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1. Introduction 

Periodic sustained oscillations having constant magnitude 

and frequency exhibited by Nonlinear systems are called limit 

cycles. Although a nonlinear system shows a variety of 

phenomena like jump resonance, chaos, subharmonic 

oscillations, etc., the stability of the control system consisting of 

nonlinearities is commonly measured by the evaluation of limit 

cycle oscillation. Physical dynamical systems comprising 

various memory or non-memory type nonlinearities such as 

relay, saturation, dead zone, backlash, hysteresis etc., usually 

oscillate with a fixed amplitude and frequency regardless of any 

specific initial condition or zero initial condition. These limit 

cycles can sometimes be stable, semi-stable, or unstable. Being 

a periodic oscillation, limit cycles create problems in system 

control and obtaining desired system performance. Therefore, 

the problem of prediction and elimination of limit cycle is vital 

in the studies of nonlinear dynamical systems. The DF based 

approach is an efficient method used for the evaluation of 

nonlinear dynamical systems and thereby the analysis of 

periodic oscillations. 

The input-output relationship-based DF method along with 

the Nyquist contour is used for the evaluation of the limit cycle 

in a linear time-delay system with backlash nonlinearity [1,2]. 

The DF-based procedure along with the Nyquist plot is been 

followed for the evaluation of the periodic oscillations in the 

case of Single Input Single Output (SISO) integer-order systems 

with backlash nonlinearity [3]. Similar observations regarding 

limit cycles using the Nyquist plots are also reported in [4,5]. An 

input-dependent Nyquist plot for the investigation of periodic 
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oscillations in a system with multiple nonlinearities is described 

in [6]. The use of dual input describing function (DIDF) for the 

prediction of the limit cycle is presented in [7]. Extension of the 

above concepts toward the presence of a limit cycle in the non-

integer (fractional) order systems is also reported in the 

literature. Periodic oscillations in fractional order systems with 

relay nonlinearity are provided in [8] by using the DF method 

along with digital simulations. Similarly, the evaluation of the 

limit cycle through Tsypkin’s locus and DF method is 

mentioned in [9]. A novel A-locus method accompanying DF 

for the analysis of periodic oscillations is reported in [10,11]. 

The evaluation of the limit cycle in a fractional system with 

different static as well as dynamic nonlinearities is presented in 

[12].  An extension of this DF concept along with a graphical 

phasor diagram method towards the Two Input Two Output 

(TITO) system is provided in [13,14]. Although reasonable 

work has been done in the field of prediction of limit cycle in 

the case of both integer and fractional order systems as well as 

for various nonlinear elements; a very scant literature talks about 

periodic oscillations in MIMO nonlinear systems [15,16]. 

Elimination of these periodic limit cycle oscillations in 

nonlinear systems is a major challenge. Very few methods like 

the application of dither signal by considering Dual Input 

Describing Function (DIDF) for limit cycle suppression are 

discussed in the literature [7,13]. The PID controller is simpler 

and provides an efficient solution to real-world control problems. 

It effectively addresses both transients as well as the steady-state 

performances of the system. Due to the design simplicity, 

robustness, and near-optimal performance of PID, these are 

widely used in academic and industrial sectors [19-23]. Again, 

for the advancement in computational techniques, research on 

fractional calculus is in progress [24,25] and fractional PID 

(FOPID) controllers are found to outplay their integer 

counterparts [26]. To have a physical realization of the fractional 

elements various methods like the Oustaloup filter [27], and 

continued fractional expansion (CFE) are also reported [28,29]. 

The use of integer and non-integer order controllers for the 

elimination of periodic oscillations is demonstrated in [3,4,5, 

and 6]. State feedback-based pole placement techniques for the 

quenching of the limit cycle are shown in [14]. The research gap 

and motivation behind this study is the lack of proposed 

strategies for the quenching of the limit cycle oscillations.  

Parameter estimation methods for the PID and FOPID 

controllers are demonstrated in many pieces of literature. 

Ziegler-Nichol’s method, Pole placement method, Loop shaping 

method, and optimization techniques are some of the commonly 

used methods for the estimation of optimal parameters of these 

controllers [30,31]. The parameter estimation of non-integral 

order controllers is demonstrated by the minimization of square 

error in [32], sine-based auto-tuning methods [33], and the gain 

and phase margin-based loop shaping method [34-37], and the 

time-domain-based objective functions minimization in [38-41] 

respectively. The application of integer and non-integer order 

controllers for eliminating limit cycle, as well as frequency 

domain-based tuning strategy for obtaining desired performance 

in terms of relative stability, bandwidth, steady-state accuracy, 

robustness to parameter variations, and suppression of noise and 

disturbances, is the novelty of this research article. 

The prime objective of this article is to predict and eliminate 

the periodic oscillations in the presence of backlash nonlinearity 

by applying PID and FOPID controllers. In this current work, 

the prediction of the limit cycle is carried out by an analytical 

method which was verified by graphical phasor diagrams as well 

as digital simulations. Integer and non-integer-order PID 

controllers are designed considering several optimization 

techniques like Whale Optimization Algorithm (WOA) [42], 

Particle Swarm Optimization (PSO) [43], Ant Lion 

Optimization (ALO) [44], Grey Wolf Optimization (GWO) [45], 

and Moth Flame Optimization (MFO) [46] and multiple 

objective functions such as Integral Time Absolute Error (ITAE), 

Integral of Absolute Error (IAE), Integral Time Square Error 

(ITSE). A statistical analysis is carried out here to evaluate the 

best possible solution. The frequency domain-based loop-

shaping method considering the results obtained from various 

optimization techniques as an initial guess is used for the 

analytical evaluation of proposed controller parameters. Finally, 

the robustness of the proposed controllers towards parametric 

changes in the system is studied and the practical realization of 

the controllers is analyzed. 

The major contribution of this research article is: 

i. Estimation and elimination of limit cycle for a system 

comprising time delays and memory type nonlinearity. 

ii. Optimization methods work on minimal error indices for 

the parameter evaluation of PID and FOPID controllers. 

iii. Gain margin and phase margin-based loop shaping method 

for controller parameter estimation and achieving desired 

system performance. 

iv. Physical realization of non-integer order controllers using 

Oustaloup recursive filter approximation. 

The orientation of this article is as follows: The basic 

information regarding the fractional-order system is given in 

section 2. The control problem is mentioned in detail in section 

3. The presence of periodic oscillations is examined in section 4. 

The elimination of the periodic oscillations by using the 

controllers is presented in section 5. The tests of the robustness 

of the system towards parameter variations are presented in 

section 6. While the physical realization of controllers is 

mentioned in section 7, section 8 includes the final concluding 

remarks. 

2. Preliminary Information 

2.1. Non-integral (fractional) calculus 

Fractional calculus comprises non-integer order integration 

and differentiation. The continuous-time integrodifferential 

operator is demonstrated as [18]: 
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σDt
β

=

{
 
 

 
 

dβ

dtβ
,                β > 0

1,                     β = 0

∫ dτ−β, β < 0
t

σ

 (1) 

Here, σ and t are the limits of operation, and β is the order 

of operation. Usually while β ∈ ℝ, but can also be a complex 

number. The most frequently used definitions for the fractional 

differential integral operator are as follows: the Grünwald-

Letnikov (GL), the Riemann-Liouville (RL), and Caputo 

expressions. The GL definition of the fractional order derivative 

of a function g(t) is presented as follows [18]: 

σDt
β

g(t) = lim
h→0

1

hβ
 ∑ (−1)j (

β

j
)

[
t−σ
h
]

j=0

g(t − jh) (2) 

Here (−1)j (β
j
) is the binomial coefficient, cj

(β)
and h are the 

differentiation length. The RL definition is expressed as: 

σDt
β

g(t) =  
1

Γ(n − β)
 
dn

dtn
∫

g(τ)

(t − τ)β−n+1

t

σ

 dτ (3) 

Here Г(.) is the Euler’s Gamma function and n is the order of 

differentiation. The Caputo definition of fractional order 

derivatives can be written as: 

σDt
β

g(t) =  
1

Γ(n − β)
 ∫

gn(τ)

(t − τ)β−n+1

t

σ

 dτ (4) 

Where n − 1 <  β < n. The Laplace transform method is 

routinely used for the solution of the engineering problems. The 

Laplace transform of the RL fractional order derivative is: 

ℒ {oDt
β

g(t)} = sβG(s) − ∑sk [oDt
β−k−1

g(t)]

n−1

k=0

 (5) 

Similarly, the Laplace transform of Caputo’s fractional order 

derivative is: 

ℒ {oDt
β

g(t)} = sβG(s) − ∑sβ−k−1f (m)(0)

n−1

k=0

 (6) 

Now, for zero initial condition (i.e. the assumption generally 

considered to obtain the transfer function of any systems), the 

Laplace transform of the fractional order derivative of the order 

β in GL, RL, and Caputo is reduced to: 

ℒ {oDt
β

g(t)} = sβG(s) (7) 

2.2. Non-integer (fractional) order system 

The expression of a non-integral order control system 

considering the non-integral differential equation is given as 

follows [18,26]: 

anD
αnc(t) + an−1D

αn−1c(t) + ⋯+ a0D
α0c(t) =

 bmD
βmu(t) + bm−1D

βm−1u(t) + ⋯+ b0D
β0u(t)  

(8) 

Here the operator Dγ ≡ oDt
β

 represents the GL or the RL or 

Caputo’s non-integral differentiation. The above 

integrodifferential equation is presented in the Laplace domain 

as: 

ℒ {
dng(t)

dtn
} =  snℒ{g(t)} − ∑ sk

m−1

i=0

[
dn−1−i

dtn−1−i
]|
t=0

 (9) 

Therefore, with zero initial condition, the non-integer order 

transfer function is expressed as: 

G(s) =
C(s)

U(s)
=

bms
βm+bm−1s

βm−1+⋯+b1s
β1+b0s

β0

ans
αn+an−1s

αn−1+⋯+a1s
α1+a0s

α0
  (10) 

In the above expression αi(a = 0, 1, 2, …, n), βi(in = 0, 1, 2, 

…, m) are real and can be structured as αn > αn−1 > ⋯ > α0, 

and βm > βm−1 > ⋯ > β0. 

2.3. Realization of non-integer (fractional) order system 

The physical realization of the non-integer (fractional) order 

controllers having non-integer (fractional) order integrators and 

differentiators is difficult due to infinite memory requirements. 

Hence some approximations like the Oustaloup method [27], 

and continued fractional expansion [24,25] are needed during 

these implementations. The most common approach is the 

Oustaloup recursive filter approximation method that 

approximates the fractional order system in the s-domain over a 

selected lower and upper-frequency range [𝜔𝑏, 𝜔ℎ]. 
Within the frequency range 𝜔 ∈ [𝜔𝑏, 𝜔ℎ] , the Oustaloup 

filter is expressed as [27]: 

GF(s) = s
β = K∏

s+ωi
′

s + ωi

N

i=−N

 (11) 

Here, the zero 𝜔𝑖
′, the pole 𝜔𝑖, and the gain K of the system 

can be evaluated from the following expressions. 

