
72 

 

 

 

 

Journal of Computer Science 
https://dergipark.org.tr/en/pub/bbd 

Anatolian Science 

ISSN,e-ISSN: 2548-1304  

Volume:9, Issue: 1 pp:72-83, 2024  

https://doi.org/10.53070/bbd.1469625 

Research Paper      

 

Level Polynomials of Rooted Trees  

Bünyamin ŞAHİN*1  

1Department of Mathematics, Faculty of Science, Selçuk University, Konya, Turkey 

(bunyamin.sahin@selcuk.edu.tr) 

 

Received:Apr.17,2024 Accepted:Jun.01,2024 Published:Jun.01,2024 

 

Abstract— Distance is the most important graph invariant and its history goes back to 1940s. Today total distance 

or Wiener index is widely studied in mathematics, computer science, statistics and related fields. Level index is 

also a distance based graph invariant which was introduced in 2017 for rooted trees.  Level index is the numerator 

of the Gini index which is a statistical tool but Balaji and Mahmoud defined the graph theoretical applications of 

this index for statistical analysis of graphs. In this paper we define a new graph polynomial which is called level 

polynomial and calculate the level polynomial of some classes of trees. We obtain some interesting relations 

between the level polynomials and some integer sequences. Finally, we give an open problem at the end of the 

paper. 
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1. Introduction 

  The Gini index was defined by Gini (1912). It shows the income inequality of social groups and is used by The 

World Bank for the economical investigations. The graph theoretical application of Gini index was introduced by 

Balaji and Mahmoud (2017) for rooted trees. They introduced two distance based topological indices, Gini index 

and level index. Moreover, degree based Gini index was defined by Domicolo and Mahmoud (2019). 

  The first distance based topological index was introduced by Wiener (1947). Wiener showed that there is a 

correlation between the physico-chemical properties of molecules and distances between the atoms.  Hosoya 

defined a distance counting polynomial (Hosoya, 1988) which is called Hosoya polynomial in the literature. The 

first derivative of Hosoya polynomial gives Wiener index and second derive gives the Wiener polarity index. 

Derivatives of Hosoya polynomial were used as molecular descriptors by Konstantinova and Diudea (2000), 

Estrada et al. (1998). Moreover vertex-weighted Wiener polynomials were studied by Došlić (2008). 

  The level concept was used in the papers (Flajolet and Prodinger, 1987) and (Tangora, 1991) for rooted trees.  

Flajolet and Prodinger (1987) obtained a number sequence and investigated properties of this sequence. Statistical 

analysis of level index was studied by Balaji and Mahmoud (2017). They adapted the original Gini index to graph 

theory and calculated the Gini index caterpillar graphs. Because caterpillar graphs represent the structural formula 

of some chemically important molecules and represent the distribution of organisms at a spine. 

  Since the distance is the most important graph invariant and it is widely studied in different sciences, we decided 

to introduce a new graph polynomial. In this paper we define a new distance based graph polynomial which is 

called “Level Polynomial”. The first derivative of level polynomial gives the level index of graphs. Moreover, we 

compute the level polynomial and level index of triangular numbers, caterpillar graphs, subdivisions of stars and 

regular dendrimer graphs. We obtain some interesting relations between the coefficients of level polynomials of 

graphs and some integer sequences. 

   It is known that average distance is also computed by Hosoya (Wiener) polynomials of graphs. Similar to other 

average graph measures, average measure can be defined as a graph invariant. At the end of the paper, we give the 

formula of the average level in terms of level polynomials of graphs. With respect to our observations average 

distance and average level are incomparable for rooted trees but equality is attained for only paths. It means that 

the relations between these average measures can be investigated. 

https://dergipark.org.tr/en/pub/bbd
https://orcid.org/0000-0003-1094-5481
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2. Preliminaries 

 We use only simple, connected and undirected graphs. The degree of a vertex 𝑢 is denoted by  deg⁡(𝑢). A vertex 

with degree one is named a leaf. The notation⁡𝑑(𝑢, 𝑣) is used to show the distance between two any vertices 𝑢 and 

𝑣 in a graph. 

 In a graph 𝐺, the number of vertices 𝑛  is called order. The path and star graphs with 𝑛 vertices are denoted by 𝑃𝑛 

and 𝑆𝑛, respectively.  

Definition 2.1. The total distance from a vertex 𝑢 ∈ 𝑉(𝐺) to other vertices is presented by the following phrase 

𝐷(𝑢) = ∑ 𝑑(𝑢, 𝑣)

𝑣∈𝑉(𝐺)

. 

Definition 2.2. The Wiener index for a graph  is defined by the following equation (Wiener, 1947) 

𝑊(𝐺) =
1

2
∑ 𝐷(𝑢)

𝑢∈𝑉(𝐺)

. 

