0
i |τi=T =

∞∫
τ1∗

dτ1

∞∫
τ2∗+T

n

∑
|k|=1

kiu0
2k1k2

|τ3=T dτ2, i = 1,2,

u0
2k1k2

|τ3=0 =
p2k1k2 |t=0u0

1u0
2

2
∑
j=1

p j|t=0u0
j dτ j

in [τ1∗,∞)× [τ2∗,∞).

4. Separable Solutions
In this section, we study system (3.1)–(3.3) with the vital rates p, p1, p2, ν1, ν2, ν2k1k2 , ν2k1k2;s1s2 , α2k1k2 independent of

time t and look for solutions of the form

ui(t,τi) = exp{λ t}wi(τi),

wi(τi) = aivi(τi), vi(T ) = 1, i = 1,2,
u2k1k2 = exp{λ t}w2k1k2 ,

w2k1k2 = a1a2e−λτ3v1(τ1)v2(τ2 − τ3)v2k1k2(τ1,τ2,τ3)/α, |k|= 1,2, . . . ,n,
α = a1

∫
∞

τ1∗
p1v1 dτ1 +a2

∫
∞

τ2∗
p2v2 dτ2

(4.1)
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where constants λ , a1 = w1(T ), a2 = w2(T ), and functions vi, v2k1k2 are to be determined. Set:

yi = ai/α , ||vi||=
∞∫

τi∗
vi dτi, i = 1,2, γ =

n
∑

|k|=1
p2k1k2 , P =

∞∫
τ1∗

γ v1 dτ1,

l2 = ν2 +λ + y1P, l2k1k2 = ν2k1k2 +
|k|−1
∑

|s|=0
ν2k1k2;s1s2 , |k|= 1, . . . ,n,

r =
n
∑

|k|=1
v2k1k2 |τ3=T , R =

∞∫
τ1∗

r v1 dτ1, q =
n
∑

|k|=1
ν2k1k2;00 v2k1k2 , Q =

∞∫
τ1∗

qv1 dτ1,

βi(x) =
∞∫

τ1∗
v1(τ1)

n
∑

|k|=1
kiv2k1k2(τ1,x+T,T )dτ1, i = 1,2.

Substituting functions (4.1) into system (3.1)–(3.3) and performing calculations, we get the following equations:
v′1 +(ν1 +λ )v1 = 0 in (T,∞), v1(T ) = 1,

1 = y2e−λT
∞∫

τ2∗
v2(x)β1(x)dx,

(4.2)


v′2 +(ν2 +λ )v2 = Sv

2, v2(T ) = 1, [u2(τ)] = 0, τ = τ2∗,τ2∗+T,

1 = y1e−λT
∞∫

τ2∗
v2(x)β2(x)dx,

(4.3)

where

Sv
2 =



0 in (T,τ2∗),

y1

(
τ2−τ2∗∫

0
v2(τ2 − τ3)Q(τ2,τ3)e−λτ3 dτ3 − v2(τ2)P(τ2)

)
in (τ2∗,τ2∗+T ),

y1

(
T∫
0

v2(τ2 − τ3)Q(τ2,τ3)e−λτ3 dτ3 + e−λT v2(τ2 −T )R(τ2)− v2(τ2)P(τ2)

)
in (τ2∗+T,∞),

(4.4)


3
∑
j=2

∂τ j v2k1k2 +
(

ν2k1k2 +
|k|−1
∑

|s|=0
ν2k1k2;s1s2

)
v2k1k2 = Sv

2k1k2
in [τ1∗,∞)× (τ2∗+ τ3,∞)× (0,T )

v2k1k2 |τ3=0 = p2k1k2 in [τ1∗,∞)× [τ2∗,∞),

(4.5)

where

Sv
2k1k2

=


0, |k|= n,

n
∑

|s|=|k|+1
ν2s1s2;k1k2v2s1s2 , |k|= n−1,n−2, . . . ,1.

