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The Inverse Rayleigh distribution is frequently utilized in reliability and survival analysis. This study focuses on 
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simulations across various censoring schemes and parameter configurations. Additionally, a numerical example 
is presented to illustrate the proposed methodology. The simulation study demonstrates that the proposed 
estimators outperform the others. Additionally, given their explicit nature, the proposed estimators can serve 
as initial values for obtaining the maximum likelihood estimator. 
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Introduction 
 

The Rayleigh distribution has long been a cornerstone 
in statistical modeling due to its simplicity and broad 
applicability in diverse fields such as physics, engineering, 
and environmental studies as a special case of the Weibull 
distribution. Thanks to its versatility, the Rayleigh 
distribution has found applications ranging from reliability 
analysis to quality control. Recent studies, such as [1]-[3], 
highlight its continued relevance in addressing real-world 
problems.  

The inverse Rayleigh (IR) distribution, derived from the 
Rayleigh distribution, extends this utility by providing a 
flexible model for reliability and survival analysis. 
Specifically, the IR distribution emerges when the 
reciprocal of a Rayleigh-distributed random variable is 
considered. If 𝑋 follows a Rayleigh distribution, then 𝑌 =
1

𝑋
  follows an IR distribution. Its probability density 

function (pdf) and cumulative distribution function (cdf) 
are given, respectively, by 

 

𝑓(𝑥; 𝜃) =
2𝜃2

𝑥3
𝑒𝑥𝑝 {−

𝜃2

𝑥2
} , 𝑥 > 0, 𝜃 > 0 (1) 

𝐹(𝑥; 𝜃) = 𝑒𝑥𝑝 {−
𝜃2

𝑥2
}, (2) 

   
where 𝜃 is a scale parameter.  
The IR distribution has been studied in various 

contexts. Some recent studies are given as follows: [4] 
focused on a group acceptance sampling plan for 
truncated life tests. [5] discussed the estimation problem, 
both from a Bayesian and non-Bayesian perspective based 

on lower record values. [6] studied the characteristics of 
shrinkage test-estimators considering an asymmetric loss 
function. [7] explored the Bayesian estimation of 
parameter and the reliability function of the IR 
distribution. [8] examined the estimation of parameters 
for the IR distribution based on Type-I hybrid censored 
samples. [9] developed a moving average control chart for 
monitoring failures under a time-truncated test when 
item lifetimes follow Rayleigh and IR distributions, 
evaluating its performance using average run lengths 
(ARL). [10] introduced E-Bayesian and Hierarchical 
Bayesian estimation methods for estimating the scale 
parameter and reversed hazard rate of the IR distribution. 
[11] derived Bayes estimators for the parameter of an IR 
distribution under symmetric and asymmetric loss 
functions. Recently, [12] discussed the estimation of 
process capability index when the underlying distribution 
follows IR distribution.  

Type-II censored samples are frequently encountered 
in various applications, such as life testing. In this type of 
censoring, only the smallest or largest observations are 
not observed. The censoring mechanism involves testing 
𝑛 items until the first non-event or failure time is 
observed, leading to the termination of the experiment. 
Statistical inferences based on Type-II censored samples 
have been addressed in many studies, for example, they 
can be found in [13-18] and the referenced cited therein. 
For detailed insights into Type-II censored samples, we 
refer to the works of [19] and [20]. 

http://csj.cumhuriyet.edu.tr/tr/
https://orcid.org/0000-0002-4647-1583
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The motivation for this study arises from the 
significant gap in the literature regarding the IR 
distribution under Type II left and right censoring. Existing 
methods for obtaining maximum likelihood (ML) 
estimates often rely on search algorithms such as Nelder-
Mead or BFGS, which are sensitive to initial values and 
computationally demanding. To address this issue, we aim 
to develop a more efficient and robust method that 
eliminates dependence on initial values, simplifying the 
estimation process while maintaining accuracy. In this 
regard, this study discusses point estimation for the IR 
distribution parameter under Type-II left and right 
censoring. ML, modified maximum likelihood (MML), least 
squares (LS), Anderson-Darling type (AD), and Cramér-von 
Mises type (CvM) estimation methods are proposed in 
Section 2. The performance of the proposed estimators is 
compared through a simulation study in Section 3. In 
Section 4, a numerical example is also proposed for 
illustrative purposes. Section 5 closes the paper with 
concluding remarks. 