ωi
′ = ωb (

ωh
ωb
)

i+N+0.5(1−β)
2N+1

 (12) 

ωi = ωb (
ωh
ωb
)

i+N+0.5(1+β)
2N+1

 (13) 

K = ωh
β
 (14) 
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While 𝛽 is the order of fractional differentiation (𝛽 > 0), N 

is the order of the approximation, and 2N+1 is the order of the 

Oustaloup filter. Here 𝜔𝑏  is the lower limit and 𝜔ℎ  is the 

upper limit of the frequency. Usually, 𝜔𝑏. 𝜔ℎ = 1 . In this 

article, the Oustaloup 11th order filter approximation N=5 in the 

frequency range of [10-3, 103] rad/s is considered. The 

FOMCON toolbox in MATLAB [19,20] along with the function 

oustafod (𝛽,𝑁, 𝜔𝑏, 𝜔ℎ) is considered for the above realization 

procedure. 

2.4. Describing function (DF) method 

The DF method is a frequency domain-based method used to 

analyze nonlinear systems. It is classified as the ratio of the 

fundamental output of the system to the applied input sinusoid 

[1,2]. Numerical values of the DF depend upon the magnitude 

of input sinusoid X and frequency ω of the nonlinear dynamical 

system. Consider a SISO autonomous nonlinear feedback 

control process as presented in Figure 1 having u(t) = 0 , 

describing function N(X,ω), and the process transfer function 

G(s). 
The steady-state existence of the possible limit cycle is 

characterized by: 

1 + N(X,ω)G(s)|s→jω = 0 (15) 

i. The Nyquist criterion for the persistence of limit cycle 

oscillations [1]: 

|
−1

N(X,ω)
|
X=Xo

= |G(jω)|ω=ωo (16) 

Here, Xo  and ωo are the corresponding magnitude and 

frequency of the oscillations. Thereby, the frequency at the 

intersection of the Nyquist curve of G(s) and negative inverse 

curve of [−1/N(X)]  corresponds the presence of the limit 

cycle. The behavior of the limit cycle should be stable for a 

periodic oscillation of constant magnitude and frequency. 

ii. The Tsypkin’s criterion for a stable limit cycle oscillation [1]: 

The critical points of [−1/N(X)] plot lie to the left side of the 

polar plot curve of G(jω).  

2.5. Concept of backlash nonlinearity 

The backlash or gear play is usually found in the mechanical 

system consisting of gear trains. Although the gear meshes are 

manufactured for very minimal backlash; but due to friction 

among the gear teeth, the backlash increases and thereby 

decreases the system efficiency. Very large value of backlash 

will produce inappropriate system operation. Backlash can 

cause undesirable oscillations in the feedback control loop. The 

DF method can be used to analyze the effect of backlash 

nonlinearity in the nonlinear control system. The DF expression 

of backlash nonlinearity is presented as [2,3]: 

 

N(X) = {  
0,                             X < H 
k

π
[(
π

2
+ β + 0.5 sin(2β)) − jcos2β] , X ≥ H 

 
 

(17) 

Where β = sin−1 (1 −
2H

X
). 

Let us consider the backlash parameters to be k = 1 and H = 

0.05. By separating the real and imaginary terms, the above 

equation can be presented in its magnitude and phase angle form 

as follows: 

|N(X)| =
k

π
√(
π

2
+ β + 0.5 sin(2β))

2

+ cos4β (18) 

∠N(X) = − tan−1(
cos2β

π
2
+ β + 0.5 sin(2β)

) 
(19) 

Now, the analytical calculation of limit cycle parameters can 

be carried out by using (18) and (19) as described below. 

3. Control Problem Formulation 

 

Fig. 1. A feedback control system with backlash nonlinearity 

A nonlinear feedback control system presented in Figure 1 

includes a DC motor plant and memory-type backlash 

nonlinearity. The existence of a periodic oscillation is examined 

for the given system in the presence of a delay time. The plant 

in Figure 1 is a DC motor servo utilized for position control 

applications [2,3]. Here the contacting gears of the gear train 

produce backlash nonlinearity in the system. 

The transfer function of the plant in Figure 2 can be found by 

considering the shaft angular displacement θL(s)  as output 

variable and applied armature voltage EA(s)  as the input 

variable and converting the feedback gain as unity [2,3] as 

mentioned in Figure 3. The effect of gear ratio, backlash, and 

time delay is also taken into consideration during the estimation 

of the transfer function. 

G(s) =
θL(s)

EA(s)

=
nKAKPOKT e

−Ls

s[s2(JLA) + s(BLA + JRA) + (BRA + KTKB)]
 

(20) 
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Fig. 2. An armature voltage-controlled DC servo motor 

Table 1. Parameter values of the system [2,3] 

Parameters Representation Value Unit 

𝐑𝐀 
Armature Winding 

Resistance 
10 Ohm 

𝐋𝐀 
Armature Winding 

Inductance 
0.1 Henry 

𝐊𝐀 
Amplification 

Gain 
1 - 

𝐊𝐁 
Back EMF 

Constant 
1 Volt/(rad/s) 

𝐊𝐓 
Motor Torque 

Constant 
0.8 Volt/(rad/s) 

𝐊𝐏𝐎 
Potentiometer 

Sensitivity 
1.5 Volt/rad 

𝐉 
Inertia 

Constant 
2.025 N-m/(rad/s2) 

𝐁 
Viscous frictional 

Coefficient 
0.0025 N-m/(rad/s) 

𝐧 Gear Ratio 0.5 - 

 

Fig. 3. Block Diagram of the DC motor with Backlash 

By using values of the parameters from Table 1 along with a 

time delay of L= 0.01 s, the equation (20) could be simplified as: 

G(s) =
0.6

s[s2(0.2025) + s(20.2522) + 1.0250]
e−0.01s (21) 

Assuming s = jω for the analysis in the frequency domain, 

the function G(jω) can be presented as mentioned below. 

G(jω)

=
0.6 e−0.01(jω)

(jω)[(jω)2(0.2025) + (jω)(20.2522) + 1.0250]
 

(22) 

The above equation can be simplified and separated into 

magnitude and phase angle parts as follows: 

|G(jω)| =
0.6

√(20.2522ω2)2+(0.2025ω3−1.025ω)2
  (23) 

∠G(jω) = − tan−1 (
0.2025ω3−1.025ω

20.2522ω2
) − (0.01ω)  (24) 

The performance above the DC motor model in the presence 

of backlash and time delays is evaluated in this article. The 

above system with backlash nonlinearity is checked for any 

possible existence of limit cycle oscillations as presented in the 

next section. 

4. Limit Cycle Prediction 

An analytical evaluation of the periodic limit cycle 

oscillations can also be carried out by using (15) as: 

N(X,ω)G(s)|s=jω = −1 = 1∠π (25) 

It emphasizes the following relationships: 

i. The closed-loop amplitude gain criterion: 

|N(Xo, ωo)G(jωo)| = 1 (26) 

ii. The closed-loop phase angle criterion: 

∠N(Xo, ωo) + ∠G(jωo) =  π (27) 

Analytical solutions of (26) and (27) produces particulars 

about the limit cycle magnitude Xo and the frequency ωo. 

4.1. Analytical method 

The analytical evaluation procedure involves the solution of 

the closed-loop magnitude and phase angle condition for the 

prediction of periodic limit cycle oscillations. The closed-loop 

gain condition (26) leads to the following equation: 

(
0.6
π
)√(

π
2
+ β + 0.5 sin(2β))

2

+ cos4β

√(20.2522ω2)2 + (0.2025ω3 − 1.025ω)2
= 1 

(28) 

This gives: 

(
0.6

π
)
2

{(
π

2
+ β + 0.5 sin(2β))

2

+ cos4β}

= (20.2522ω2)2

+ (0.2025ω3 − 1.025ω)2 

(29) 

The above equation can be simplified as: 

0.36

π2
{(
π

2
+ β + 0.5 sin(2β))

2

+ cos4β}

− {(20.2522ω2)2

+ (0.2025ω3 − 1.025ω)2} = 0 

(30) 

The close loop phase condition (22) produces: 
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− tan−1 (
0.2025ω3−1.025ω

20.2522ω2
) −

 tan−1 (
cos2β

π

2
+β+0.5 sin(2β)

) −0.01ω = π  

(31) 

This provides: 

tan−1 (
0.2025ω3−1.025ω

20.2522ω2
) + tan−1 (

cos2β
π

2
+β+0.5 sin(2β)

) =

         −π − 0.01ω  

(32) 

As, 

tan−1(x) + tan−1(y) = tan−1 (
𝑥+𝑦

1−𝑥𝑦
)  (33) 

 

The above expression is simplified as: 

[
(
π

2
+β+0.5 sin(2β))(0.2025ω3−1.025ω)+cos2β(20.2522ω2)

(
π

2
+β+0.5 sin(2β))(20.2522ω2)−cos2β(0.2025ω3−1.025ω)

]  =

− tan(0.01ω)  

(34) 

As the equations (30), and (34) are nonlinear, these could be 

solved by using the MATLAB fsolve() function assuming an 

initial guess of [1,1]. The solution thus obtained is Xo = 0.1794 

and ωo = 0.1512  rad/s and is provided in Table 2 for further 

comparison with alternate methods. 

4.2. Graphical method 

A graphical evaluation of the periodic oscillations could be 

obtained using the superimposed Nyquist plot of G(s) along with 

the negative inverse plot of [−1/N(X)] . The possible 

intersection of both curves suggests the presence of periodic 

oscillations. The behavior of the limit cycle must be stable to 

have a sustained periodic oscillation of constant amplitude and 

frequency. It could similarly be derived from (16) as follows: 

|
−1

N(X)
|
X=Xo

= |G(jω)|ω=ωo (35) 

 

Fig. 4. Superimposed Nyquist plot of G(jω) with negative inverse plot 
of N(X) for backlash. 

The overlapped Nyquist plot and the negative inverse graph 

of [−1/N(X)] are presented in Figure 4, which signifies the 

possible solutions and the existence of limit cycle. The value of 

oscillation frequency ωo = 0.152 rad/s is interpreted from the 

intersection point and the oscillation amplitude is obtained from 

(35) as per the following procedure. 

It is evident from Figure 4 that: 

G(jωo) = −1.17 − j0.39 (36) 

⟹ |G(jωo)| = √(1.17)
2 + (0.39)2 = 1.2332 (37) 

Again, as per close loop gain condition (26): 

|G(jωo)N(Xo)| = 1 

⟹ |N(Xo)| =
1

|G(jωo)|
=

1

1.2332
= 0.8108  (38) 

By considering the value of |N(Xo)| from equation (18) in 

the above equation, we get: 

1

π
√(
π

2
+ β + 0.5 sin(2β))

2

+ cos4β = 0.8108 

 

(39) 

As, β = 1 −
2H

Xo
,  

Assuming an initial guess of Xo = 0.1, the above equation 

(39) can be simplified using the fsolve() function of MATLAB 

that evaluates the value of Xo = 0.1774 as mentioned in Table 

2. The above results of the limit cycle can be examined by 

performing simulations. 

