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Abstract
Generalized linear models applications have become very popular in recent years. However,
if there is a high degree of relationship between the independent variables, the problem
of multicollinearity arises in these models. In this paper, we introduce a new Jackknifed
two-parameter estimator and a new modified Jackknifed two-parameter estimator in the
case of Poisson, negative binomial and gamma distributed response variables in generalized
linear models. We examine bias vectors, covariance matrices, and matrix mean squared
error of the Jackknifed ridge estimator, modified Jackknifed ridge estimator, Jackknifed
Liu estimator, modified Jackknifed Liu estimator, Jackknifed Liu-type estimator and mod-
ified Jackknifed Liu-type estimator given in the literature. According to bias vectors and
covariance matrices, the superiority of the Jackknifed two-parameter estimator has been
demonstrated theoretically. The generalization of some estimation methods for ridge and
Liu parameters in generalized linear models is provided. Also, the superiority of the Jack-
knifed two-parameter estimator and the modified Jackknifed two-parameter estimator are
assessed by the simulated mean squared error via Monte-Carlo simulation study where
the response follows a Poisson, negative binomial, and gamma distribution with the log
link function. Finally, we consider real data applications. The proposed estimators are
compared and interpreted.

Mathematics Subject Classification (2020). 62F40, 62J12, 62J07

Keywords. Generalized linear model, Jackknifed estimator, Monte-Carlo simulation,
multicollinearity, two-parameter estimator

1. Introduction
Let consider the general linear regression (LR) model,

y = Xβ + e, (1.1)
where y is an n × 1 vector of responses, X is an n × p matrix of the explanatory variables,
β is a p × 1 vector of unknown regression coefficients and e is an n × 1 vector of error
terms with

E(e) = 0, Cov(e) = σ2In.
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The ordinary least squares (OLS) estimator is often used to estimate regression coeffi-
cients

β̂ = (X>X)−1X>y. (1.2)

Multicollinearity, linear or near linear dependency among the explanatory variables, in
the regression model is an important problem in applications. If multicollinearity exists,
then small relative changes in the matrix X>X will produce large relative changes in the
matrix (X>X)−1. Thus, the OLS estimator results in a large variance, and it will not
be a precise estimator. Alternative estimators designed to combat multicollinearity yield
biased estimators. The most popular estimator for combating multicollinearity is the ridge
estimator (RE), originally proposed by [23], the Liu estimator (LE) proposed by [27], the
Liu-type estimator (LTE) proposed by [31], the two-parameter estimator (TPE) proposed
by [46], which has become more popular recently.

The authors then came across the question as to whether it is possible to find an
estimator with a smaller bias. Quenouille [45] and Tukey [53] introduced the application
of the Jackknife procedure to a biased estimator to reduce bias. The Jackknife procedure
provides an estimator that has not only small bias but also all the desirable large sample
properties. The use of the Jackknife procedure to reduce the bias of the RE and the
properties of the Jackknifed ridge estimator (JRE) were studied by [20, 26, 40, 43, 44, 51,
52]. Hinkley [22] stated that with few exceptions, the Jackknife had been applied to
balanced models. Then he proposed the weighted Jackknife procedure for unbalanced
models. An excellent review is given by [35]. Miller [36] gives the first detailed account
of Jackknifing LR model estimates show that the Jackknife produces consistent results
in large samples. Kadiyala [26] proposed a class of almost unbiased estimators which
include a bias-corrected RE as a special case. But, unfortunately, his estimator is not
operational, since the bias-corrected term includes unknown parameters. Then, Ohtani
[44] replaced the unknown parameters with their REs. Batah et al. [12] proposed a new
estimator, namely the modified Jackknifed ridge estimator (MJRE), which combines the
ideas underlying both the RE and JRE. Özkale [47] proposed JRE in the presence of a LR
model with heteroscedastic and/or correlated error. Erdugan and Akdeniz [18] introduced
a new estimator for the JRE parameter, which efficiently combines a graphical analysis
and an analytical method borrowed from the generalized maximum entropy estimator
from [19]. Khurana et al. [29] proposed different estimators to reduce LTE bias, one using
the Jackknife technique and the other using the technique proposed in [26]. They also
investigated the Bootstrap method of bias correction on the LTE as well. Moreover, we
refer to the following papers in which the authors discuss the performance of Jackknife
estimators in different types of generalized linear model (GLM): [2–4, 8, 11, 24, 32, 41, 42,
54,55].