 

Point Estimation Under Type-II Left and Right 
Censoring 

In this section, we present some explicit estimators by 
modifing ML estimator under Type-II left and right 
censoring. We compare the proposed estimators with the 
ML, AD, CvM, and LS estimation methods based on 
simulated samples. The AD, CvM, and LS methods are 
adapted for Type-II censored sample. It is noted that [21-
25] used these estimators based on complete sample. 

Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛) represent the ordered statistics 

from 𝐼𝑅(𝜃) distribution. Then, the likelihood function 
based on Type-II censored data with a censoring of 𝑟1 
observations on the left and 𝑟2 observations on the right 
can be expressed in general form as follows: 

 

             


 

 
   
 
x

2 1 2

1 1

| ; 1 .
n r r r

i a b
i r

L f x F x F x  

 

Hence, the log-likelihood function is given by 
 

ℓ(𝜃|𝒙) ∝ 2(𝑛 − 𝑟1 − 𝑟2) 𝑙𝑜𝑔(𝜃)

− 𝜃2 ∑

𝑛−𝑟2

𝑖=𝑟1+1

1

𝑥(𝑖)
2 −

𝑟1𝜃
2

𝑥(𝑎)
2

+ 𝑟2 𝑙𝑜𝑔 (1 − 𝑒𝑥𝑝 {−
𝜃2

𝑥(𝑏)
2 }), 

(3) 

 

where 𝑎 = 𝑟1 + 1 and 𝑏 = 𝑛 − 𝑟2. Then associated 
gradient found to be  

𝑑ℓ(𝜃|𝒙)

𝑑𝜃
=
2(𝑛 − 𝑟1 − 𝑟2)

𝜃
− 2𝜃 ∑

𝑛−𝑟2

𝑖=𝑟1+1

1

𝑥(𝑖)
2

−
2𝑟1𝜃

𝑥(𝑎)
2

+

2𝑟2𝜃 𝑒𝑥𝑝 {−
𝜃2

𝑥(𝑏)
2 }

𝑥(𝑏)
2 (1 − 𝑒𝑥𝑝 {−

𝜃2

𝑥(𝑏)
2 })

. 

 

(4) 

The observed information matrix can be obtained by 
differentiating (4) with respect to the parameter   and 

negating the resulting expressions. Hence the observed 
information matrix is obtained as 

 

   

   

 
     

 
 

 
 

 

2 2

2 2

2

2

2
1 2 1

2 2 2 2

2 2 2
2

2
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2| 21
2

2 exp exp 2

.

1 exp
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b
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b x

n r rd r

d x x

r x x

x

 





 





 
    

      
 


    
 


x

 

 
Then, the ML estimator of parameter 𝜃 can be defined 

as 

 
x1

ˆ argmax  ( | ). 
 

 

1̂  can be also obtained by the solution of likelihood 

equation  | / 0,d d  x  however it easily be seen that 

there is no explicit solution for 𝜃. Therefore, numerical 
methods such as Newton-Raphson or Brent can be used 
to achieve the solution. Fixed-point iteration, a widely 
recognized numerical method, can be easily implemented 
as an alternative. Here, we give a fixed-point iteration for 
the solution of the likelihood equation. Utilizing the 
likelihood equation, the fixed-point iterations can be 
obtained as  

 

    

 

 

     
 

    

 

1
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12
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2 2
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4
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16

h

ah
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i

h
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x
r

x

G x
x x n r r n r r

x x










 


 
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 
 

               
      

 

 (5) 

  
where  

  

 
 

 

 

 

 

2

2

2

2

2 exp

.