4.3. Digital simulations 

The simulation output for the nonlinear system in Figure 1 is 

presented in Figure 5 which validates the presence of periodic 

oscillations. Observations from Table 2 indicate that the 

amplitude and frequency of the oscillations are similar in all the 

methods. 

 

Fig. 5. Zero input response of a plant with backlash 
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Table 2. Comparison of Limit cycle parameters obtained by different 
methods 

Backlash Nonlinearity 

Limit Cycle 

Amplitude 

𝐗𝐨 

Limit Cycle 

Frequency 

𝛚𝐨 (rad/s) 

Analytical Method 0.1794 0.1512 

Graphical Method 0.1774 0.1520 

Digital Simulation 0.1770 0.1510 

Although the evaluation of the limit cycle is done with the 

zero-input response, its effect can also be noticed in the step 

response of the plant as seen in Fig. 6. The output response of 

the system exhibiting a limit cycle can be presented 

mathematically as follows: 

c(t) = −e(t) = −Xo sin[ωo(t − L)] (40) 

This gives: 

c(t) = −0.1770 sin(0.1510t − 0.0151) (41) 

4.4. Effect of parameter variations 

The variations in magnitude and frequency of periodic 

oscillations due to the parameter variations such as changes in 

delay times and backlash magnitudes are discussed as follows. 

 

Fig. 6. Step response of the plant with backlash 

4.4.1. Variations in Delay Time 

Physical dynamical systems commonly encounter time delays 

whose magnitude increases with enhancement in the complexity 

of the system. The existence of a large delay time is a prime 

cause of loss of stability and deviations in system performance. 

Table 3. Limit cycle parameters under different time delays 

Parameters 
Time Delay L (in seconds) 

𝐋 = 𝟎. 𝟎𝟏s 𝐋 = 𝟎. 𝟏s 𝐋 = 𝟎. 𝟓s 

Amplitude 

of Limit Cycle 

Oscillation 𝐗𝐨 

0.1770 0.1830 0.2500 

Frequency 

of Limit Cycle 

Oscillation 

𝛚𝐨 (rad/s) 

0.1510 0.1511 0.1563 

 

Fig. 7. Zero input response of the system with various time delays 

 

Fig. 8. Superimposed Nyquist plot of G(jω) and negative inverse plot 
of N(X) under variations in time delays 

 

Fig. 9. Step response of the system under variations in time delays 

Let the plant in Figure 1 have different time delays. Studies 

from Table 3 reveal an increment in oscillation magnitude with 

a corresponding increase in time delays whereas the frequency 
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mostly remains unaltered as shown in Figure 7. Its similar 

phasor diagram-based interpretation is provided in Figure 8. The 

step response of the system of Figure1 under various time delays 

is shown in Figure 9. 

4.4.2. Variations in backlash amplitude 

The existence of backlash in mechanical systems causes 

sustained periodic oscillations. These limit cycle oscillations 

will aggregate the mechanical wear of the system and thereby 

further enhance the backlash. Variations in the backlash 

amplitude may vary the oscillation behavior of the nonlinear 

system. The information from Table 4 suggests an increase in 

oscillation amplitude for an increase in the dead band, even if 

the oscillation frequency remains the same as found in Figure 

10. Its similar phasor diagram-based analysis is shown in Figure 

11. Likewise, the step response of the system mentioned in 

Figure 1 under different backlash amplitudes is shown in Figure 

12. 

 

Fig. 10. Zero input response of the system under variations in  
backlash magnitude 

 

Fig. 11. Superimposed Nyquist plot of G(jω) and negative inverse plot 
of N(X) under variations in backlash 

Table 4. Limit cycle under different backlash amplitudes 

Parameters 
Dead Band Width (H) 

𝐇 = 𝟎. 𝟎𝟎𝟓 𝐇 = 𝟎. 𝟎𝟓 𝐇 = 𝟎. 𝟐𝟓 

Amplitude 

of Limit Cycle 

Oscillation  

𝐗𝐨 

0.0180 0.1770 0.8730 

Frequency 

of Limit Cycle 

Oscillation 

𝛚𝐨 (rad/s) 

0.1456 0.1510 0.1513 

 

Fig. 12. Step response of the system under variations in backlash  
magnitude 

5. Limit Cycle Elimination 

The periodic oscillations present in the system of Figure 1 due 

to backlash nonlinearity create inaccuracy in the required 

position control problems. 

 

Fig. 13. A feedback control system with controller and backlash 

Controllers are designed to address the transient and steady-

state inaccuracy inherited in the system dynamics. The plant of 

Figure 1 with a desired controller is presented in Figure 13 for 

further analysis. A classical integer order PID controller is 

expressed by the below-mentioned transfer function: 

GC(s) = KP +
KI
s
+ KDs (42) 

Here, KP  denotes the proportional gain, KI  denotes the 

integration coefficient, and KD  denotes the derivative 

coefficient. Optimal values of KP,  KI, KD could provide 

desired control efforts based on reference tracking and rejecting 

disturbances. Substituting s = jω  for the analysis in the 

frequency domain, the transfer function GC_PID(jω)  can be 

expressed as follows. 
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GC(jω) = KP +
KI

jω
+ jKDω = KP + j (KDω−

KI

ω
)  (43) 

The amplitude and phase of the PID controller is given as: 

|GC(jω)| =  √KP
2 + (KDω−

KI
ω
)
2

 (44) 

∠GC(jω) = tan
−1 (

KDω
2 − KI
ωKP

) (45) 

Further, the FOPID controller is presented in the Laplace 

domain as mentioned below. 

GC(s) = KP +
KI
sλ
+ KDs

μ,     λ, μ > 0 (46) 

While, λ denotes the integrator order, and μ is the 

differentiator order. The similarity between the PID and FOPID 

is established when λ=1 and μ=1. Further, substituting s = jω 

for analysis in the frequency domain, we have: 

GC(jω) = KP +
KI
ωλ
 j−λ + KDω

μjμ (47) 

 

Fig. 14. 2-D plane representation of PIλDµ Controllers [38] 

Now using De-Moivre’s theorem, we get [31]: 

(z)n = |𝑧|n(cos nθ + j sin nθ)  (48) 

For, z = j ⇒  |z| = 1, θ =
π

2
. 

Hence, we find: 

jμ = cos
μπ

2
+ j sin

μπ

2
 and j−λ = cos

λπ

2
− j sin

λπ

2
 (49) 

Therefore, the above equation becomes: 

GC(jω) = KP +
KI
ωλ
(cos

λπ

2
− j sin

λπ

2
)

+ KDω
μ (cos

μπ

2
+ j sin

μπ

2
) 

(50) 

Now separating the magnitude and phase part we have: 

|GC(jω)| = √
(KP +

KI

ωλ
cos

λπ

2
+ KDω

μ cos
μπ

2
)
2
+ 

(KDω
μ sin

μπ

2
−

KI

ωλ
sin

λπ

2
)
2   (51) 

∠GC(jω) = tan
−1 (

KDω
μ sin

μπ

2
−
KI

ωλ
sin

λπ

2

KP+
KI

ωλ
cos

λπ

2
+KDω

μ cos
μπ

2

)  

 

(52)

  

The optimal tuning of integer and fractional order controllers 

for the quenching of limit cycle is discussed below. There exist 

various methods for the evaluation of parameters of controllers. 

While some of them are stochastic optimization-based 

procedures, others are deterministic approaches. Both possess 

their own advantages and disadvantages as mentioned below. 

5.1. Optimization techniques for parameter tuning 

Metaheuristic algorithms operate on an approximate 

structural model and hence could provide befitting solutions to 

real-world problems [38-41]. Varieties of optimization 

techniques are present in literature classified as Evolutionary 

algorithms, Swarm based algorithms, Physics-based algorithms, 

and some other population-based algorithms, etc. Hence, it is 

difficult to adopt a specific algorithm for the solution of a 

specific problem. Therefore, a comparison is been made 

between some recent optimization techniques like ALO, PSO, 

GWO, WOA, and MFO based on the minimization of error 

indices to find the optimal parameters of the controllers. Let the 

error function be 𝑒(𝑡), and the time variable is 𝑡; then, some of 

the common cost functions are provided below [38-41]. 

i. The ISE objective function 

𝐽 = ∫ 𝑒2(𝑡) 𝑑𝑡
𝑡𝑠𝑖𝑚

0

 (53) 

ii. The IAE objective function 

𝐽 = ∫ |𝑒(𝑡)| 𝑑𝑡
𝑡𝑠𝑖𝑚

0

 (54) 

iii. The ITSE objective function 

𝐽 = ∫ 𝑡𝑒2(𝑡) 𝑑𝑡
𝑡𝑠𝑖𝑚

0

 (55) 

iv. The ITAE objective function 

𝐽 = ∫ 𝑡|𝑒(𝑡)| 𝑑𝑡
𝑡𝑠𝑖𝑚

0

 (56) 

Along with the above error-based cost functions, this paper 

also tests a time specification-based objective function (ZLG) as 

proposed by Zwe-Lee Gaing [47]. Here, β is the weighting factor 

whose usual values lie within [0.7-1.5]. Further, 𝑀𝑃  denotes 
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the peak overshoot, 𝐸𝑆𝑆 denotes the error at steady state, 𝑇𝑅 

denotes the rise time, and  𝑇𝑆  denotes the settling time 

respectively. It is worth mentioning here that while 𝛽 > 0.7 

suppresses the overshoot and steady-state error; 𝛽 < 0.7 

decreases the 𝑇𝑅  and 𝑇𝑆 . In this article, the best system 

response is found for 𝛽 = 1.5. 

v. The ZLG objective function 

𝐽 = (1 − 𝑒−𝛽). (𝑀𝑃 + 𝐸𝑆𝑆) + (𝑒
−𝛽). (𝑇𝑆 − 𝑇𝑅) (57) 

The above objective functions can be used alone or in 

combination to debug the optimal values of the controller.  

Table 5. Parametric values for optimization methods 

Optimization 

Techniques 
Parameter Settings 

ALO 

Maximum Iterations = 100 

No of Search Agents = PID (30), 

PIλDµ (30) 

PSO 

Maximum Iterations = 100 

Total Population = PID (30), PIλDµ (30) 

Inertial weight = 1 

Damping Ratio =0.99 

Learning Index (personal) = 1.5 

Learning Index (global) = 2.0 

GWO 

Maximum Iterations = 100 

No of Search Agents = PID (30), 

PIλDµ (30) 

WOA 

Maximum Iterations = 100 

No of Search Agents = PID (30), 

PIλDµ (30) 

MFO 

Maximum Iterations = 100 

No of Search Agents = PID (30), 

PIλDµ (30) 

The parametric settings for the optimization techniques 

during this error function minimization procedure are mentioned 

in Table. 5. In any optimization process, the search region, 

number of search agents, and number of iterations are vital to 

draw a precise conclusion. The choice of the search range is 

usually a hit-and-trial procedure. Simulations usually encounter 

problems like not a number (NAN), saturation to upper limit etc. 

during this procedure. Further, the choices for the number of 

iterations and the number of search agents are usually a trade-

off between preciseness and simulation time. 