Definition 2.3. The Hosoya (Wiener) polynomial of a graph 𝐺 is denoted by 𝐻(𝐺, 𝑥) and it is computed by the 

following equation where 𝑑(𝐺, 𝑘) denotes the vertex pairs having distance 𝑘 (Hosoya, 1988) 

𝐻(𝐺, 𝑥) =∑𝑑(𝐺, 𝑘)𝑥𝑘

𝑘≥1

. 

Theorem 2.4. The Hosoya polynomials of paths, stars, cycles with even order and odd order are presented as 

follows 

𝑖)⁡𝐻(𝑃𝑛, 𝑥) = 𝑥
𝑛−1 + 2𝑥𝑛−2 +⋯+ (𝑛 − 1)𝑥 

𝑖𝑖)⁡𝐻(𝑆𝑛 , 𝑥) = (
𝑛 − 1
2

) 𝑥2 + (𝑛 − 1)𝑥 

𝑖𝑖𝑖)⁡𝐻(𝐶𝑛, 𝑥) = 𝑛(𝑥 + 𝑥
2 +⋯+ 𝑥𝑛 2⁄ −1) +

𝑛

2
𝑥𝑛 2⁄ ⁡(𝑛⁡𝑖𝑠⁡𝑒𝑣𝑒𝑛) 

𝑖𝑣)⁡𝐻(𝐶𝑛 , 𝑥) = 𝑛(𝑥 + 𝑥2 +⋯+ 𝑥(𝑛−1) 2⁄ )(𝑛⁡𝑖𝑠⁡𝑜𝑑𝑑). 

Theorem 2.5. The Wiener indices of paths, stars and cycles are presented in the following equations 

𝑖)⁡𝑊(𝑃𝑛) = (
𝑛 + 1
3

) =
(𝑛 + 1)𝑛(𝑛 − 1)

6
 

 

𝑖𝑖)⁡𝑊(𝑆𝑛) = (𝑛 − 1)
2 

𝑖𝑖𝑖)⁡𝑊(𝐶𝑛) =

{
 

 
𝑛3

8
,⁡⁡⁡𝑛⁡𝑖𝑠⁡𝑒𝑣𝑒𝑛

𝑛3 − 𝑛

8
, 𝑛⁡𝑖𝑠⁡𝑜𝑑𝑑

 

 

Definition 2.6. The Wiener index of a graph 𝐺  is also computed by the following equation (Hosoya, 1988) 

𝑊(𝐺) = (𝐻(𝐺, 𝑥))
′
|𝑥=1 

 

3. Level Index and Dendrimer Graphs 

 In a rooted tree, a vertex determined as a root or central vertex. The distance 𝑖 from the central vertex is denoted 

by 𝐷𝑖(𝑇) (Balaji and Mahmoud, 2017). This distance (measured with edges) is called by level. The distance from 

the root to a vertex with the highest level is called height of the tree (Balaji and Mahmoud, 2017). 
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 Balaji and Mahmoud introduced two distance based topological indices for rooted trees. The first one is called 

level index and level index of a tree is denoted by 𝐿(𝑇). Level index of a tree 𝑇 is computed by the following 

equation 

𝐿(𝑇) = ∑ |𝐷𝑗(𝑇) − 𝐷𝑖(𝑇)|

1≤𝑖<𝑗≤𝑛

 

such that 𝐷𝑖(𝑇) and 𝐷𝑗(𝑇) showing the vertices at distances 𝑖 and 𝑗 from the central vertex of the tree 𝑇. 

In order to exemplify the level index, we use the example given in the paper (Balaji and Mahmoud, 2017). 

 

Figure 1. The tree 𝑇 which is used in the following example 

 

Example 3.1. The level index of 𝑇 is computed by  

𝐿(𝑇) = 1 + 1 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 14. 

 Now we can describe a level counting polynomial which is called level polynomial of the graphs. 

Definition 3.2. The level polynomial of a rooted tree 𝑇 is given by 

𝐿(𝑇, 𝑥) =∑𝑙(𝑇, 𝑘)𝑥𝑘

𝑘≥1

 

where 𝑙(𝐺, 𝑘) shows the number of vertex pairs having level difference 𝑘. It is understood that level index of a 

graph 𝐺 equals to   

𝐿(𝑇) = (𝐿(𝑇, 𝑥))
′
|𝑥=1 

Lemma 3.3. For a given dendrimer graph 𝑇𝑘,𝑑 (depicted in Figure 2) with central vertex 𝑣, the following properties 

are hold (Şahin and Şener, 2020) 

𝑖) The order of 𝑇𝑘,𝑑 is 1 +
𝑑[(𝑑−1)𝑘−1]

𝑑−2
, 

𝑖𝑖) 𝑇𝑘,𝑑 contains 𝑑 branches, 

𝑖𝑖𝑖) Every branch of 𝑇𝑘,𝑑 contains 
(𝑑−1)𝑘−1

𝑑−2
 vertices,  

𝑖𝑣) Every branch of 𝑇𝑘,𝑑 contains  (𝑑 − 1)𝑘−1  leaves, 

𝑣) Every branch of 𝑇𝑘,𝑑 contains  
(𝑑−1)𝑘−1−1

𝑑−2
 non-leaf vertices, 

𝑣𝑖) There are 𝑑(𝑑 − 1)𝑘−1 vertices at distance 𝑘 from 𝑣. 
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Figure 2.  Dendrimers   𝑇2,4 and 𝑇3,4 

 

4. Main Results 

 In this section we obtain the main results of the paper. We obtain the level polynomial of some classes of graphs. 