We also have the equation for λ ,

y1||p1v1||+ y2||p2v2||= 1. (4.6)

Integrating Eqs. (4.2)1 and (4.3)1, we get wi(τi) = wi(T )vi(τi) where

v1(τ1) = exp
{
−

τ1∫
T

(ν1 +λ )ds
}

in [T,∞),

v2(τ2) = exp
{
−

τ2∫
T

(ν2 +λ )ds
}

in [T,τ2∗].
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Now we transform Eq. (4.3) with a given positive y1 into a set of Volterra’s type integral equations. To do this, we change
variables on the right hand side of Eq. (4.4), then integrate Eq. (4.3)1, and after then change the order of integration. As a result,
we have

v2(τ2) = f (τ2)+

τ2∫
τ2∗+ jT

G(τ2,y)v2(y)dy in [τ2∗+ jT,τ2∗+( j+1)T ] (4.7)

with j = 0,1,2, . . . , where

G(τ2,y) = y1

τ2∫
y

exp
{
−

τ2∫
z

l2(s)ds−λ (z− y)
}

Q(z,z− y)dz,

f (τ2) =



v2(τ2∗)exp
{
−

τ2∫
τ2∗

l2 ds
}

in [τ2∗,τ2∗+T ],

v2(τ2∗+ jT )exp
{
−

τ2∫
τ2∗+ jT

l2 ds
}
+ y1

τ2∫
τ2∗+ jT

exp
{
−

τ2∫
z

l2 ds
}

dz
(

τ2∗+ jT∫
z−T

v2(y)Q(z,z− y)e−λ (z−y) dy

+v2(z−T )R(z)e−λT
)

in [τ2∗+ jT,τ2∗+( j+1)T ],

with j = 1,2, . . . and

v2(τ2∗) = exp
{
−

τ2∗∫
T

(ν2 +λ )ds
}
.

Define:
νi∗ = inf

[τi∗,∞)
νi, ν∗

i = sup
[τi∗,∞)

νi, pi∗ = inf
[τi∗,∞)

pi, p∗i = sup
[τi∗,∞)

pi,

ν2k1k2∗ = inf
[τ1∗,∞)×[τ2∗+τ3,∞)×[0,T ]

ν2k1k2 , p∗ = inf
[τ1∗,∞)×[τ2∗,∞)

p,

ν∗
2k1k2

= sup
[τ1∗,∞)×[τ2∗+τ3,∞)×[0,T ]

ν2k1k2 , p∗ = sup
[τ1∗,∞)×[τ2∗,∞)

p,

ν2k1k2;s1s2∗ = inf
[τ1∗,∞)×[τ2∗+τ3,∞)×[0,T ]

ν2k1k2;s1s2 ,

ν2k1k2;s1s2∗ = sup
[τ1∗,∞)×[τ2∗+τ3,∞)×[0,T ]

ν2k1k2;s1s2 ,

α2k1k2∗ = inf
[τ1∗,∞)×[τ2∗,∞)

α2k1k2 , α∗
2k1k2

= sup
[τ1∗,∞)×[τ2∗,∞)

α2k1k2 ,

l2k1k2∗ = ν2k1k2∗+
|k|−1
∑

s=0
ν2k1k2;s1s2∗, l∗2k1k2

= ν∗
2k1k2

+
|k|−1
∑

s=0
ν∗

2k1k2;s1s2
,

γ∗ =
n
∑

|k|=1
p∗2k1k2

, γ∗ =
n
∑

|k|=1
p2k1k2∗, ν∗ = min(ν1∗,ν2∗),

l2∗ = ν2∗+λ + γ∗||v1||, l∗2 = ν∗
2 +λ + γ∗||v1||.

Consider two functions:

v2k1k2(τ3) =


p∗2k1k2

exp{−l2k1k2∗τ3}, |k|= n,

p∗2k1k2
exp{−l2k1k2∗τ3}+

τ3∫
0

exp{−(τ3 − z)l2k1k2∗} ∑
|s|=|k|+1

ν∗
2s1s2;k1k2

v2k1k2(z)dz, |k|= n−1,n−2, . . . ,1,

(4.8)

and

v2k1k2
(τ3) =


p2k1k2∗ exp{−l∗2k1k2

τ3}, |k|= n,

p2k1k2∗ exp{−l∗2k1k2
τ3}+

τ3∫
0

exp{−(τ3 − z)l∗2k1k2
} ∑
|s|=|k|+1

ν2s1s2;k1k2∗v2k1k2
(z)dz, |k|= n−1,n−2, . . . ,1,
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(4.9)

in [0,T ]. Functions v2k1k2 and v2k1k2
for |k|= n−1,n−2, . . . ,1 can be found recurrently starting from |k|= n−1 since v2k1k2

and v2k1k2
for |k|= n are known.