1 exp

h
h

b
h

h

b

b

r
x

G

x
x








   
   
   


          

    

 

 

It is noted that the search methods may suffer from 
the initial values. It is desired to explicit estimators which 
do not need an initial value. They can also be used as initial 
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values for searching algorithms. Let us start to construct 
the MML estimators. Consider the transformation 𝑍(𝑏) =

𝑋(𝑏)/𝜃. It is clear that 𝑍(𝑏) is the 𝑏th order statistic from 

the IR(1) distribution which is independent of parameter 
𝜃. Then, the likelihood equation can be re-written as 

 

2(𝑛 − 𝑟1 − 𝑟2)

𝜃
− 2𝜃 ∑

𝑛−𝑟2

𝑖=𝑟1+1

1

𝑥(𝑖)
2 −

2𝑟1𝜃

𝑥(𝑎)
2

+
𝑟2
𝜃
𝑧𝑏𝑔(𝑧𝑏) = 0, 

(6) 

 

𝑔(𝑧) =
𝑓(𝑧; 1)

1 − 𝐹(𝑧; 1)
=

2 𝑒𝑥𝑝 (−
1
𝑧2
)

𝑧3 {1 − 𝑒𝑥𝑝 (−
1
𝑧2
)}
. (7) 

 

Eq. (6) does not also admit an explicit solution for 𝜃 
due to the complex nature of 𝑔(𝑧). [13] utilized hyperbolic 
approximation as a method to approach 𝑧𝑏𝑔(𝑧𝑏), and we 
intend to employ the same technique initially in 
addressing our own problem. Hence, we use an equation 
hyperbola in the first quadrant  

 

𝑧𝑔(𝑧) = 𝐾1, 
 

where the value of 𝐾1can be obtained by using any two 
points ℎ1 and ℎ2 on the curve that is very close to each 
other, and denoted by 𝐾1. Then, as ℎ → ∞,ℎ1 and ℎ2 tend 
to a common value of ℎ. Therefore,  

 

−
𝑔(ℎ2) − 𝑔(ℎ1)

ℎ2 − ℎ1
=

𝐾1
ℎ1ℎ2

, (8) 

 

and ℎ is given by 

ℎ =
1

√𝑙𝑜𝑔 (
𝑛 + 1
𝑏

)

 

 

which is solution of the equation 𝐹(ℎ; 1) =
𝑛−𝑟2

𝑛
. Then 

(8) is reduced to 
 

𝐾1 = −ℎ2 [
𝑑

𝑑𝑧
𝑔(𝑧)]

𝑧=ℎ
 

=
2𝑒𝑥𝑝 (−

1
ℎ2
) {3ℎ2 − 3ℎ2 𝑒𝑥𝑝 (−

1
ℎ2
) + 2}

ℎ4 {(1 − 𝑒𝑥𝑝 (−
1
ℎ2
))}

2 . 
(9) 

Substituting (9) into (6), we have the modified 
likelihood equation 

 

𝑑ℓ(𝜃|𝑥)

𝑑𝜃
=
2(𝑛 − 𝑟1 − 𝑟2)

𝜃

− 2𝜃 ∑

𝑛−𝑟2

𝑖=𝑟1+1

1

𝑥(𝑖)
2 −

2𝑟1𝜃

𝑥(𝑎)
2

+
𝑟2
𝜃
𝐾1 = 0, 

 

(10) 

 

and the solution to this equation with respect to 𝜃 
gives the MML, which is given by 

 

 

 
 

1
2

2

2

1

1 2 2 1
2

2 1
1

1

2( )ˆ .

2
i

a n r

a xi r

n r r r K
x

x r




 

 
 

   
  

   
  

 

 
 
(11) 

Now, we propose an alternative method for 
approximate to 𝑧𝑏𝑔(𝑧𝑏). Traditionally, 𝐸(𝑍𝑏) can be 
treated as 𝑍𝑏, which can be easily approximated by 

 

𝑧̂𝑏 ≈
1

√𝑙𝑜𝑔 (
𝑛 + 1
𝑏

)

, 
 
(12) 

 

where, (12) arises from the facts 
 

𝑍𝑏 =
𝑑
𝐹−1(𝑈(𝑏); 1) 

and 

𝐸(𝑍𝑏) ≈ 𝐹−1 (
𝑏

𝑛 + 1
; 1), 

 

where 𝑈(𝑏) is the 𝑏th order statistic from standard 

uniform random variable. Then, the second MML is 
obtained as 

 

 

 
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1
2

2

2

1

1 2 2 2
3

2 1
1

1

2( )ˆ ,

2
i

a n r

a xi r

n r r r K
x

x r




 

 
 

   
  

   
  

 (13) 

 

where  

𝐾2 = 𝑧̂𝑏𝑔(𝑧̂𝑏). 
 