If 𝑎𝑖 denotes the number of vertices on level 𝑖 (0 ≤ 𝑖 ≤ 𝑛), we can show the level polynomials of rooted trees as 

in the following theorem.  Even though there exists one vertex at first level  (𝑎0 = 1) in a rooted tree, the definition 

of level polynomial can be extended to other graphs and 𝑎0 can take different values in the future. 

Theorem 4.1. The level polynomial of a  rooted tree 𝑇 is obtained by the following equation such that the number 

of vertices on level 𝑖 is denoted by 𝑎𝑖⁡ 

𝐿(𝑇, 𝑥) =∑∑𝑎𝑖𝑎𝑖+𝑗𝑥
𝑗

𝑛−𝑗

𝑖=0

𝑛

𝑗=1

 

Proof.  If the height of a rooted tree is showed by 𝑛, the exponents of 𝑥  changes from 1 to 𝑛. Since the level 

polynomial of a rooted tree can be presented as  

𝐿(𝑇, 𝑥) = 𝑏1𝑥 + 𝑏2𝑥
2 +⋯+ 𝑏𝑛−1𝑥

𝑛−1 + 𝑏𝑛𝑎𝑛𝑥
𝑛 . 

The main problem is finding the coefficients of the level polynomial of 𝑇. Since a level has to be greater than 1, 

there is no constant term in the level polynomial.  

  The coefficient of 𝑥𝑛 is 𝑎𝑛, because the vertex pairs which have level difference 𝑛 are located on level 0 and 

level 𝑛. Similarly The coefficient of 𝑥𝑛 is,⁡𝑎0𝑎𝑛−1 + 𝑎1𝑎𝑛 because the vertex pairs which have level difference 

𝑛 − 1 are located on levels 0, (𝑛 − 1) and levels 1, 𝑛. 

  By this way we obtain the coefficient of 𝑥2  as 𝑎0𝑎2 + 𝑎1𝑎3 +⋯+ 𝑎𝑛−2𝑎𝑛 , because we want to obtain the 

number of vertices which have level difference 2. 

  Finally the coefficient of 𝑥 is 𝑎0𝑎1 + 𝑎1𝑎2 +⋯+ 𝑎𝑛−1𝑎𝑛. Because the vertices which have level difference 1 

are located at consecutive levels. It means that the level polynomial of a rooted tree 𝑇 is presented as follows 

 

𝐿(𝑇, 𝑥) = (𝑎0𝑎1 + 𝑎1𝑎2 +⋯+ 𝑎𝑛−1𝑎𝑛)𝑥 + (𝑎0𝑎2 + 𝑎1𝑎3 +⋯+ 𝑎𝑛−2𝑎𝑛)𝑥
2 +⋯ 

⁡+(𝑎0𝑎𝑛−1 + 𝑎1𝑎𝑛)𝑥
𝑛−1 + 𝑎0𝑎𝑛𝑥

𝑛 

𝐿(𝑇, 𝑥) = ∑∑𝑎𝑖𝑎𝑖+𝑗𝑥
𝑗

𝑛−𝑗

𝑖=0

𝑛

𝑗=1

. 

 

Remark 4.2. The level index of a rooted tree equals to following equation by Definition 3.2 
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𝐿(𝑇) = (𝐿(𝑇, 𝑥))
′
|𝑥=1 =∑∑𝑗𝑎𝑖𝑎𝑖+𝑗

𝑛−𝑗

𝑖=0

𝑛

𝑗=1

. 

 

We can find the level polynomials of trees which represent the triangular numbers as in the following figure. 

 

Figure 3. The tree 𝑆 for  𝑛 = 4 

  Let  𝑆 be a tree which has 𝑖 + 1 vertices on the level 𝑖 (depicted in Figure 3 for 𝑛 = 4). It means that there is a 

central vetrex, two vertices on first level, three vertices on the second level and 𝑛 vertices on (𝑛 − 1)-th level 

(triangular numbers). The sum of coefficient of level polynomial of 𝑆 gives a new application of the integer 

sequence A000914 from OEIS  (Sloane and Ploufe, 1995) 

Theorem 4.3. Assume that 𝑆  is defined above. Then its level polynomial is defined as follows 

𝐿(𝑆, 𝑥) = ∑∑𝑖(𝑖 + 𝑗)𝑥𝑗

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

 

Proof. For a given sequence 𝑖 = 1,2, … , 𝑛, the level partitions are defined as in the following phrases, 

1 × 𝑛 (Level 𝑛 − 1) 

1 × (𝑛 − 1) + 2 × 𝑛 (Level 𝑛 − 2) 

1 × (𝑛 − 2) + 2 × (𝑛 − 1) + 3 × 𝑛 (Level 𝑛 − 3) 

⋮ 

1 × 3 + 2 × 4 +⋯+ (𝑛 − 3) × (𝑛 − 1) + (𝑛 − 2) × 𝑛  (Level 2) 

1 × 2 + 2 × 3 +⋯+ (𝑛 − 2) × (𝑛 − 1) + (𝑛 − 1) × 𝑛  (Level 1). 