5.1.1. Parameter estimation of PID controllers 

The nonlinear feedback loop of Figure 13 considering a PID 

controller is optimized using different optimization methods 

within the parameter range KP ∈ [0,75] , KP ∈ [0,75] , and 

KP ∈ [0,75] . This article considers the above objective 

functions and carries out a statistical study emphasizing least 

value of the mean, standard deviation, maximum, and minimum 

values of cost functions. 

The cost function that produces the least mean value is 

considered the best-performing objective function under 

specified system parameters. The statistical analysis is carried 

out with techniques like ALO, PSO, GWO, WOA, and MFO 

considering the parameters as mentioned in Table 5. The values 

of different cost functions are obtained by engaging 30 search 

agents for 100 iterations with 10-time repetitions and are 

presented in Table 6. As the optimization algorithms are 

stochastic, therefore an appropriate statistical study can lead to 

a proper performance-oriented conclusion. 

Table 6. Statistical analysis considering PID controllers 

Cost 

Functions 

Optimization Methods 

ALO PSO GWO WOA MFO 

ISE 

Mean 0.6074 0.6074 0.6074 0.6799 0.6073 

Std. 

Dev. 

7.53 

E-06 

5.72 

E-06 

1.03 

E-05 

8.5 

2E-06 

5.52 

E-06 

Max. 0.6074 0.6074 0.6074 0.6799 0.6074 

Min. 0.6074 0.6074 0.6074 0.6799 0.6074 

IAE 

Mean 0.9816 1.3475 0.9909 0.9908 0.9885 

Std. 

Dev. 
0.0016 0.2761 0.0023 0.0008 0.0037 

Max. 0.9853 1.5475 0.9922 0.9914 0.9912 

Min. 0.9792 0.9799 0.9812 0.9882 0.9797 

ITSE 

Mean 0.8735 0.8735 0.8735 0.8735 0.8734 

Std. 

Dev. 

2.47 

E-05 

4.70 

E-05 

2.52 

E-05 

2.55 

E-05 

1.84 

E-05 

Max. 0.8735 0.8736 0.8736 0.8735 0.8735 

Min. 0.8734 0.8735 0.8735 0.8734 0.8734 

ITAE 

Mean 1.8937 5.2995 2.0771 2.0671 2.2065 

Std. 

Dev. 
0.0858 0.0343 0.1092 0.1455 0.0809 

Max. 2.2304 5.3487 2.2431 2.2573 2.3024 

Min. 1.8172 5.2469 1.9077 1.785 2.0053 

ZLG 

Mean 0.2154 0.7773 0.1993 0.1997 0.1991 

Std. 

Dev. 
0.0237 0.4871 0.0001 0.0013 

2.75 

E-05 

Max. 0.2632 1.1547 0.1996 0.2033 0.1991 

Min. 0.1991 0.1992 0.1992 0.1991 0.1991 

Table 7. PID parameters obtained against best cost functions 

Cost 

Functions 
𝐊𝐏 𝐊𝐈 𝐊𝐃 𝐓𝐑 𝐓𝐒 𝐌𝐏 𝐄𝐒𝐒 

ISE 0.6074 75 0 56.228 1.175 3.885 11.285 0.00036 

IAE 0.9792 74.916 0.019 69.097 1.402 3.930 4.446 0.00037 

ITSE 0.8734 75 0 60.409 1.240 3.934 8.698 -0.00067 

ITAE 1.8172 72.69 0 74.997 1.584 3.446 2.026 -0.00005 

ZLG 0.1991 72.56 0 75 1.587 3.447 2.022 0.00002 

It is noticed from Table 6 that the least mean values of 

objective functions are obtained for ISE with MFO, IAE with 

ALO, ITSE with MFO, and ITAE with ALO. For the minimum 
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values of the cost functions, the corresponding values of PID are 

presented in Table 7. A comparison of zero input response and 

step response for the above plant is provided in Figure 15 and 

Figure 16 respectively. The result thus obtained by adopting a 

minimal ITAE index shows better transient performance. It is 

obvious that due to the existence of periodic oscillations, the 

controller cannot have an integral component as an integrator 

emphasizes oscillations in the plant. 

 

Fig. 15. Zero input response with PID and backlash nonlinearity 

 

Fig. 16. Step response with PID and backlash nonlinearity 

Therefore, the required PID controller towards the 

elimination of the limit cycle is a PD controller and is expressed 

as: 

GC(s) = 72.69 + 74.997 s (58) 

5.1.2. Parameter estimation of 𝐏𝐈𝛌𝐃𝛍 Controllers 

The DC motor system of Figure 13 with a PIλDμ is optimized 

considering various integral and absolute errors within the same 

parametric range KP ∈ [0,75], KI ∈ [0,75], and KD ∈ [0,75]. 
Here the values of the fractional exponents are varied over the 

ranges λ ∈ [0,1], and μ ∈ [0,1], as well as λ ∈ [0,2], and μ ∈
[0,2]. A similar statistical test is performed with the algorithms 

ALO, PSO, GWO, WOA, and MFO adopting the same parameters 

as mentioned in Table 5. The solutions thus obtained by engaging 

30 search agents with 100 iterations and 10-time such repetitions 

are provided in Table 8 and Table 9. The optimal values of FOPID 

controllers selected based on performances are presented in Table 

10. The zero and step input responses of the system are compared 

against various objective functions shown in Figure 17 and Figure 

18 respectively indicating superior transient performance for the 

ITSE index within the range λ ∈ [0,1], and μ ∈ [0,1]. 
It is observed from Figure 17 and Figure 18 that the 

parametric setting of λ ϵ [0,2], and µ ϵ [0,2] show poor transient 

characteristics in terms of MP and marginal TS than the 

parametric setting of λ ϵ [0,1], and µ ϵ [0,1]. Therefore, 

considering the minimal ISTE cost function within a parametric 

range λ ∈ [0,1], and μ ∈ [0,1], the required FOPID controller 

for the quenching of the limit cycle is expressed as: 

GC(s) = 3.8581 +
0.6937

s0.0058
+ 75 s0.9998 (59) 

Table 8. Statistical analysis considering FOPID controllers 

Cost 

Functions 

(𝐉𝒎𝒊𝒏) 

𝐏𝐈𝛌𝐃𝛍 Controller (𝛌 ∈ [𝟎, 𝟏], 𝛍 ∈ [𝟎, 𝟏]) 

ALO PSO GWO WOA MFO 

ISE 

Mean 0.23293 0.23250 0.23253 0.23268 0.23250 

Std. Dev. 0.00073 0.00010 
2.1026 

E-05 
0.00060 

8.3376 

E-05 

Max. 0.2347 0.2327 0.2326 0.23518 0.23255 

Min. 0.23247 0.2324 0.23248 0.23223 0.23223 

IAE 

Mean 0.61229 0.61173 0.60968 0.60853 0.60443 

Std. Dev. 0.00725 0.00541 0.00676 0.00670 0.00129 

Max. 0.62477 0.6243 0.62315 0.62175 0.60631 

Min. 0.60523 0.6045 0.60398 0.60192 0.60163 

ITSE 

Mean 0.32443 0.32279 0.31013 0.31335 0.30479 

Std. Dev. 0.00196 0.00082 0.01529 0.01383 0.01586 

Max. 0.32966 0.3234 0.32344 0.32324 0.32324 

Min. 0.32258 0.3207 0.28845 0.28864 0.28844 

ITAE 

Mean 1.7071 1.89208 1.69853 1.71911 1.60809 

Std. Dev. 0.11917 0.21919 0.10666 0.20317 0.10461 

Max. 2.0043 2.2039 1.8389 2.1165 1.7671 

Min. 1.5592 1.3471 1.5221 1.4136 1.4375 

ZLG 

Mean 0.55189 0.60352 0.15844 0.27093 0.09789 

Std. Dev. 0.23883 0.17702 0.17470 0.26908 0.00554 

Max. 0.67583 0.6747 0.65552 0.67199 0.10352 

Min. 0.09594 0.1 0.09207 0.10169 0.09006 

Further, a comparative analysis is done between the optimal 

PID and optimal FOPID and is presented in Figure 19. It can be 
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noticed that the fractional controllers perform better in 

comparison with their integer counterparts.  

Table 9. Statistical analysis considering FOPID controllers 

Cost 

Functions 

(𝐉𝒎𝒊𝒏) 

𝐏𝐈𝛌𝐃𝛍 Controller (𝛌 ∈ [𝟎, 𝟐], 𝛍 ∈ [𝟎, 𝟐]) 

ALO PSO GWO WOA MFO 

ISE 

Mean 0.16229 0.15814 0.16050 0.16326 0.15440 

Std. Dev. 0.00611 0.00662 0.00740 0.00709 
2.23 

E-06 

Max. 0.17278 0.16933 0.16942 0.1695 0.15441 

Min. 0.15438 0.15441 0.15438 0.15441 0.1544 

IAE 

Mean 0.57858 0.58235 0.56347 0.58294 0.56499 

Std. Dev. 0.02604 0.01699 0.03909 0.01962 0.00025 

Max. 0.62044 0.61536 0.60658 0.60865 0.56535 

Min. 0.48457 0.57152 0.56531 0.56484 0.56465 

ITSE 

Mean 0.27204 0.26788 0.26465 0.27260 0.26090 

Std. Dev. 0.01034 0.01038 0.00853 0.01139 
2.28 

E-05 

Max. 0.2969 0.28456 0.28457 0.28752 0.26092 

Min. 0.26088 0.26088 0.2609 0.26092 0.26087 

ITAE 

Mean 1.34348 1.33042 1.28139 1.3729 1.24172 

Std. Dev. 0.07395 0.05918 0.05315 0.19165 0.00824 

Max. 1.4605 1.4329 1.427 2.1237 1.2528 

Min. 1.2239 1.2446 1.2397 1.2361 1.2216 

ZLG 

Mean 0.50446 0.66605 0.38165 0.33646 0.09875 

Std. Dev. 0.27579 0.01057 0.29417 0.29478 0.00656 

Max. 0.71097 0.6845 0.67198 0.72077 0.1035 

Min. 0.09615 0.6548 0.09575 0.1011 0.08901 

 

Fig. 17. Zero input response with FOPID and backlash nonlinearity 

 