The works of [26] and [27] suggest revising the 
modified Maximum Likelihood Estimation (MMLE). 
According to the revising methodology, we replace 𝑧𝑏 

with 𝑧𝑏 =
𝑥(𝑏)

𝜃
 and calculate the updated estimate 𝜃̂ using 

Eq.(13). This process is done until 𝜃̂ converges adequately. 
It is note worthy that more than a few updates (e.g., 3 or 
5) may be necessary to stabilize the estimator. 

 

Remark 1. In our simulation study, we observed that 
the revised MML is almost identical to the ML. From this, 
it can be concluded that there is no need to employ search 
methods dependent on the initial values, such as Nelder-
Mead or BFGS, to obtain the ML. That is ML estimate can 
be obtained by updating the MMLE. 

 
Let us define the following modified objective 

functions to obtain AD, CvM, and LS type estimates for the 
parameter 𝜃 based on Type-II left and right censoring:  

 

𝑄𝐴𝐷(𝜃) = −𝑛 +
1

𝑛
∑

𝑛−𝑟∗

𝑗=𝑟∗+1

(2𝑗 − 1) (
𝜃2

𝑥(𝑗)
2  )

+ [𝑙𝑜𝑔 (1 − 𝑒𝑥𝑝 {−
𝜃2

𝑥(𝑛−𝑗+1)
2 })], 
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𝑄𝐶𝑣𝑀(𝜃) =
1

12𝑛
+ ∑

𝑛−𝑟2

𝑗=𝑟1+1

(𝑒𝑥𝑝 {−
𝜃2

𝑥(𝑗)
2 } −

𝑗 − 0.5

𝑛
)

2

, 

 

𝑄𝐿𝑆(𝜃) = ∑

𝑛−𝑟2

𝑗=𝑟1+1

(𝑒𝑥𝑝 {−
𝜃2

𝑥(𝑗)
2 } −

𝑗

𝑛 + 1
)

2

, 

 

where 

𝑟∗ = {

𝑟2 , 𝑟1 ≤ 𝑟2

𝑟1 , 𝑟1 > 𝑟2.
 

 
Then, the AD, CvM, and LS type estimates of 𝜃 are 

given, respectively, by 
 
 

 4
ˆ argmin ,ADQ



 
 

(14) 

 5
ˆ argmin ,CvMQ



 
 

(15) 

 6
ˆ argmin .LSQ



 
 

(16) 

 

In this study, all minimization problems are solved via 
numerical method Nelder-Mead, which is available in the 
R function optim. 

 

Simulation Study 
 

In this section, we perform Monte Carlo simulation to 
assess the performance of the estimators given in Section 
2. The performances of the proposed estimators are 
compared in terms of mean squared error (MSE) and bias 
criteria.  

 

Table 1. MSE and bias (in parantheses) for the estimates of 𝜃 = 1 
𝑛 𝑟1 𝑟2 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 
30 1 1 0.0095 0.0094 0.0095 0.0104 0.0118 0.0117 

   (0.0132) (0.0121) (0.0132) (0.0051) (0.0090) (0.0062) 
 3 3 0.0102 0.0099 0.0102 0.0112 0.0122 0.0121 
   (0.0121) (0.0047) (0.0122) (0.0029) (0.0056) (0.0034) 
 6 6 0.0115 0.0108 0.0116 0.0127 0.0132 0.0131 
   (0.0163) (-0.0145) (0.0166) (0.0073) (0.0086) (0.0073) 
 1 6 0.0093 0.0088 0.0093 0.0124 0.0117 0.0115 
   (0.0141) (-0.0112) (0.0143) (0.0083) (0.0137) (0.0092) 
 6 1 0.0117 0.0117 0.0117 0.0127 0.0132 0.0132 
   (0.0155) (0.0142) (0.0156) (0.0067) (0.0045) (0.0050) 