  By these phrases for a given level 𝑖 = 1,2, … , 𝑛 − 1, the coefficients are ordered. Then the level polynomial of 𝑆 

is presented as in the following equation  

𝐿(𝑆, 𝑥) = ∑∑𝑖(𝑖 + 𝑗)𝑥𝑗

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

. 

Let 𝑆 be as in the previous theorem. Now it is denoted the sum of coefficients of level polynomials by ℒ(𝑛) such 

that 

ℒ(𝑛) = ∑∑𝑖(𝑖 + 𝑗)

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

 

Theorem 4.4.  For a positive integer 𝑛, the number of ℒ(𝑛) is computed as in the following equation  
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ℒ(𝑛) = ∑∑𝑖(𝑖 + 𝑗)

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

=∑
𝑖(𝑛 − 𝑖)(𝑛 + 𝑖 + 1)

2

𝑛−1

𝑖=1

 

Proof.  In order to find the level number of a positive integer 𝑛, we use Therorem 4.3 in obtaining the sum of 

coefficients of Level polynomials of the tree 𝑆. 

ℒ(𝑛) = ∑∑𝑖(𝑖 + 𝑗)

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

 

= ∑∑𝑖2

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

+∑∑𝑖𝑗

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

 

=∑(𝑛 − 𝑖)𝑖2
𝑛−1

𝑖=1

+∑
𝑖(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2

𝑛−1

𝑖=1

 

= ∑
𝑖(𝑛 − 𝑖)(𝑛 + 𝑖 + 1)

2

𝑛−1

𝑖=1

. 

 

  Now we obtain the initial terms of the sequence of ℒ(𝑛). For a positive integer 𝑛, there is a tree 𝑆 which has 𝑛 −

1 levels and there are 𝑖 + 1 vertices on level 𝑖 (1 ≤ 𝑖 ≤ 𝑛 − 1). By this way initial terms are obtained as  

ℒ(1) = 0, ℒ(2) = 2, ℒ(3) = 11, ℒ(4) = 35, ℒ(5) = 85, ℒ(6) = 175, ℒ(7) = 322. 

Theorem 4.5. The level index of the tree 𝑆 is defined in the following equation 

𝐿(𝑆) = ∑∑𝑖𝑗(𝑖 + 𝑗)

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

= 2∑
𝑖2(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2

𝑛−1

𝑖=1

 

 

Proof.  In order to find the level index of a positive integer 𝑛, we use Remark 4.2 in obtaining the sum of 

coefficients of Level polynomials of the tree 𝑆. 

𝐿(𝑆) = (𝐿(𝑆, 𝑥))
′
|𝑥=1 

Since the level polynomial of 𝑆 is given in the Theorem 4.2 

𝐿(𝑆, 𝑥) = ∑∑𝑖(𝑖 + 𝑗)𝑥𝑗

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

. 

𝐿(𝑆) = (𝐿(𝑆, 𝑥))
′
|𝑥=1 =∑∑𝑖2𝑗

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

+∑∑𝑖𝑗2

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

 

= 2∑
𝑖2(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2

𝑛−1

𝑖=1

. 

If we obtain the initial terms of the sequence which is obtained in the Theorem 4.5 

𝐿(1) = 0, 𝐿(2) = 2, 𝐿(3) = 14, 𝐿(4) = 54, 𝐿(5) = 154, 𝐿(6) = 364. 

This sequence is appeared in the OEIS with reference number A067056 (Sloane and Ploufe, 1995) for level index 

of greater than 1. 
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Theorem 4.6. Let 𝑇 be a tree with level ℓ. Assume that 𝑇′ is a tree which is obtained from 𝑇 by attaching a new 

vertex 𝑢 to 𝑘-th level of 𝑇. Then the difference between the level polynomials of  𝑇′ and 𝑇 is 

𝐿(𝑇′, 𝑥) − ⁡𝐿(𝑇, 𝑥) = ∑𝑎𝑖𝑥
𝑘−𝑖

𝑘−1

𝑖=0

+ ∑ 𝑎𝑖𝑥
𝑖−𝑘

ℓ

𝑖=𝑘+1

 

Proof.  Assume that a vertex 𝑢 is attached the 𝑘-th level of 𝑇. Then difference between the level polynomials of  