Fig. 18. Step response with FOPID and backlash nonlinearity 

Table 10. FOPID parameters obtained against best cost functions 

𝐉𝒎𝒊𝒏 𝐊𝐏 𝐊𝐈 𝐊𝐃 𝛌 𝛍 𝐓𝐑 𝐓𝐒 𝐌𝐏 𝐄𝐒𝐒 

ISE-1 

λ ∈ [0,1],

μ ∈ [0,1]
 

13.32 0 75 0.604 0.999 0.816 6.578 4.006 0.011 

ISE-2 

λ ∈ [0,2],

μ ∈ [0,2]
 

75 75 75 0 1.512 0.639 7.549 19.65 0.007 

IAE-1 
λ ∈ [0,1],

μ ∈ [0,1]
 

73.68 75 74.95 0 1 0.419 3.435 28.94 0.0003 

IAE-2 
λ ∈ [0,2],

μ ∈ [0,2]
 

74.69 75 74.99 0 1.172 0.460 4.137 22.27 
7.7 

E-5 

ITSE-1 
λ ∈ [0,1],

μ ∈ [0,1]
 

3.85 0.69 75 0.005 0.999 0.924 1.614 0.246 0.001 

ITSE-2 

λ ∈ [0,2],

μ ∈ [0,2]
 

75 75 75 
4.31 

E-9 
1.332 0.530 4.914 19.48 0.0005 

ITAE-1 

λ ∈ [0,1],

μ ∈ [0,1]
 

73.09 74.5 74.97 0 1 0.420 3.442 28.81 0.0003 

ITAE-2 

λ ∈ [0,2],

μ ∈ [0,2]
 

67.64 75 75 0 1.047 0.438 3.630 25.85 0.0001 

ZLG-1 
λ ∈ [0,1],

μ ∈ [0,1]
 

1.11 0 75 0.993 0.886 0.830 2.022 2.024 0.0049 

ZLG-2 
λ ∈ [0,2],

μ ∈ [0,2]
 

1.81 0 75 0.669 0.899 0.835 1.247 1.867 0.0029 
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Fig. 129. Comparison of responses of PID and FOPID controller 

Although the optimization techniques following some 

stochastic parameter estimation procedures are easy to 

implement, they need the initial information regarding the 

search region. This itself is a problem and is solved by the trial-

and-error procedure as the region in which the solution exists is 

usually unknown. This leads to the need for a deterministic 

procedure for the evaluation of parameters. This article also 

examines the loop-shaping method for the tuning of controllers 

as discussed below. 

5.2. Frequency domain loop shaping technique for 

parameter estimation 

The loop transfer function T(s) consisting of the plant G(s), 

the nonlinear element N(X), and the controller GC(s) as seen 

in Figure 9 must satisfy the following frequency-domain design 

specifications to achieve a better system performance [30]. 

i. Phase margin specification: The phase margin is associated 

with the damping and is thereby considered as an index for the 

system performance. The preceding condition must be satisfied. 

Arg[T(jωC)] = −π + ϕm 

i. e.  Arg[G(jωC)GC(jωC)N(X)] = −π + ϕm 
(60) 

Where, 𝜔𝐶 is the gain cross over frequency, and 𝜙𝑚 is the 

required phase margin. 

ii. Gain cross over frequency specifications: It is the means of the 

stability of the system. 

|T(jωC)|dB = |G(jωC)GC(jωC)N(X)|dB = 0 dB 

i. e. |T(jωC)| =  |G(jωC)GC(jωC)N(X)| = 1 
(61) 

iii. Robustness to gain variations: The robustness of a system 

towards the gain variation needs the phase angle difference 

with respect to the frequency to be zero. 

d

dω
(Arg[T(jω)])|

ω=ωc

= 0 

i. e.  
d

dω
(Arg[G(jω)GC(jω)N(X)])|

ω=ωc

= 0 

(62) 

iv. Rejection of high frequency noise: The robustness of a system 

to high frequency noise can be attended if the close loop 

frequency response 𝑃(𝑗𝜔) satisfies the following low pass 

filtering requirements. 

|P(jω)|dB ≤ ΑN dB,   ∀ ω ≥ ωt 

i. e.  |
G(jω)GC(jω)N(X)

1 + G(jω)GC(jω)N(X)
|
dB

|

ω=ωt

= ΑN dB 
(63) 

Where, 𝐴𝑁 is the desired noise attenuation value for the cut-

off frequency 𝜔 ≥ 𝜔𝑡 rad/s. 

v. Rejection of output disturbance: Good disturbance rejection 

characteristics require fulfillment of the following condition 

for sensitivity function 𝑆(𝑗𝜔). 

|S(jω)|dB ≤ ΒD dB,   ∀ ω ≤ ωs 

i. e.  |
1

1 + G(jω)GC(jω)N(X)
|
dB

|
ω=ωs

= ΒD dB 
(64) 

Where, 𝐵𝐷 is the desired sensitivity function value for the 

cut-off frequency 𝜔 ≤ 𝜔𝑆 rad/s.  

The above-formulated optimization problem (60-64) is 

nonconvex and therefore its analytical solution is difficult. Due 

to the presence of local minima, it is necessary to carry out this 

problem with several initial guesses. MATLAB optimization 

toolbox fmincon() with the interior-point algorithm can be 

utilized to solve this constraint nonlinear optimization problem 

and gather the optimal. Therefore, with the above constraints 

considering the robustness to gain variation (62) as the objective 

function, the modelling of integer and fractional order PID is 

explained below. 

5.2.1. Design of integer-order PID controllers 

The phase margin specification (60) reveals the following: 

−tan−1 (
0.2025ωC

3−1.025ωC

20.2522ωC
2 ) + tan−1 (

KDωC
2−KI

ωCKP
) −

tan−1 (
cos2β

π

2
+β+0.5 sin(2β)

) −0.01ωC = −π + ϕm  
(65) 

The above equation can be expressed as: 

(

{
π

2
+β+0.5 sin(2β)}{(ωCKP)P−(KDωC

2−KI)Q}

+(cos2β)[(ωCKP)Q+(KDωC
2−KI)P]

{
π

2
+β+0.5 sin(2β)}{(ωCKP)Q+(KDωC

2−KI)P}

−(cos2β){(ωCKP)P−(KDωC
2−KI)Q}

)+ 

{tan(ϕm + 0.01ωC)} = 0 

(66) 
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Where, P = 0.2025ωC
3 − 1.025ωC, and Q = 20.2522ωC

2 

respectively. Again, the gain crossover frequency constraint 

(61) can be derived as: 

0.6 

π
[√KP

2+(KDωC−
KI
ωC

)
2
][√(

π

2
+β+0.5 sin(2β))

2
+cos4β]

√(20.2522ωC
2)2+(0.2025ωC

3−1.025ωC)
2

= 1  
(67) 

It could further be expressed as: 

0.36 [KP
2+(KDωC−

KI
ωC

)
2
][(

π

2
+β+0.5 sin(2β))

2
+cos4β]

π2√(20.2522ωC
2)2+(0.2025ωC

3−1.025ωC)
2

= 1  (68) 

Similarly, the constraint (62) for the robustness of the system 

provides: 

d

dωC
[tan−1 (

0.2025ωC
3−1.025ωC

20.2522ωC
2 )] +

d

dωC
[tan−1 (

KDωC
2−KI

ωCKP
) ] −

d

dωC
[tan−1 (

cos2β
π

2
+β+0.5 sin(2β)

)] − 
d

dωC
[0.01ωC] = 0  

(69) 

As the factor 
d

dωC
[tan−1 (

cos2β
π

2
+β+0.5 sin(2β)

)] = 0 , the above 

equation could be further simplified as follows. 

{
4.1011ωC

4 + 20.7585ωC
2

(20.2522ωC
2)2 + (0.2025ωC

3 − 1.025ωC)
2
}

− {
ωC

2KPKD + KPKI
(ωCKP)

2 + (KDωC
2 − KI)

2
} + 0.01 = 0 

(70) 

In this paper instead of random initial guesses, the results 

obtained from optimization techniques are used as initial guess 

values assuming (70) as the objective function and (66,68) as the 

nonlinear equality constraints. 

Assuming gain cross-over frequency ωC = 1 rad/s, phase 

margins ϕm = 60
𝑜, 65𝑜, and 70𝑜 , optimization by the 

fmincon() solver within the parameter range KP ϵ [0,75], KI ϵ 

[0,75], and KD ϵ [0,75] provide results as shown in Table 11-

13 respectively. It should be noted here that considering (66) or 

(68) as objective functions did not give optimal results for the 

controllers toward the quenching of the limit cycle. Hence, that 

aspect is not included in this article. 

Results obtained from the system having a PID controller 

with different phase margins are compared and shown in Figure 

20 and Figure 21. While PID parameters obtained for higher 

values of ϕm  quenches the limit cycle but shows marginal 

sluggish behavior. Thus, the desired limit cycle minimizing 

controller was obtained for ϕm = 60
𝑜 is: 

GC(s) = 56.3399 +
0.0050

s
+ 74.9992 s (71) 

Table 11. PID controller parameters obtained for fmincon  
optimization technique 

Initial Guess Value 

(From Optimization 

Techniques) 

Converged Value 

(From FMINCON) 

𝝓𝒎 = 𝟔𝟎𝒐 

Performance 

Index 

KP KI KD KP KI KD 
Obj. 

Function 

75 0 56.22 9.5059 34.4001 75 -0.5276 

74.91 0.019 69.09 56.3834 0 75 -0.40981 

75 0 60.40 9.5059 34.4001 75 -0.5276 

72.69 0 74.99 9.5059 34.4001 75 -0.5276 

72.56 0 75 56.3399 0.0050 74.9992 -0.40978 

Table 12. PID controller parameters obtained for fmincon  
optimization technique 

Initial Guess Value 

(From Optimization 

Techniques) 

Converged Value 

(From FMINCON) 

𝝓𝒎 = 𝟔𝟓𝒐 

Performance 

Index 

KP KI KD KP KI KD 
Obj. 

Function 

75 0 56.228 46.6342 0 75 -0.3779 

74.916 0.019 69.097 49.9080 0 75 -0.3907 

75 0 60.409 47.9776 0 75 -0.3834 

72.69 0 74.997 51.9944 0 75 -0.3977 

72.56 0 75 50.0958 0.0055 74.9998 -0.3914 

Table 13. PID controller parameters obtained for fmincon  
optimization technique 

Initial Guess Value 

(From Optimization 

Techniques) 

Converged Value 

(From FMINCON) 

𝝓𝒎 = 𝟕𝟎𝒐 

Performance 

Index 

KP KI KD KP KI KD 
Obj. 