60 3 3 0.0047 0.0047 0.0047 0.0053 0.0059 0.0059 
   (0.0079) (0.0061) (0.0079) (0.0034) (0.0052) (0.0039) 
 6 6 0.0048 0.0046 0.0048 0.0054 0.0059 0.0058 
   (0.0067) (0.0001) (0.0067) (0.0024) (0.0038) (0.0027) 
 12 12 0.0056 0.0056 0.0056 0.0062 0.0064 0.0064 
   (0.0088) (-0.0201) (0.0089) (0.0045) (0.0050) (0.0044) 
 3 12 0.0047 0.0047 0.0047 0.0063 0.0059 0.0058 
   (0.0067) (-0.0174) (0.0068) (0.0035) (0.0060) (0.0038) 
 12 3 0.0054 0.0054 0.0054 0.0060 0.0063 0.0063 
   (0.0073) (0.0052) (0.0073) (0.0024) (0.0013) (0.0015) 

100 5 5 0.0027 0.0027 0.0027 0.0031 0.0034 0.0034 
   (0.0049) (0.0033) (0.0049) (0.0022) (0.0032) (0.0024) 
 10 10 0.0029 0.0028 0.0029 0.0033 0.0035 0.0035 
   (0.0049) (-0.0013) (0.0049) (0.0022) (0.0030) (0.00249 
 20 20 0.0033 0.0036 0.0033 0.0037 0.0038 0.0038 
   (0.0056) (-0.0225) (0.0057) (0.0026) (0.0029) (0.0025) 
 5 20 0.0027 0.0030 0.0027 0.0036 0.0033 0.0033 
   (0.0038) (-0.0196) (0.0039) (0.0019) (0.0034) (0.0021) 
 20 5 0.0032 0.0031 0.0032 0.0036 0.0037 0.0037 
   (0.0048) (0.0029) (0.0048) (0.0021) (0.0013) (0.0014) 

200 10 10 0.0013 0.0013 0.0013 0.0016 0.0017 0.0017 
   (0.0019) (0.0004) (0.0019) (0.0008) (0.0014) (0.0010) 
 20 20 0.0014 0.0014 0.0014 0.0016 0.0017 0.0017 
   (0.0018) (-0.0041) (0.0019) (0.0005) (0.0009) (0.0005) 
 40 40 0.0016 0.0022 0.0016 0.0018 0.0019 0.0019 
   (0.0020) (-0.0255) (0.0021) (0.0005) (0.0006) (0.0004) 
 10 40 0.0013 0.0017 0.0013 0.0018 0.0017 0.0017 
   (0.0017) (-0.0213) (0.0017) (0.0002) (0.0011) (0.0004) 
 40 10 0.0015 0.0015 0.0015 0.0018 0.0019 0.0019 
   (0.0025) (0.0008) (0.0025) (0.0011) (0.0008) (0.0008) 

500 25 25 0.0005 0.0005 0.0005 0.0006 0.0007 0.0007 
   (0.0007) (-0.0007) (0.0007) (0.0003) (0.0006) (0.0004) 
 50 50 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 
   (0.0007) (-0.0051) (0.0008) (0.0000) (0.0002) (0.0000) 
 100 100 0.0006 0.0013 0.0006 0.0007 0.0007 0.0007 
   (0.0007) (-0.0264) (0.0008) (0.0003) (0.0003) (0.0003) 
 25 100 0.0005 0.0010 0.0005 0.0007 0.0007 0.0007 
   (0.0009) (-0.0218) (0.0009) (0.0006) (0.0009) (0.0006) 
 100 25 0.0006 0.0006 0.0006 0.0007 0.0008 0.0008 
   (0.0010) (-0.0006) (0.0010) (0.0004) (0.0002) (0.0002) 
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Since the 𝜃 is a scale parameter, 𝜃 = 1 is considered 
in the simulations without loss of generality. Various 
censoring schemes and sample sizes of  𝑛 =
30, 60, 100, 200, and  500 are included in the simulations. 
Censoring schemes are selected by considering various 
combinations of right and left censoring, with the number 
of observations censored from the right and left sides 
comprising 5%, 10%, and 20% of the dataset. In the case 
of 𝑛 = 30, 𝑟1 and 𝑟2 are fixed as 1 for a 5% censorship 
situation. The average of the bias and MSE of the 
estimators with 10000 replications are given in Table 1. 