𝑇′ and 𝑇 is 

𝐿(𝑇′, 𝑥) − ⁡𝐿(𝑇, 𝑥) = 𝑎0𝑥
𝑘 + 𝑎1𝑥

𝑘−1 +⋯+ 𝑎𝑘−1𝑥 + 𝑎𝑘+1𝑥 + 𝑎𝑘+2𝑥
2 +⋯+ 𝑎ℓ𝑥

ℓ−𝑘 

with the open form. We can write this equation by 

𝐿(𝑇′, 𝑥) − ⁡𝐿(𝑇, 𝑥) = ∑𝑎𝑖𝑥
𝑘−𝑖

𝑘−1

𝑖=0

+ ∑ 𝑎𝑖𝑥
𝑖−𝑘

ℓ

𝑖=𝑘+1

. 

By the last equation, we can compute the difference of level indices of 𝑇′ and 𝑇.  

𝐿(𝑇′) − ⁡𝐿(𝑇) = (𝐿(𝑇′, 𝑥) − 𝐿(𝑇, 𝑥))′|𝑥=1 

=∑𝑎𝑖(𝑘 − 𝑖)

𝑘−1

𝑖=0

+ ∑ 𝑎𝑖(

ℓ

𝑖=𝑘+1

𝑖 − 𝑘) 

Theorem 4.7. Let 𝑇 be a rooted tree. Then the level polynomial of 𝑇 equals to Hosoya polynomial of 𝑇 if and only 

if   𝑇 = 𝑃𝑛. 

Proof.  Since a path 𝑃𝑛: 𝑣1𝑣2…𝑣𝑛 has one vertex at each level, there exists one vertex for each distance from 𝑣1. 

Then the level polynomais of 𝑃𝑛 equals to Hosoya polynomial of 𝑃𝑛 as in the following equation 

 

𝐿(𝑃𝑛 , 𝑥) = 𝐻(𝑃𝑛, 𝑥) = 𝑥
𝑛−1 + 2𝑥𝑛−2 +⋯+ (𝑛 − 1)𝑥. 

Since the polynomials equal, we obtain that  

𝐿(𝑃𝑛) = 𝑊(𝑃𝑛) = (
𝑛 + 1
3

) =
(𝑛 + 1)𝑛(𝑛 − 1)

6
. 

  Now we assume that 𝑇 ≠ 𝑃𝑛. It means that ℓ ≤ 𝑛 − 2 and there are at least two vertices at a level. Let such a 

level be 𝑘-th level and two vertices  𝑢 and 𝑣 be two vertices at this level.  Therefore, 𝑢 and 𝑣 are at the same level 

and the difference of level equals to zero but the distance between 𝑢 and 𝑣 is two. For the vertices which are 

located at the levels greater than 𝑘 , distances from 𝑣  equal to level difference plus two. Then the Hosoya 

polynomial of 𝑇 is greater than Level  polynomial of 𝑇 as in the following equation. 

𝐻(𝑇, 𝑥) − 𝐿(𝑇, 𝑥) = 𝑥2 + 𝑥3 +⋯+ 𝑥ℓ−𝑘+2 − 𝑥 − 𝑥2 −⋯− 𝑥ℓ−𝑘 

                                                    = 𝑥ℓ−𝑘+2 + 𝑥ℓ−𝑘+1 − 𝑥 

If the number of vertices which are the same level increases, then the difference 𝐻(𝑇, 𝑥) − 𝐿(𝑇, 𝑥) also increases. 

Theorem 4.8. The level polynomial of a star 𝑆𝑛 of order 𝑛 equals to following equation 

𝐿(𝑆𝑛 , 𝑥) = (𝑛 − 1)𝑥.
 

Proof. The star graph 𝑆𝑛 is consisted of a root and 𝑛 − 1 leaves at distance one from the root. Then we obtain the 

level polynomial and level index of 𝑆𝑛
  as follows 

𝐿(𝑆𝑛 , 𝑥) = (𝑛 − 1)𝑥
 

𝐿(𝑆𝑛) = (𝑛 − 1).
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  Let 𝐶ℎ(1 + 𝑋1, 1 + 𝑋2, … ,1 + 𝑋ℎ)  be a caterpillar graph which is defined in (Balaji and Mahmoud, 2017). 

𝐶ℎ(1 + 𝑋1, 1 + 𝑋2, … ,1 + 𝑋ℎ) is obtained from a path 𝑃ℎ 𝑣0𝑣1…𝑣ℎ−1 by attaching leaves to vertices of paths as 

the leaves located at consecutive level. It means that  𝑣0 is root, at level 𝑖 for 1 ≤ 𝑖 ≤ ℎ − 1  there are 1 + 𝑋𝑖 

vertices, and at the level ℎ  there are 𝑋ℎ  leaves.  To easify the  notation we can write 𝐶ℎ  instead of 

𝐶ℎ(1 + 𝑋1, 1 + 𝑋2, … ,1 + 𝑋ℎ). In the next theorem we give the level index of caterpillar graphs by the level 

polynomial of the caterpillar graphs. 