Function 

75 0 56.228 40.2287 0 75 -0.34603 

74.916 0.019 69.097 47.1076 0 75 -0.3799 

75 0 60.409 40.2291 0 75 -0.34603 

72.69 0 74.997 47.8682 0 75 -0.3830 

72.56 0 75 46.1474 0 75 -0.37581 

 

Fig. 20. Comparison of zero input response with backlash nonlinearity 
and PID controllers 
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Fig. 21. Comparison of step input response with backlash nonlinearity 
and PID controllers 

5.2.2. Design of 𝐏𝐈𝛌𝐃𝛍 controllers 

Similarly, the phase margin specification (60) provides the 

following relationship: 

−tan−1 (
0.2025ωC

3−1.025ωC

20.2522ωC
2 ) +

 tan−1 (
KDω

μ sin
μπ

2
−
KI

ωλ
sin

λπ

2

KP+
KI

ωλ
cos

λπ

2
+KDω

μ cos
μπ

2

) −

 tan−1 (
cos2β

π

2
+β+0.5 sin(2β)

) −0.01ωC = −π + ϕm  

(72) 

The above equation can be simplified as: 

(

  
 

{
π
2
+ β + 0.5 sin(2β)} {AP − BQ}

+(cos2β){AQ + BP}

{
π
2
+ β + 0.5 sin(2β)} {AQ + BP}

−(cos2β){AP − BQ} )

  
 

+ [tan(ϕm + 0.01ωC)] = 0 

(73) 

Where, P = 0.2025ωC
3 − 1.025ωC , Q = 20.2522ωC

2 ,   

A = KP +
KI

ωλ
cos

λπ

2
+ KDω

μ cos
μπ

2
, and B = KDω

μ sin
μπ

2
−

KI

ωλ
sin

λπ

2
 respectively.  

Again, the constraint (61) for gain crossover frequency can be 

expressed as follows: 

0.6 

π
{√A2+B2}{√(

π

2
+β+0.5 sin(2β))

2
+cos4β}

√(20.2522ωC
2)2+(0.2025ωC

3−1.025ωC)
2
= 1  (74) 

It can further be simplified as: 

0.36 {A2+B2}{(
π

2
+β+0.5 sin(2β))

2
+cos4β}

π2{(20.2522ωC
2)2+(0.2025ωC

3−1.025ωC)
2}
= 1  (75) 

Likewise, the robustness constraint (62) of the system gives 

the following equation. 

d

dωC
[tan−1 (

0.2025ωC
3−1.025ωC

20.2522ωC
2 )] +

d

dωC
[tan−1 (

KDω
μ sin

μπ

2
−
KI

ωλ
sin

λπ

2

KP+
KI

ωλ
cos

λπ

2
+KDω

μ cos
μπ

2

) ] −

d

dωC
[tan−1 (

cos2β
π

2
+β+0.5 sin(2β)

)] − 
d

dωC
[0.01ωC] = 0  

(76) 

Being independent of ωC,  

d

dωC
[tan−1 (

cos2β
π

2
+β+0.5 sin(2β)

)] = 0  (77) 

Hence, the above equation is simplified as: 

{
4.1011ωC

4+20.7585ωC
2

(20.2522ωC
2)2+(0.2025ωC

3−1.025ωC)
2} −

(
AE−BF

A2+B2
) + 0.01 = 0  

(78) 

Where E = KDμω
μ−1 sin

μπ

2
+

KIλ

ωλ+1
sin

λπ

2
 and F =

KDμω
μ−1 cos

μπ

2
−

KIλ

ωλ+1
cos

λπ

2
  respectively.  

The high-frequency noise reduction constraint (63) makes the 

following equation: 

0.6√A2+B2√(
π

2
+β+0.5 sin(2β))

2
+cos4β

π√P2+Q2+0.6√A2+B2√(
π

2
+β+0.5 sin(2β))

2
+cos4β

|

ω=ωt

−

10
ΑN
20 = 0  

(79) 

The criterion (64) for disturbance rejection reveals: 

 π√P2+Q2

π√P2+Q2+0.6√A2+B2√(
π

2
+β+0.5 sin(2β))

2
+cos4β

|

ω=ωs

−

10
ΒD
20 = 0  

(80) 

Likewise, the above-formulated optimization problem is 

nonconvex, and therefore its analytical solution is difficult. The 

results obtained from optimizations are used as initial guess 

values assuming (78) as the objective function and (73, 75, 79, 

and 80) as the nonlinear equality constraints. Now, by assuming 

the gain cross-over frequency ωC = 1 rad/s, the phase margins 

ϕm = 60
𝑜, 65𝑜, and 70𝑜 , the required noise attenuation 

ΑN = −10 dB for ω ≥ ωt = 10  rad/s, the value of the 

sensitivity function ΒD = −20 dB  for ω ≤ ωs = 0.001 

rad/s; the cost minimization by the function fmincon() within the 

parameter range KP  ϵ [0,75], KI  ϵ [0,75], KD  ϵ [0,75], λ ϵ 

[0,1], and μ ϵ [0,1] provide the following results as shown in 

Table 14-16 respectively. Again, the results obtained from the 

system having an FOPID controller with different phase margins 

are compared and presented in Figure 22 and Figure 23 

respectively. 
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It must be noted here that considering (73) or (75) as the main 

cost function and the remaining two as nonlinear constraints, did 

not provide optimal performance of the fractional controllers 

towards the suppression of the limit cycle. Hence, that aspect of 

controller design is not included in this paper. While the FOPID 

parameters obtained for ϕm = 60
𝑜 , 65𝑜 , 70𝑜  are almost 

similar. The desired limit cycle minimizing FOPID controller 

thus evaluated for ϕm = 70
𝑜 and is expressed as follows: 

GC(s) = 3.8273 +
0.7578

s0.0001
+ 73.9489 s0.9998 (81) 

Table 14. FOPID controller parameters obtained for fmincon  
optimization technique 

 

Constrained Nonlinear 

Minimization-FMINCON 

(Phase Margin 𝝓𝒎 = 𝟔𝟎𝒐) 

Initial Guess 

Values 

(From 

Optimization 

Techniques) 

KP 13.32 73.681 3.8581 73.095 

KI 0 75 0.6937 74.5 

KD 75 74.951 75 74.97 

λ 0.6048 0 0.0058 0 

μ 0.9999 1 0.9999 1 

Converged 

Values 

(From 

fmincon) 

KP 9.2418 73.7956 5.9258 73.118 

KI 3.0640 74.0868 4.0862 74.541 

KD 58.5145 75 68.521 75 

λ 0.6153 0.8710 0.0011 0.8724 

μ 1 1 0.9840 1 

Objective Function -0.1505 -1.4905 -0.0693 -1.5092 

Table 15. FOPID controller parameters obtained for fmincon  
optimization technique 

 

Constrained Nonlinear 

Minimization-FMINCON 

(Phase Margin 𝝓𝒎 = 𝟔𝟓𝒐) 

Initial Guess 

Values 

(From 

Optimization 

Techniques) 

KP 13.32 73.681 3.8581 73.095 

KI 0 75 0.6937 74.5 

KD 75 74.951 75 74.97 

λ 0.6048 0 0.0058 0 

μ 0.9999 1 0.9999 1 

Converged 

Values 

(From 

fmincon) 

KP 16.0553 73.7950 0.0001 73.1178 

KI 0.0949 74.0870 7.9692 74.5411 

KD 72.0922 75 70.1317 75 

λ 0.0011 0.8702 0.0011 0.8716 

μ 1 1 1 1 

 

Constrained Nonlinear 

Minimization-FMINCON 

(Phase Margin 𝝓𝒎 = 𝟔𝟓𝒐) 

Objective Function -0.1428 -1.488 -0.0418 -1.5066 

Table 16. FOPID controller parameters obtained for fmincon  
optimization technique 

 

Constrained Nonlinear 

Minimization-FMINCON 

(Phase Margin 𝝓𝒎 = 𝟕𝟎𝒐) 

Initial Guess 

Values 

(From 

Optimization 

Techniques) 

KP 13.32 73.681 3.8581 73.095 

KI 0 75 0.69372 74.5 

KD 75 74.951 75 74.97 

λ 0.6048 0 0.0058 0 

μ 0.9999 1 0.9999 1 

Converged 

Values 

(From 

fmincon) 

KP 15.7794 73.7941 3.8273 73.1174 

KI 0.1052 74.0872 0.7578 74.5411 

KD 72.2834 75 73.9489 75 

λ 0.0009 0.8689 0.0001 0.8703 

μ 0.9999 1 0.9998 1 

Objective Function -0.13912 -1.4842 0.0087 -1.5027 

 

Fig. 22. Comparison of zero input response with backlash nonlinearity 
and FOPID controllers 
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Fig. 23. Comparison of step input response with backlash nonlinearity 
and FOPID controllers 

 

Fig. 24. Comparison of responses of PID and FOPID controllers 

 

Fig. 25. Superimposed Nyquist plot of G(jω) and Negative inverse 
plot of N(X) for Backlash with PID and FOPID controllers 

Comparison between zero input and step responses of the 

system with PID and FOPID are shown in Figure 24. Although 

PIλDμ the controller shows a significant peek as compared to 

PID controllers but the settling time is marginally small; thereby 

proving the superiority of PIλDμ controllers over the integer-

order PID controllers. The overlapped Nyquist and negative 

inverse figure also confirm no intersection and thereby predict 

the complete elimination of limit cycle oscillations as seen in 

Figure 25. 

Table 17. Time domain specifications with and without controllers 

Time 

Domain 

Specifications 

Original 

System 

Optimization 

Method 

Loop Shaping 

Method 

PID FOPID PID FOPID 

Rise Time (TR)  

(in seconds) 
6.8734 1.5855 0.9277 2.1361 0.9415 

Settling Time (TS) 
(in seconds) 

499.14 3.4088 1.6244 3.4819 1.6338 

Percentage 

Overshoot Mp(%) 
58.03 2.0127 0.1912 0.1252 0.2388 

Peak Time (TP)  

(in seconds) 
18.60 3.3215 3.4572 5.1100 3.4806 

Steady 

State Error (ESS) 
0.1747 0.0001 0.0006 0.0006 0.0006 

The comparison of the time specifications between the PID 

and FOPID obtained from both the discussed procedures is 

provided in Table 17. As per expectation, the superiority of 

fractional controllers can be noticed in terms of rise time and 

settling time. The major issue with this procedure is the need for 

an initial guess of solutions. This creates a problem as any 

random guess might not converge. If the initial guess of the 

solution is proper, results will be appropriate, else not. Further, 

the solution also depends upon the GM, PM, and gain cross-over 

frequency details; which must be obtained by a trial-and-error 

procedure. Further, it requires five constraints to simplify and 

solve those nonlinear equations usually the nonlinear 

optimization toolbox fmincon() is used. 

6. Robustness Analysis of the System 

The robustness of a control system is usually evaluated 

against parameter variation and disturbance rejection. In this 

paper, the usefulness of the proposed controllers is examined 

based on variations in time delays as well as variations in 

backlash amplitude. As the prime aim of this article is to 

minimize the effect on the limit cycle, the zero-input plant 

response is considered instead of the step output response of the 

plant. 