Lemma 4.1. Let ν∗+λ > 0 be a given positive constant. Assume that functions ν2k1k2 and ν2k1k2;s1s2 lie in C0,1,1([τ1∗,∞)×
(τ2∗+ τ3,∞)× (0,T ))∩C([τ1∗,∞)× [τ2∗+ τ3,∞)× [0,T ]), α2k1k2 ∈ C0,1([τ1∗,∞)× (τ2∗,∞))∩C([τ1∗,∞)×]τ2∗,∞)), p2k1k2 ∈
C0,1([τ1∗,∞)× (τ2∗,∞))∩C([τ1∗,∞)× [τ2∗,∞)) and let they be nonnegative bounded functions in domains of their definition.
Then problem (4.5) has a unique nonnegative solution v2k1k2 ∈ C0,1,1([τ1∗,∞)× (τ2∗+ τ3,∞)× (0,T ))∩C([τ1∗,∞)× [τ2∗+
τ3,∞)× [0,T ]) such that v2k1k2

≤ v2k1k2 ≤ v2k1k2 in [τ1∗,∞)× [τ2∗ + τ3,∞)× [0,T ] where v2k1k2 and v2k1k2
∈ C1([0,T ]) are

determined by formulas (4.8) and (4.9), respectively.

Proof. Conditions of this lemma let us to solve linear equation (4.5) to have

v2k1k2(τ1,τ2,τ3)=



p2k1k2(τ1,τ23)exp
{
−

τ3∫
0

l2k1k2(τ1,s+ τ23,s)ds
}
, |k|= n,

p2k1k2(τ1,τ23)exp
{
−

τ3∫
0

l2k1k2(τ1,s+ τ23,s)ds
}

+
τ3∫
0

exp
{
−

τ3∫
z

l2k1k2(τ1,s+ τ23,s)ds
}

∑
|s|=|k|+1

ν2s1s2;k1k2(τ1,z+ τ22,z)v2k1k2(τ1,z+ τ23,z)dz,

|k|= n−1,n−2, . . . ,1,

(4.10)

in [τ1∗,∞)× [τ2∗+ τ3,∞)× [0,T ], where τ23 = τ2 − τ3.
Function (4.10) for |k| = n− 1,n− 2, . . . ,1 can be found recurrently starting from |k| = n− 1 since v2k1k2 for |k| = n is

known. Note that function v2k1k2 is independent of parameters y1 and λ . Direct comparison of Eq. (4.8) with (4.10) and Eq.
(4.9) with (4.10) proves the inequality v2k1k2

≤ v2k1k2 ≤ v2k1k2 in [τ1∗,∞)× [τ2∗+ τ3,∞)× [0,T ]. Differentiability of v2k1k2 and
v2k1k2

in [0,T ] follows from Eqs.(4.8) with (4.9).

Let
q∗ =

n
∑

k|=1
ν2k1k2,00∗ min

[0,T ]
v2k1k2

, q∗ =
n
∑

k|=1
ν∗

2k1k2,00 max
[0,T ]

v2k1k2 ,

r∗ =
n
∑

|k|=1
v2k1k2(T ), r∗ =

n
∑

|k|=1
v2k1k2

(T ).

Then γ∗||v1|| ≤ P ≤ γ∗||v1||, q∗||v1|| ≤ Q ≤ q∗||v1||, r∗||v1|| ≤ R ≤ r∗||v1||.
Consider two following systems:

v′2 + l2∗v2 =


y1||v1||

τ2−τ2∗∫
0

v2(τ2 − τ3)e−λτ3 dτ3 q∗ in (τ2∗,τ2∗+T ), v2(τ2∗) = exp{−(τ2∗−T )(ν2∗+λ )},

y1||v1||
(

T∫
0

v2(τ2 − τ3)e−λτ3 dτ3 q∗+ v2(τ2 −T )e−λT r∗
)

in (τ2∗+T,∞), [v2(τ2∗+T )] = 0
(4.11)

and

v′2 + l2∗v2 =


y1||v1||

τ2−τ2∗∫
0

v2(τ2 − τ3)e−λτ3 dτ3 q∗ in (τ2∗,τ2∗+T ), v2(τ2∗) = exp{−(τ2∗−T )(ν∗
2 +λ )},

y1||v1||
(

T∫
0

v2(τ2 − τ3)e−λτ3 dτ3 q∗+ v2(τ2 −T )e−λT r∗

)
in (τ2∗+T,∞), [v2(τ2∗+T )] = 0.