 

Theorem 4.9. The level polynomial of a caterpillar graph 𝐶ℎ equals to 

𝐿(𝐶ℎ, 𝑥) = ∑((𝑋𝑖 + 1) + ∑ (𝑋𝑗 + 1)(𝑋𝑗+𝑖 + 1)

ℎ−𝑖−1

𝑗=1

+ (𝑋ℎ−𝑖 + 1)𝑋ℎ)𝑥
𝑖

ℎ−1

𝑖=1

+ 𝑋ℎ𝑥
ℎ  

Proof. The distance ℎ can be obtained between the root 𝑣0 and  

𝐿(𝐶ℎ, 𝑥) = 𝑋ℎ𝑥
ℎ + (𝑋ℎ−1 + 1 + (𝑋1 + 1)𝑋ℎ)𝑥

ℎ−1 + (𝑋ℎ−2 + 1 + (𝑋1 + 1)(𝑋ℎ−1 + 1) + (𝑋2 + 1)𝑋ℎ)𝑥
ℎ−2

+⋯+ 

[𝑋1 + 1 + (𝑋1 + 1)(𝑋2 + 1) + (𝑋2 + 1)(𝑋3 + 1) + ⋯+ (𝑋ℎ−2 + 1)(𝑋ℎ−1 + 1) + (𝑋ℎ−1 + 1)𝑋ℎ]𝑥 

Then we can write the level polynomial of 𝐶ℎ caterpillar graph  

 

𝐿(𝐶ℎ, 𝑥) = ∑((𝑋𝑖 + 1) + ∑ (𝑋𝑗 + 1)(𝑋𝑗+𝑖 + 1)

ℎ−𝑖−1

𝑗=1

+ (𝑋ℎ−𝑖 + 1)𝑋ℎ)𝑥
𝑖

ℎ−1

𝑖=1

+ 𝑋ℎ𝑥
ℎ  

We compute the level index of caterpillar 𝐶ℎ as in the following equation 

(𝐿(𝐶ℎ, 𝑥))
′
|𝑥=1 = ∑𝑖(𝑋𝑖 + 1) +∑ ∑ 𝑖(𝑋𝑗 + 1)(𝑋𝑗+𝑖 + 1)

ℎ−𝑖−1

𝑗=1

+

ℎ−1

𝑖=1

ℎ−1

𝑖=1

∑𝑖(𝑋ℎ−𝑖 + 1)𝑋ℎ +

ℎ−1

𝑖=1

ℎ𝑋ℎ.
 

Corollary 4.10.  If it is taken 𝑋1 = 𝑋2 = ⋯ = 𝑋ℎ = 𝑋, the level polynomial and level index of a caterpillar graph 

𝐶ℎ(1 + 𝑋, 1 + 𝑋,… ,1 + 𝑋) are given  in the  following equations 

𝐿(𝐶ℎ(1 + 𝑋, 1 + 𝑋,… ,1 + 𝑋), 𝑥) = 𝑋𝑥
ℎ + (𝑋 + 1)2∑𝑖

ℎ−1

𝑖=1

𝑥ℎ−𝑖 . 

𝐿(𝐶ℎ(1 + 𝑋, 1 + 𝑋,… ,1 + 𝑋)) = ℎ𝑋 + (𝑋 + 1)2∑𝑖

ℎ−1

𝑖=1

(ℎ − 𝑖) 

= ℎ𝑋 + (𝑋 + 1)2 (
ℎ + 1

3
) 

Corollary 4.11. If it is taken as  𝑋 = 1, the following equations are obtained 

𝐿(𝐶ℎ(2,2, … ,2), 𝑥) = 𝑥
ℎ + 4∑𝑖

ℎ−1

İ=1

𝑥ℎ−𝑖  

𝐿(𝐶ℎ(2,2, … ,2)) = ℎ + 4∑𝑖

ℎ−1

İ=1

(ℎ − 𝑖) 

Corollary 4.12.  If it is taken 𝑋1 = 𝑋2 = ⋯ = 𝑋ℎ = 0, the level polynomial and level index of a caterpillar graph 

𝐶ℎ(1,1, … ,1) = 𝑃ℎ are given  in the  following equations 
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𝐿(𝐶ℎ(1,1, … ,1), 𝑥) = ∑ 𝑖

ℎ−1

𝑖=1

𝑥ℎ−𝑖 . 