According to the results from Table 1, the 𝜃̂1, 𝜃̂2, and 

𝜃̂3 exhibit similar performance, and they slightly 
outperform current methods in terms of both MSE and 
bias considered in this study. When  𝑟1 = 𝑟2, an increase 
in the number of censored observations results in higher 
MSE values, aligning with expectations. As anticipated, 
both 𝑛 and the count of censored observations contribute 
to an increase in MSE values. Moreover, when 𝑟1 > 𝑟2, the 
MSE tends to be larger. It is possible to reach the ultimate 
conclusion that censoring should be at right in Type-II 
scheme. The most significant result extracted from this 
simulation study is that the proposed estimators perform 
equally well as the ML estimator and even better than the 
others. Therefore, there is no objection to using our 
proposed explicit estimators instead of the ML estimator, 
which requires numerical methods. 

 

Real Data Analysis 
 

In this section, the strengths of 1.5 cm glass fibres 
([28]) dataset is used for illustration purposes. The Table 
2 provides the ML estimate of the parameter 𝜃 for the 
complete dataset, along with various goodness of fit 
values such as the Akaike Information Criterion (AIC), 
Corrected Akaike’s Information Criterion (CAIC), Bayesian 
Information Criterion (BIC), Anderson-Darling (A), 
Kolmogorov-Smirnov (KS), and their corresponding p-
values (in parentheses). As the p-values for the goodness-
of-fit tests shown in Table 2 exceed 0.05, we cannot reject 
the hypothesis that the data originates from the IR 
distribution at a significance level of 0.05. 

 

Table 2. Some results fot the glass fibres data for the 
complete data 

𝜽̂ 𝓵(𝜽̂) AIC CAIC BIC A KS 

0.1574 -
31.5405 

-
61.0810 

-
60.9210 

-
59.7852 

1.4936 
(0.1781) 

0.1758 
(0.3738) 

 

Let us censoring the complete data with scheme 𝑟1 =
1 and 𝑟2 = 2. Then, the Type-II left and right censored 
data is produced by: 0.11, 0.12, 0.12, 0.12, 0.12, 0.13, 
0.13, 0.14, 0.15, 0.15, 0.15, 0.16, 0.16, 0.16, 0.17, 0.20, 
0.20, 0.20, 0.21, 0.23, 0.26, 0.32, 0.33, 0.33. Using this 
Type-II left and right censored data, point estimates of 𝜃 
are given in Table 3. 

 

Table 3. Point estimates for the censored glass fibres data 

𝜽̂𝟏 𝜽̂𝟐 𝜽̂𝟑 𝜽̂𝟒 𝜽̂𝟓 𝜽̂𝟔 

0.1562 0.1558 0.1565 0.1431 0.1435 0.1430 

Fixed-point iteration given in (5) is also considered for 
the censored data. The convergence of the fixed-point 
iterations to the ML is illustrated in Figure 1, where the 
dashed line indicates the ML estimate. 

 

 

Figure 1. The convergence of the fixed-point iterations to 
the ML 

 

 

Figure 2. Convergence of the revised estimates of 𝜃̂3 to 

the 𝜃̂1 

 

Figure 2 also demonstrates revising steps for 𝜃̂3. Based 
on Figure 2, it can be seen that only a small number of 
updates are required to reach the ML estimate. 

 

Conclusion 
 
This study is focused on estimating the parameter of 

the inverse Rayleigh (IR) distribution under Type-II left and 
right censoring scheme. In this regard, several point 
estimation methods are introduced, including ML, AD, 
CvM, and LS. Additionally, two novel MML approaches are 
proposed, designed to address the challenges of 
parameter estimation under Type-II left and right 
censoring. The results of the simulation study 
demonstrate that the proposed MML estimators 
consistently outperform the other methods across various 
scenarios. These estimators are particularly noteworthy 
for their explicit solutions, which eliminate the need for 
iterative search methods and simplify the estimation 
process. This makes the MML estimators promising 
alternatives for the point estimation of the IR distribution 
parameter in Type-II left and right censoring contexts. 
Furthermore, the explicit nature of the proposed MML 
estimators enhances their computational efficiency and 
establishes them as excellent initial values for obtaining 
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the ML estimator. By providing reliable starting points, 
they help overcome challenges typically associated with 
iterative methods, such as dependency on initial values 
and computational complexity. This combination of 
simplicity and effectiveness underscores the value of the 
proposed MML estimators as practical tools for parameter 
estimation in censored data scenarios. 
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