(4.12)

Applying the argument used to construct Eq. (4.7), Eqs. (4.11) and (4.12) on each interval [τ2∗+ jT,τ2∗+( j + 1)T ],
j = 0,1, . . ., can be transformed to Volterra integral equations having unique positive solutions.

Lemma 4.2. Assume that function ν2 ∈C([τ2∗,∞)) and parameter y1 are positive and let conditions of Lemma 4.1 be fulfilled.
Then Eq. (4.7) has a unique positive solution v2 ∈C1((τ2∗,∞))∩C([τ1∗,∞)). Moreover, v2 ≤ v2 ≤ v2 in [τ2∗,∞) where v2 and
v2 are unique positive solutions of Eqs. (4.11) and (4.12), respectively.
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Proof. The proof of the existence and uniqueness of the solution is based on the existence and uniqueness theorem of the
Volterra linear integral equation. It remains to prove the inequality v2 ≤ v2 ≤ v2. Set Z = v2 − v2. Subtracting Eq. (4.3)1 from
Eq. (4.11) we get the equation

Z′+ l2∗Z = y1

τ2−τ2∗∫
0

Z(τ2 − τ3)dτ3Q(τ2,τ3)e−λτ3 dτ1 + f (τ2) in (τ2∗,τ2∗+T ),

Z(τ2∗) = exp
{
−

τ2∗∫
T
(ν2∗+λ )ds

}
− exp

{
−

τ2∗∫
T
(ν2 +λ )ds

}
with a known nonnegative term

f (τ2) = (l2 − l2∗)v2 + y1

τ2−τ2∗∫
0

v2(τ2 − τ3)
(

q∗||v1||−Q(τ2,τ3)
)

e−λτ3 dτ3.

This equation can be easily transformed into the Volterra integral equation with a nonnegative kernel and nonnegative known
term. Hence it has a unique nonnegative solution v2 −v2 in [τ2∗,τ2∗+T ] and therefore v2 ≤ v2. Similarly, we prove that v2 ≤ v2
in [τ2∗,τ2∗+T ]. Subtracting (4.12) from Eq. (4.3)1 and arguing similarly as above, we prove the inequality v2 ≤ v2 ≤ v2 in
[τ2∗+T,∞).

It is well known that a solution to the linear Volterra integral equation with a parameter that has a continuous kernel and a
continuous known term with respect to the (argument, parameter) variable is also continuous with respect to the same variable.
Hence, functions v2, v2, and v2 are continuous with respect to (τ2,y1,λ ).

Now we prove that ||v2|| is continuous with respect to parameters y1 and λ . We integrate Eq. (4.3)1 to have

v2(τ2) = v2(τ2∗)exp
{
−

τ2∫
τ2∗

l2∗ ds
}
+

{
I1 in (τ2∗,τ2∗+T ),
I2 + I3 + I4 in (τ2∗+T,∞)

(4.13)

where

I1 = y1

τ2∫
τ2∗

exp
{
−

τ2∫
z

l2∗ ds
}

dz

z−τ2∗∫
0

v2(z−τ3)e−λτ3 dτ3 q∗||v1||= y1

τ2−τ2∗∫
0

e−λτ3 dτ3

τ2∫
τ3+τ2∗

v2(z−τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

I2 = y1

τ2∗+T∫
τ2∗

exp
{
−

τ2∫
z

l2∗ ds
}

dz

z−τ2∗∫
0

v2(z−τ3)e−λτ3 dτ3 q∗||v1||= y1

T∫
0

e−λτ3 dτ3

τ2∗+T∫
τ3+τ2∗

v2(z−τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

I3 = y1

τ2∫
τ2∗+T

exp
{
−

τ2∫
z

l2∗ ds
}

dz
T∫

0

v2(z−τ3)e−λτ3 dτ3 q∗||v1||= y1

T∫
0

e−λτ3 dτ3

τ2∫
T+τ2∗

v2(z−τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

I4 = y1

τ2∫
τ2∗+T

exp
{
−

τ2∫
z

l2∗ ds
}

e−λT v2(z−T )dzr∗||v1||.

Observe that

I2 + I3 = y1

T∫
0

e−λτ3 dτ3

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||.