𝐿(𝐶ℎ(1,1, … ,1)) = ∑ 𝑖

ℎ−1

𝑖=1

(ℎ − 𝑖) =
(ℎ + 1)ℎ(ℎ − 1)

6
= (

ℎ + 1

3
) 

 

 

Figure 4.  The tree 𝐻 (Subdivisions of star graph) 

 

Theorem 4.13. The level polynomial of tree 𝐻 of order 𝑛 is computed by the following equation 

𝐿(𝐻, 𝑥) = ∑(𝑖𝑑2 + 𝑑)

𝑎−1

𝑖=0

𝑥𝑎−𝑖 

Proof. The  tree  𝐻 is consisted a central vertex 𝑣  and 𝑑 paths 𝑃𝑎 which are attached to 𝑣 (see Figure 4).  It means 

that 𝑛 = 𝑑𝑎 + 1.  

𝐿(𝐻, 𝑥) = 𝑑𝑥𝑎 + (𝑑2 + 𝑑)𝑥𝑎−1 + (2𝑑2 + 𝑑)𝑥𝑎−2 +⋯+ ((𝑎 − 1)𝑑2 + 𝑑)𝑥 

𝐿(𝐻, 𝑥) = ∑(𝑖𝑑2 + 𝑑)

𝑎−1

𝑖=0

𝑥𝑎−𝑖 

The level index of 𝐻 can be computed from the first derivative of 𝐿(𝐻, 𝑥). 

(𝐿(𝐻, 𝑥))
′
= 𝑑𝑎𝑥𝑎−1 + (𝑑2 + 𝑑)(𝑎 − 1)𝑥𝑎−2 +⋯+ ((𝑎 − 1)𝑑2 + 𝑑) 

(𝐿(𝐻, 𝑥))
′
|𝑥=1 = 𝑑𝑎 + (𝑑

2 + 𝑑)(𝑎 − 1) + (2𝑑2 + 𝑑)(𝑎 − 2)…+ ((𝑎 − 1)𝑑2 + 𝑑) 

By this equation we obtain the level index of 𝐻 as in the following equation. 

𝐿(𝐻) = ∑(𝑖𝑑2 + 𝑑)

𝑎−1

𝑖=0

(𝑎 − 𝑖) 

= (𝑎𝑑2 − 𝑑)∑ 𝑖

𝑎−1

𝑖=0

− 𝑑2∑𝑖2
𝑎−1

𝑖=0

+ 𝑑𝑎2  

=
𝑑𝑎(𝑎 + 1)(𝑑𝑎 − 𝑑 + 3)

6
 

Theorem 4.14. The level polynomial of dendrimer (depicted in Figure 2) graph 𝑇𝑘,𝑑 of order 𝑛 is computed by the 

following equation 

𝐿(𝑇𝑘,𝑑 , 𝑥) = 𝑑(𝑑 − 1)𝑘−1𝑥𝑘 +∑(𝑑(𝑑 − 1)𝑖−1 + 𝑑2 ∑ (𝑑 − 1)𝑖+2𝑗
𝑘−𝑖−1

𝑗=0

)𝑥𝑖
𝑘−1

𝑖=1
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Proof.  We use Theorem 4.1 for the level polynomial of dendrimer graph 𝑇𝑘,𝑑 

𝐿(𝑇𝑘,𝑑 , 𝑥) = 𝑑(𝑑 − 1)
𝑘−1𝑥𝑘 + 𝑑(𝑑 − 1)𝑘−2[1 + 𝑑(𝑑 − 1)]𝑥𝑘−1 + 

⁡…+ 𝑑[1 + 𝑑(𝑑 − 1) + 𝑑(𝑑 − 1)3 +⋯+ 𝑑(𝑑 − 1)2𝑘−4]𝑥 

If the previous equation is written in a closed form, we obtain that  

𝐿(𝑇𝑘,𝑑, 𝑥) = 𝑑(𝑑 − 1)
𝑘−1𝑥𝑘 +∑(𝑑(𝑑 − 1)𝑖−1 + 𝑑2 ∑ (𝑑 − 1)𝑖+2𝑗

𝑘−𝑖−1

𝑗=0

)𝑥𝑖
𝑘−1

𝑖=1

. 

 

To compute the level index of dendrimer graph 𝑇𝑘,𝑑, we can take the first derivative of level polynomial of 𝑇𝑘,𝑑. 

Then we obtain that 

𝐿(𝑇𝑘,𝑑) = (𝐿(𝑇𝑘,𝑑, 𝑥))
′

|𝑥=1 = 𝑑𝑘(𝑑 − 1)
𝑘−1 + 𝑑∑𝑖(𝑑 − 1)𝑖−1

𝑘−1

𝑖=1

+ 𝑑2∑ ∑ 𝑖(𝑑 − 1)𝑖+2𝑗
𝑘−𝑖−1

𝑗=0

𝑘−1

𝑖=1

 

This equation can be restated as follows. 

The first term and second term of 𝐿(𝑇𝑘,𝑑) are showed by the following equation. 