6.1. Effect of controllers on variation in delay times 

The system of Figure 13 is tested against variations in delay 

times which could inherently be present in the system. The 

effectiveness of the controller in suppressing the effect of this 

parameter variation is shown below. It is noticed in Figure 26 

that for a time delay of 0.1 s, both controllers work effectively. 

But for a delay time of 0.5 s, the PID is unable to quench the 

limit cycle while the FOPID is suppressing the limit cycle 

efficiently as seen in Figure 27. 
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Fig. 26. Zero input response with different controllers considering a 
delay time of 0.1s 

 

Fig. 27. Zero input response with different controllers considering a 
delay time of 0.5 s 

6.2. Effect of controllers on variable backlash magnitudes 

 

Fig. 28. Zero input response with different controllers considering a 
backlash amplitude H = 0.005 

 

Fig. 29. Zero input response with different controllers considering a 
backlash amplitude H = 0.25 

Likewise, the system of Figure 13 is tested against variations 

in the backlash magnitude that may arise in the system due to 

the ageing effect. 

The effectiveness of the proposed controllers in eliminating 

the effect of such variations is demonstrated in Figure 28 and 

Figure 29 respectively. For every variation in backlash 

amplitude, the PID and FOPID are seen to eliminate the limit 

cycle oscillations efficiently. The zero-input response of the 

plant signifies the dominance of  PIλDμ controllers in terms of 

robustness to parameter variations against their integer-order 

counterparts. 

7. Realization of the Controllers 

The results of integer and non-integer order controllers 

obtained in the previous sections need to be implementable in 

real practice. Further, to carry out simulations in MATLAB, the 

controllers need to be practically realized as mentioned below. 

i. The PID controller calculated during the optimization process 

is found to be a PD controller and can be implemented as 

follows. 

GC(s) = KP + KDs = 72.69 + 74.997s (82) 

The above improper transfer function can be converted into a 

proper transfer function by considering the filter coefficient 𝑁𝐹 

[17]. Let 𝑁𝐹 = 1000, and therefore the above PD controller can 

be expressed as: 

GC(s) = KP + KDs (
𝑁𝐹

𝑠 + 𝑁𝐹
) (83) 

⟹ GC(s) = 72.69 + 74.997s (
1000

𝑠 + 1000
) (84) 

ii. Likewise, the PIλDμ  controller evaluated during the 

optimization process can be implementable as mentioned 
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below. The improper fractional differentiator KDs
μ  can be 

made a proper function with a fractional filter 𝑁𝐹 = 1000 as 

follows: 

GC(s) = KP +
KI
sλ
+ KDs

μ  (
𝑁𝐹

sμ + 𝑁𝐹
) (85) 

⟹ GC(s) = 3.8581 +
0.6937

s0.0058

+ 75 s0.9998 (
1000

s0.9998 + 1000
) 

(86) 

Further, using the Oustaloup filter of order 𝑁 = 5 within the 

frequency range [10−3, 10−3]  rad/s, the fractional elements 

can be realized. The MATLAB function oustafod(𝛽, 𝑁, 𝜔𝑏, 𝜔ℎ) 
is used for this purpose. 

Therefore, for s0.0058 the relevant integer order model is: 

s0.0058 =

1.041s11+773.9s10+1.275e05s9+5.631e06s8+6.962e07s7+
2.44e08s6+2.431e08s5+6.886e07s4+5.529e06s3+

1.243e05s2+748.9s+1
s11+748.9s10+1.243e05s9+5.529e06s8+6.962e07s7+
2.431e08s6+2.44e08s5+6.962e07s4+5.631e06s3+

1.275e05s2+773.9s+1.041

  
(87) 

Likewise, for s0.9998 the integer order model is: 

s0.9998 =

998.6s11+3.977e05s10+3.511e07s9+ 8.304e08s8+5.5e09s7+
1.033e10s6+5.511e09s5+8.363e08s4+3.597e07s3+

4.333e05s2+1398s+1
s11+1398s10+4.333e05s9+3.597e07s8+8.363e08s7+
5.511e09s6+1.033e10s5+5.5e09s4+8.304e08s3+

3.511e07s2+3.977e05s+998.6

  
(88) 

Further, the fractional element s0.0001 can be realized as: 

s0.0001 =

1.001s11+746.7 e05s10+1.235e05s9+ 5.472e06s8+
6.79e07s7+2.388e08s6+2.388e08s5+6.789e07s4+5.47e06s3+

1.234e05s2+746.2s+1
s11+746.2s10+1.234e05s9+5.47e06s8+6.789e07s7+
2.388e08s6+2.388e08s5+6.79e07s4+5.472e06s3+

1.235e05s2+746.7s+1.001

  
(89) 

After realization, further analysis or simulation of the 

fractional elements can be carried out by considering the above 

model. 

8. Conclusion 

In this paper, the limit cycle prediction is carried out for a DC 

servo plant with time delay and backlash nonlinearity. An 

analytical method based on the DF analysis followed by a 

Nyquist contour-based graphical procedure and further digital 

simulations is carried out for the investigation of the possible 

limit cycle oscillations. The effect of parameter variation on the 

limit cycle is examined by applying multiple time delays and 

various backlash magnitudes. Results reveal an increment of 

oscillation amplitude with a corresponding enhancement in 

system parameters whereas the frequency of oscillation almost 

remains the same. PID and FOPID controllers with optimal 

parametric values are considered for the suppression of these 

limit cycle oscillations. Parameter estimation of the controller is 

carried out using optimization methods by minimizing 

performance indices as well as by adopting a frequency domain-

based loop shaping approach.  

In the optimization-based procedure, statistical studies reveal 

the superiority of MFO over other applied algorithms towards 

the minimization of the cost functions and providing desired 

system performance in terms of suppression of limit cycle 

oscillations. While the superiority of MFO-tuned ITAE is 

noticed for PID controllers, the MFO-tuned ITSE provides 

superior performance for FOPID controllers. In the analytical 

procedure, out of the five applied loop shaping constraints, the 

robustness to gain variations condition provided better results 

being an objective function and the other four as nonlinear 

constraints for different values of phase margins. 

Further, the simulation results reveal the authenticity of the 

PID and FOPID controllers in suppressing the oscillation 

magnitude and capturing the desired closed-loop system 

performance. Robustness studies clearly show the effectiveness 

of the controllers towards system parameter variations. It further 

indicates the superiority of FOPID controllers in terms of 

achieving desired system performance as well as insensitivity 

towards the system parameter variations. 

Conflict of Interest 

The corresponding author assures no conflict of interest on behalf of 

all the authors. 

Data Availability 

On behalf of all authors, the corresponding author agrees to make the 

research data available upon reasonable request. 

CRediT Author Statement 

Biresh Kumar Dakua: Conceptualization, Writing-original draft, 

Validation, Data curation 

Bibhuti Bhusan Pati: Supervision, Formal analysis 

References 

[1] Atherton DP. Nonlinear control engineering. Van Nostrand 

Rheinhold. 1975. ISBN:9780442300173.   

[2] Gopal M. Control systems: principles and design. McGraw-Hill 

Science, Engineering & Mathematics; 2008. ISBN: 

9780073529516. 

[3] Dakua BK, Pati BB. Prediction and suppression of limit cycle 

oscillation for a plant with time delay and backlash nonlinearity. 

In2020 IEEE International Symposium on Sustainable Energy, 

Signal Processing and Cyber Security (iSSSC) 2020 Dec 16 (pp. 1-

5). IEEE. https://doi.org/10.1109/iSSSC50941.2020.9358900. 

https://doi.org/10.1109/iSSSC50941.2020.9358900


 

Dakua and Pati / International Journal of Automotive Science and Technology 8 (4): 506-526, 2024 

 

525 

 

[4] Kesarkar AA, Selvaganesan N, Priyadarshan H. A novel 

framework to design and compare limit cycle minimizing 

controllers: demonstration with integer and fractional-order 

controllers. Nonlinear Dynamics. 2014; 78: 2871-82. 

https://doi.org/10.1007/s11071-014-1632-6. 

[5] Kesarkar AA, Selvaganesan N, Priyadarshan H. Novel controller 

design for plants with relay nonlinearity to reduce amplitude of 

sustained oscillations: Illustration with a fractional controller. ISA 

transactions. 2015;57:295-300. 

https://doi.org/10.1016/j.isatra.2015.01.005. 

[6] Perumal S, Selvaganesan N. Input dependent Nyquist plot for limit 

cycle prediction and its suppression using fractional order 

controllers. Transactions of the Institute of Measurement and 

Control. 2019;41(13) 3847-60. 

https://doi.org/10.1177/0142331219841113. 

[7] Mbitu ET, Chen SC. Designing limit-cycle suppressor using 

dithering and dual-input describing function methods. mathematics. 

2020;8(11):1978. https://doi.org/10.3390/math8111978. 

[8] Yeroglu C, Tan N. Limit cycle prediction for fractional order 

systems with static nonlinearities. IFAC Proceedings Volumes. 

2010;43(11):144-9. https://doi.org/10.3182/20100826-3-TR-

4016.00029. 

[9] Atherton DP, Tan N, Yeroglu C, Kavuran G, Yüce A. Limit cycles 

in nonlinear systems with fractional order plants. Machines. 

2014;2(3):176-201. https://doi.org/10.3390/machines2030176. 

[10] Atherton DP, Tan N, Yeroglu C, Kavuran G, Yüce A. Computation 

of limit cycles in nonlinear feedback loops with fractional order 

plants. InICFDA'14 International Conference on Fractional 

Differentiation and Its Applications 2014. Jun 23 (pp. 1-6). IEEE. 

https://doi.org/10.1109/ICFDA.2014.6967404. 

[11] Yüce A, Tan N, Atherton DP. Limit cycles in relay systems with 

fractional order plants. Transactions of the Institute of 

Measurement and Control. 2019;41(15):4424-35. 

https://doi.org/10.1177/0142331219860302. 

[12] Dakua BK, Pati BB. Computation of Limit Cycle in a Nonlinear 

Fractional-Order Feedback Control Plant with Time Delay. In2021 

1st Odisha International Conference on Electrical Power 

Engineering, Communication and Computing Technology 

(ODICON) 2021 Jan 8 (pp. 1-6). IEEE. 

https://doi.org/10.1109/ODICON50556.2021.9428950. 

[13] Patra KC, Dakua BK. Investigation of limit cycles and signal 

stabilization of two dimensional systems with memory type 

nonlinear elements. Archives of Control Sciences. 2018;2:285-330. 

https://doi.org/10.24425/123461. 

[14] Patra KC, Kar N. Suppression limit cycles in 2× 2 nonlinear 

systems with memory type nonlinearities. International Journal of 

Dynamics and Control. 2022;10(3):721-33. 

https://doi.org/10.1007/s40435-021-00860-x. 

[15] Patra KC, Patnaik A. Investigation of the Existence of Limit Cycles 

in Multi Variable Nonlinear Systems with Special Attention to 3X3 

Systems. Int. Journal of Applied Mathematics, Computational 

Science and System Engineering. 2023;5:93-114. 

https://doi.org/10.37394/232026.2023.5.9. 