Integrating Eq. (4.13) we find

||v2||=
∞∫

τ2∗

v2(τ2∗)exp
{
−

τ2∫
τ2∗

l2∗ ds
}

dτ2||v1||+ J1 + J2 + J3,
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where

J1 = y1

τ2∗+T∫
τ28

dτ2

τ2−τ2∗∫
0

e−λτ3 dτ3

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

J2 = y1

∞∫
τ2∗+T

dτ2

T∫
0

e−λτ3dτ3

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

e−λτ3 dzq∗||v1||,

J3 = y1

∞∫
τ2∗+T

dτ2

τ2∫
τ2∗+T

exp
{
−

τ2∫
z

l2∗ ds
}

e−λT v2(z−T )dzr∗||v1||.

Changing the order of integration we have

J1 = y1

T∫
0

e−λτ3 dτ3

τ2∗+T∫
τ2∗+τ3

dτ2

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

J2 = y1

T∫
0

e−λτ3 dτ3

∞∫
τ2∗+T

dτ2

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

e−λτ3 dzq∗||v1||,

J3 = y1e−λT
∞∫

τ2∗

v2(x)dx
∞∫

x+T

exp
{
−

τ2∫
x+T

l2∗ ds
}

dτ2 r∗||v1||

and then

J1 + J2 = y1

T∫
0

e−λτ3 dτ3

∞∫
τ2∗+τ3

dτ2

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

lλ
2 ds

}
dzq∗||v1||.

Thus
||v2||= v2(τ2∗)

∞∫
τ2∗

exp
{
−

τ2∫
τ2∗

l2∗ ds
}

dτ2 + y1
T∫
0

e−λτ3 dτ3
∞∫

τ2∗+τ3

dτ2

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||

+y1e−λT
∞∫

τ2∗
v2(x)dx

∞∫
x+T

exp
{
−

τ2∫
x+T

l2∗ ds
}

dτ2 r∗||v1||.
(4.14)

and after changing the order of integration
||v2||= v2(τ2∗)

∞∫
τ2∗

exp
{
−

τ2∫
τ2∗

l2∗ ds
}

dτ2 + y1
T∫
0

e−λτ3 dτ3
∞∫

τ2∗+τ3

v2(z− τ3)dz
∞∫
z

exp
{
−

τ2∫
z

l2∗ ds
}

dτ2 q∗||v1||

+y1e−λT
∞∫

τ2∗
v2(x)dx

∞∫
x+T

exp
{
−

τ2∫
x+T

l2∗ ds
}

dτ2 r∗||v1||
(4.15)

If ν∗+λ > 0, then

||v2||l2∗ = exp
{
− (τ2∗−T )(ν2∗+λ )

}
+

( T∫
0

e−λτ3 dτ3q∗+ e−λT r∗
)
||v2||||v1||y1.

Hence

||v2|| := ωr(y1,λ ) =
exp{−(τ2∗−T )(ν2∗+λ )}

A(y1,λ )
(4.16)

provided that

A(y1,λ ) := ν1∗+λ + y1||v1||N(λ )> 0 (4.17)
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where

N(λ ) := γ∗−
∫ T

0
e−λτ3dτ3 q∗− e−λT r∗.

Observe that condition (4.17) is fulfilled if N(λ ) ≥ 0 and ν∗+λ ≥ ε, ε > 0. Eq. (4.16) under condition (4.17) shows that
||v2|| is continuous in (y1,λ ). This, the positivity and continuity of v2 with respect to (τ2,y1,λ ) show that ||v2|| converges
uniformly with respect to λ ∈ [−ν∗+ε,λ ′] and y1 ∈ [0,y′1] where λ ′ < ∞, y′1 < ∞. Then Lemma 4.2 shows that ||v2|| converges
uniformly too and the continuity of v2 with respect to (τ2,y1,λ ) proves the continuity of ||v2|| with respect to λ ∈ [−ν∗+ ε,λ ′]
and y1 ∈ [0,y′1].

Define

q̃1(y1,λ ) = e−λT
∞∫

τ2∗

v2(x)β2(x)dx,

q̃2(y1,λ ) = e−λT
∞∫

τ2∗

v2(x)β1(x)dx.

Using Lemma 4.1, we can prove that functions q̃1(y1,λ ) and q̃2(y1,λ ) are continuous in λ ≥−ν∗+ ε and y1 > 0. Eqs. (4.2)2
and (4.3)2 can be rewritten as follows:

y1 −
1

q̃1(y1,λ )
= 0,

y2 −
1

q̃2(y1,λ )
= 0.