𝑑[1 + 2(𝑑 − 1) + 3(𝑑 − 1)2 +⋯+ 𝑘(𝑑 − 1)𝑘−1]⁡⁡⁡⁡(∗) 

The third term of the 𝐿(𝑇𝑘,𝑑) is restated by the following equations 

𝑑2[(𝑑 − 1) + (𝑑 − 1)3 +⋯+ (𝑑 − 1)2𝑘−3] (for 𝑖 = 1) 

2𝑑2[(𝑑 − 1)2 + (𝑑 − 1)4 +⋯+ (𝑑 − 1)2𝑘−4] (for 𝑖 = 2) 

3𝑑2[(𝑑 − 1)3 + (𝑑 − 1)5 +⋯+ (𝑑 − 1)2𝑘−5] (for 𝑖 = 3) 

⋮ 

(𝑘 − 2)𝑑2[(𝑑 − 1)𝑘−2 + (𝑑 − 1)𝑘] (for 𝑖 = 𝑘 − 2) 

(𝑘 − 1)𝑑2(𝑑 − 1)𝑘−1(for 𝑖 = 𝑘 − 1) 

We can take 𝑥 = 𝑑 − 1 for easy writing of the equations. By this way we obtain the equation (∗) as in the short 

equation 

𝑑[1 + 2(𝑑 − 1) + 3(𝑑 − 1)2 +⋯+ 𝑘(𝑑 − 1)𝑘−1] 

= (𝑥 + 1)(1 + 2𝑥 + 3𝑥2 +⋯+ 𝑘𝑥𝑘−1) 

= (𝑥 + 1) ×
𝑘𝑥𝑘+1 − (𝑘 + 1)𝑥𝑘 + 1

(𝑥 − 1)2
 

The third term of the 𝐿(𝑇𝑘,𝑑)  can be written as follows 

 

(𝑥 + 1)2[𝑥 + 2𝑥2 + (1 + 3)𝑥3 + (2 + 4)𝑥4 + (1 + 3 + 5)𝑥5 +⋯+ (1 + 3)𝑥2𝑘−5 + 2𝑥2𝑘−4 + 𝑥2𝑘−3] 

= (𝑥 + 1)2𝑃(𝑥) 

such that  

𝑃(𝑥) = ∑ 𝑎𝑛𝑥
𝑛

2𝑘−3

𝑛=1

= ∑⌊
(𝑛 + 1)2

4
⌋

𝑘−1

𝑛=1

𝑥𝑛 +∑⌊
(𝑛 + 1)2

4
⌋

𝑘−2

𝑛=1

𝑥2𝑘−2−𝑛 

  It follows from the fact that the coefficients of 𝑃(𝑥)  are symmetric around 𝑎𝑘−1 , 

𝑎𝑛 = 𝑎2𝑘−2−𝑛  and from the fact that the coefficients of odd powers sum to 

squares and of even powers to twice the triangular numbers. 
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  The first ten coefficients of 𝑃(𝑥) are 1, 2, 4, 6, 9, 12, 16, 20, 25, 30 which are the first terms of an interesting 

integer sequence which is appeared in OEIS by reference number A002620 (Sloane and Ploufe, 1995). 

 Finally the level index of the dendrimer graph 𝑇𝑘,𝑑 equals to  

𝐿(𝑇𝑘,𝑑) = (𝑥 + 1) ×
𝑘𝑥𝑘+1 − (𝑘 + 1)𝑥𝑘 + 1

(𝑥 − 1)2
+ (𝑥 + 1)2 (∑ ⌊

(𝑛 + 1)2

4
⌋

𝑘−1

𝑛=1

𝑥𝑛 +∑⌊
(𝑛 + 1)2

4
⌋

𝑘−2

𝑛=1

𝑥2𝑘−2−𝑛) 

such that 𝑥 = 𝑑 − 1. 

5.  Conclusion 

  In this paper, we define a new graph polynomial which is based on the level index of rooted trees. The level index 

was defined by Balaji and Mahmoud for statistical analysis of graphs. It is used to measure balancing of rooted 

trees.  

  We show that level index can be calculated by level polynomials of graphs. We obtain the level polynomial and 

level index of trees which represent the triangular numbers. The sum of coefficients of level polynomials and level 

index of triangular numbers correspond some integer sequences appeared in OEIS (Sloane and Ploufe, 1995). 

Moreover, we compute the level polynomial and level index of caterpillar graphs, subdivision of star graphs and 

dendrimer graphs. 

  It is clear that level polynomial concept can be applied to rooted trees which represent the square numbers, 

pentagonal numbers, hexagonal numbers and others. We know that Pascal triangle can be represented by a perfect 

binary tree. Then, level polynomials can be applied to many integer objects. We finished our paper with an open 

problem. It is known that average distance or mean distance is a well-studied graph invariant. Similar to the average 

distance, we can define the average level as in the following equation 

𝑎𝑣𝑙 =
(𝐿(𝑇, 𝑥))

′
|𝑥=1

𝐿(𝑇, 𝑥)|𝑥=1
 

The average level can be studied for rooted trees and the relations between the average level and average distance 

can be investigated.  
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