[16] Patra KC, Patnaik A. Possibility of Quenching of Limit Cycles in 

Multi Variable Nonlinear Systems with Special Attention to 3X3 

Systems. WSEAS Transactions on Systems and Control. 

2023;18:677-95. https://doi.org/10.37394/23203.2023.18.69. 

[17] Cominos P, Munro N. PID controllers: recent tuning methods and 

design to specification. IEE Proceedings-Control Theory and 

Applications. 2002;149(1):46-53. https://doi.org/10.1049/ip-

cta:20020103. 

[18] Petráš I. Fractional-order nonlinear systems: modeling, analysis 

and simulation. Springer Science & Business Media; 2011 May 30. 

ISSN 1867-8440. 

[19] Boudjelıda L, Hisar Ç, Sefa I. Design and Control of a Permanent 

Magnet Assisted Synchronous Reluctance Motor. International 

Journal of Automotive Science and Technology. 2023;7(4):332-9. 

https://doi.org/10.30939/ijastech..1366882. 

[20] Kuyu YÇ. Trajectory Tracking Control Using Evolutionary 

Approaches for Autonomous Driving. International Journal of 

Automotive Science And Technology. 2024;8(1):110-7. 

https://doi.org/10.30939/ijastech..1354082. 

[21] Karakaş O, Şeker UB, Solmaz H. Modeling of an electric bus 

Using MATLAB/Simulink and determining cost saving for a 

realistic city bus line driving cycle. Engineering Perspective. 

2021;1(2):52-62. http://dx.doi.org/10.29228/eng.pers.51422. 

[22] Arslan TA, Aysal FE, Çelik İ, Bayrakçeken H, Öztürk TN. Quarter 

Car Active Suspension System Control Using Fuzzy Controller. 

Engineering Perspective. 2022;2(4):33-9. 

http://dx.doi.org/10.29228/eng.pers.66798. 

[23] Dakua BK, Pati BB. PIλ-PDμController for Suppression of Limit 

Cycle in Fractional-Order Time Delay System with Nonlinearities. 

In2021 1st Odisha International Conference on Electrical Power 

Engineering, Communication and Computing Technology 

(ODICON) 2021 Jan 8 (pp. 1-6). IEEE. 

https://doi.org/10.1109/ODICON50556.2021.9428971. 

[24] Xue D, Li T, Liu L. A MATLAB toolbox for multivariable linear 

fractional-order control systems. In2017 29th Chinese Control And 

Decision Conference (CCDC) 2017 May 28 (pp. 1894-1899). IEEE. 

https://doi.org/10.1109/CCDC.2017.7978826. 

[25] Tepljakov A, Petlenkov E, Belikov J. FOMCON toolbox for 

modeling, design and implementation of fractional-order control 

systems. Applications in control. 2019 Feb 19; 6:211-36. 

https://doi.org/10.1515/9783110571745-010. 

[26] Podlubny I. Fractional-order systems and PI/sup/spl 

lambda//D/sup/spl mu//-controllers. IEEE Transactions on 

automatic control. 1999;44(1):208-14. 

https://doi.org/10.1109/9.739144. 

[27] Oustaloup A, Levron F, Mathieu B, Nanot FM. Frequency-band 

complex noninteger differentiator: characterization and synthesis. 

IEEE Transactions on Circuits and Systems I: Fundamental Theory 

and Applications. 2000;47(1):25-39. 

https://doi.org/10.1109/81.817385. 

[28] Krishna BT. Studies on fractional order differentiators and 

integrators: A survey. Signal processing. 2011;91(3):386-426. 

https://doi.org/10.1016/j.sigpro.2010.06.022. 

[29] Krishna BT. Various methods of realization for fractional-order 

elements. ECTI Transactions on Electrical Engineering, 

https://doi.org/10.1007/s11071-014-1632-6
https://doi.org/10.1016/j.isatra.2015.01.005
https://doi.org/10.1177/0142331219841113
https://doi.org/10.3390/math8111978
https://doi.org/10.3182/20100826-3-TR-4016.00029
https://doi.org/10.3182/20100826-3-TR-4016.00029
https://doi.org/10.3390/machines2030176
https://doi.org/10.1109/ICFDA.2014.6967404
https://doi.org/10.1177/0142331219860302
https://doi.org/10.1109/ODICON50556.2021.9428950
https://doi.org/10.24425/123461
https://doi.org/10.1007/s40435-021-00860-x
https://doi.org/10.37394/232026.2023.5.9
https://doi.org/10.37394/23203.2023.18.69
https://doi.org/10.1049/ip-cta:20020103
https://doi.org/10.1049/ip-cta:20020103
https://doi.org/10.30939/ijastech..1366882
https://doi.org/10.30939/ijastech..1354082
http://dx.doi.org/10.29228/eng.pers.51422
http://dx.doi.org/10.29228/eng.pers.66798
https://doi.org/10.1109/ODICON50556.2021.9428971
https://doi.org/10.1109/CCDC.2017.7978826
https://doi.org/10.1515/9783110571745-010
https://doi.org/10.1109/9.739144
https://doi.org/10.1109/81.817385
https://doi.org/10.1016/j.sigpro.2010.06.022


 

Dakua and Pati / International Journal of Automotive Science and Technology 8 (4): 506-526, 2024 

 

526 

 

Electronics, and Communications. 2023;28(1):1-10. 

https://doi.org/10.37936/ecti-eec.2023211.248544. 

[30] Monje CA, Vinagre BM, Feliu V, Chen Y. Tuning and auto-tuning 

of fractional order controllers for industry applications. Control 

engineering practice. 2008;16(7):798-812. 

https://doi.org/10.1016/j.conengprac.2007.08.006. 

[31] Yeroglu C, Tan N. Note on fractional-order proportional–integral–

differential controller design. IET control theory & applications. 

2011 Nov 17;5(17):1978-89. https://doi.org/10.1049/iet-

cta.2010.0746. 

[32] Deniz FN, Yüce A, Tan N, Atherton DP. Tuning of fractional order 

PID controllers based on integral performance criteria using 

Fourier series method. IFAC-PapersOnLine. 2017;50(1):8561-6. 

https://doi.org/10.1016/j.ifacol.2017.08.1417. 

[33] Birs I, Muresan C, Mihai M, Dulf E, De Keyser R. Tuning 

guidelines and experimental comparisons of sine based auto-tuning 

methods for fractional order controllers. IEEE Access. 

2022;10:86671-83. 

https://doi.org/10.1109/ACCESS.2022.3198943. 

[34] Paducel I, Safirescu CO, Dulf EH. Fractional order controller 

design for wind turbines. Applied Sciences. 2022;12(17):8400. 

https://doi.org/10.3390/app12178400. 

[35] Ionescu CM, Dulf EH, Ghita M, Muresan CI. Robust controller 

design: Recent emerging concepts for control of mechatronic 

systems. Journal of the Franklin Institute. 2020;357(12):7818-44. 

https://doi.org/10.1016/j.jfranklin.2020.05.046. 

[36] Kesarkar AA, Selvaganesan N. Superiority of fractional order 

controllers in limit cycle suppression. International Journal of 

Automation and Control. 2013;7(3):166-82. 

https://doi.org/10.1504/IJAAC.2013.057057. 

[37] Dakua BK, Pati BB. A deterministic design approach of tilt integral 

derivative controller for integer and fractional-order system with 

time delay. Engineering Research Express. 2024;6(3):035331. 

https://doi.org/10.1088/2631-8695/ad6ca5. 

[38] Kumar P, Chatterjee S, Shah D, Saha UK, Chatterjee S. On 

comparison of tuning method of FOPID controller for controlling 

field controlled DC servo motor. Cogent Engineering. 

2017;4(1):1357875. 

https://doi.org/10.1080/23311916.2017.1357875. 

[39] Ekinci S, Izci D, Hekimoğlu B. Optimal FOPID speed control of 

DC motor via opposition-based hybrid manta ray foraging 

optimization and simulated annealing algorithm. Arabian Journal 

for Science and Engineering. 2021;46(2):1395-409. 

https://doi.org/10.1007/s13369-020-05050-z. 

[40] Hekimoğlu B. Optimal tuning of fractional order PID controller for 

DC motor speed control via chaotic atom search optimization 

algorithm. IEEE access. 2019;7:38100-14. 

https://doi.org/10.1109/ACCESS.2019.2905961. 

[41] Ersali C, Hekimoğlu B. FOPID controller design for a buck 

converter system using a novel hybrid cooperation search 

algorithm with pattern search for parameter tuning. Gazi University 

Journal of Science Part A: Engineering and Innovation. 

2023;10(4):417-41. https://doi.org/10.54287/gujsa.1357216. 

[42] Mirjalili S, Lewis A. The whale optimization algorithm. Advances 

in engineering software. 2016;95:51-67. 

https://doi.org/10.1016/j.advengsoft.2016.01.008. 

[43] Kennedy J, Eberhart R. Particle swarm optimization. 

InProceedings of ICNN'95-international conference on neural 

networks 1995 Nov 27 (Vol. 4, pp. 1942-1948). ieee. 

https://doi.org/10.1109/ICNN.1995.488968. 

[44] Mirjalili S. The ant lion optimizer. Advances in engineering 

software. 2015;83:80-98. 

https://doi.org/10.1016/j.advengsoft.2015.01.010. 

[45] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances 

in engineering software. 2014;69:46-61. 

https://doi.org/10.1016/j.advengsoft.2013.12.007. 

[46] Mirjalili S. Moth-flame optimization algorithm: A novel nature-

inspired heuristic paradigm. Knowledge-based systems. 

2015;89:228-49. https://doi.org/10.1016/j.knosys.2015.07.006. 

[47] Gaing ZL. A particle swarm optimization approach for optimum 

design of PID controller in AVR system. IEEE transactions on 

energy conversion. 2004;19(2):384-91. 

https://doi.org/10.1109/TEC.2003.821821. 

 

https://doi.org/10.37936/ecti-eec.2023211.248544
https://doi.org/10.1016/j.conengprac.2007.08.006
https://doi.org/10.1049/iet-cta.2010.0746
https://doi.org/10.1049/iet-cta.2010.0746
https://doi.org/10.1016/j.ifacol.2017.08.1417
https://doi.org/10.1109/ACCESS.2022.3198943
https://doi.org/10.3390/app12178400
https://doi.org/10.1016/j.jfranklin.2020.05.046
https://doi.org/10.1504/IJAAC.2013.057057
https://doi.org/10.1088/2631-8695/ad6ca5
https://doi.org/10.1080/23311916.2017.1357875
https://doi.org/10.1007/s13369-020-05050-z
https://doi.org/10.1109/ACCESS.2019.2905961
https://doi.org/10.54287/gujsa.1357216
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1109/TEC.2003.821821