(4.18)

Function

z(y1,λ ) = y1 −
1

q̃1(y1,λ )

is continuous with respect to (y1,λ ). Obviously, z|y1=0 < 0. Eq. (4.3)1 shows that

v2(τ2)≥ ṽ2(τ2) := exp
{
−

τ2∫
T
(ν2(τ2)+λ )dτ2 − (τ2 −T )p∗2 p∗

n
∑

|k|=1
α∗

2k1k2
dτ2

}
for all y1 ≥ 0. Define:

q̂1(λ ) = e−λT
∞∫

τ2∗

ṽ2(x)β2(x)dx, q̂2(λ ) = e−λT
∞∫

τ2∗

ṽ2(x)β1(x)dx.

Then by definition q̃1(y1,λ )> q̂1(λ ) for all y1 ≥ 0. Hence, z|y1=1/q̂1(λ ) > 0. The continuity of z shows that function z(y1,λ )
has at least one positive root y1(λ ) ∈ (0,1/q̂1(λ )), which is continuous in λ . Then Eq. (4.18)2 shows that y2(y1(λ ),λ ), is also
continuous with respect to λ ≥−ν∗+ ε with small ε > 0.

Now we find constant λ . Set:

hi =
n

∑
||k||=1

kiv2k1k2(T ), hi =
n

∑
|k|=1

kiv2k1k2
(T ), i = 1,2, B(λ ) = y1(λ )||p1v1||+ y2(y1(λ ),λ )||p2v2||.

It is evident that
q̂i(λ )≥ hi e−λT ||ṽ2||||v1||, i = 1,2.

Then using Eqs. (4.6), (4.16), and (4.18), we get

y1(λ )||p1v1|| ≤
p∗1
q̂2

||v1|| ≤
p∗1eλT

h2||ṽ2||
, y2(λ )||p2v2|| ≥

p∗2eλT

h2||v1||
,

Hence

Hl(λ ) :=
p2∗eλT

h2||v1||
≤ B(λ )≤ Hr(λ ) :=

p∗1eλT

h2||ṽ2||
+

p∗2eλT

h1||v1||
(4.19)

provided that condition (4.17) with y1 = 1/q̂1(λ ) (i.e., A(1/q̂1(λ ),λ )> 0) is satisfied. Analysis of inequalities (4.19) allows
us to formulate the following assertion:



A One-Parameter Class of Separable Solutions for An Age-Sex-Structured Population Model with an Infinite Range of
Reproductive Ages, A Discrete Set of Offspring, and Maternal Care — 123/124

Lemma 4.3. Let conditions of Lemmas 4.1 and 4.2 be satisfied. Assume that λ0 ≥−ν∗+ ε with a small ε > 0 and λ1 > λ0 are
such that Hr(λ0)< 1, Hl(λ1)> 1, and N(λ0)≥ 0. Then function B(λ )−1 has at least one real root λ2.

The proof of lemma is obvious, since Hl , Hr, and N are monotonous functions of λ .
Based on Lemmas 4.1–4.3, we formulate the following proposition:

Theorem 4.1. Let conditions of Lemmas 4.1–4.3 be satisfied. Then system (3.1)–(3.3) has a one-parametric class of separable
solutions.

5. Conclusion
We proposed a deterministic model for two-sex population with a discrete set of offspring and maternal care assuming that

pairs of sexes exist only during the period of mating, which is disregarded. The Environmental pressure is also neglected in our
model. The reproductive age intervals in model [9] are finite. Contrary to model [9], we let the reproductive age intervals be
infinite. The existence of the separable solutions is proved under some conditions on the model data.

To close the paper, we discuss conditions that led to the existence of the solutions to characteristic equation (4.6) of our
model and equation (4.9) for exponent λ of the model [9] in the case of the absence of the Environmental pressure. Equation
(4.9) of model [9] has at least one real solution without any additional restriction on the model data. As shown in Theorem 1 of
our model, the proof of the solvability of characteristic equation (4.6) is based on the proof of the continuity of the norm ||v2||
with respect to parameter λ . Knowing this, some robust restrictions on the model data were formulated, that are sufficient for
the existence of the solution to characteristic equation (4.6).
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