In addition, Algamal et al. [6] proposed a Jackknifed variant of the ridge estimator
to reduce biasedness for the Bell regression model. Rasheed et al. [48] have developed
the Jackknife approach and its modified version is proposed to model count data with
the Conway-Maxwell Poisson regression model. Both of these two estimators have been
suggested to reduce the effects of multicollinearity and the biasedness by using the LTE.
Similarly, Algamal et al. [7] suggested the JRE and the modified version of the JRE for the
Conway-Maxwell Poisson regression model. Seifollahi et al. [50] introduced the Jackknifed
Liu-type estimator (JLTE) and its modified version in the Beta regression model, which
demonstrate improved bias reduction compared to the original LTE. Similarly, Abduljab-
bar and Algamal [1] proposed a Jackknifed version of the Kibria and Lukman estimator
in the Bell regression model, which combines the Jackknife process with the Kibria and
Lukman estimator to reduce biasedness. Like this, Hamad and Algamal [21] proposed a
Jackknifed version of the Kibria and Lukman estimator in the inverse Gaussian regres-
sion model that combines the Jackknife procedure with the Kibria and Lukman estimator
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to reduce the biasedness. Algamal et al. [5] developed the Jackknife beta ridge and
the modified Jackknife beta ridge estimator to estimate the regression coefficient when
multicollinearity exists efficiently.

It is well known that the performance of estimators can be negatively affected by mul-
ticollinearity. The presence of multicollinearity has serious effects on the regression coeffi-
cients. As in LR, in GLM, interrelationships cause difficulty in interpreting the estimated
regression coefficients. It is observed that the jackknifing procedure has not been applied
to TPE in GLMs so far. Therefore, the aim of this article is to propose the Jackknifed
two-parameter estimator (JTPE) and modified Jackknifed Liu-type estimator (MJTPE)
of the Poisson, negative binomial, and gamma distributed response variable to reduce
bias and overcome the multicollinearity problem and to discuss its theoretical properties
along with designing Monte Carlo simulations to compare the performance of the new
estimator with the existing ones numerically. In this case, the recommended estimator
has performed well in both reducing MSE and producing less bias. The advantages of
these alternative estimators are that they reduce the effect of linearity and improve the
precision and accuracy of the estimated independent variables.

The remainder of the paper is organized as follows: Section 2 describes the Jackknifed
estimators in the LR and GLM. In addition, we give details of the JTPE and MJTPE
obtained for GLMs. Theoretical properties of the listed estimators are derived, and some
theorems are proved to compare these estimators in Section 3. We suggest "ggplots" to
choose the best parameters k and d in Section 4. A Monte Carlo simulation is designed to
compare the performances of the estimators using different simulated data sets having the
collinearity problem in Section 5. Real data applications are considered to illustrate the
methods discussed in this paper in Section 6 using the different data sets regarding the
Poisson, negative binomial and gamma distributions. Finally, some conclusive remarks
are presented in Section 7.

2. Methodology
This section describes the RE, LE and LTE for the LR, the Poisson regression (PR),

negative binomial regression (NBR) and gamma regression (GR) models.

2.1. The linear regression estimators
Firstly, we transform the models (1.1) with (1.2) into the following model (2.1) with

(2.2). Consider the LR given in model (1.1), let Q = (q1, q2, , qp) be pxp matrix whose
columns are normalized eigen vectors of X>X and Λ = diag(λ1, λ2, ..., λp), such that
X>X = Q>Q. The LR model in Equation (1.1) can be written as

y = Zγ + u, (2.1)

where Z = XQ ve γ = Q>β. The OLS estimators of β and γ in Equations (1.1) and (2.1)
are given by, respectively

γ̂OLS = Λ−1Z>y, (2.2)

β̂OLS = Qγ̂OLS. (2.3)
Note that, due to the relation γ = Q>β, any estimator of γ has a corresponding β̂ = Qγ̂.

Hence, it is sufficient to consider only the canonical form. The RE is proposed by [23] as

γ̂RE = (Λ + kI)−1Z>y = A−1Z>y = A−1Λγ̂OLS = (I − kA−1)γ̂OLS,

where k > 0 is the ridge parameter and A = (Λ + kI). Here, it is indicated that the
Jackknifed procedure is applied on a transformed set of regressors.

Recently, Khurana et al. [29] showed that transformation is not required and that it
is easy to obtain the estimator for the original regression parameter explicitly. As they
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stated that the MJRE was introduced for the transformed parameter, use the transformed
model in Equation (2.1).

Singh et al. [51] proposed the JRE as
γ̂JRE = (I + kA−1)γ̂RE = (I − k2A−2)γ̂OLS,

and found that the bias of the Jackknifed procedure of γ̂JRE has smaller than the bias of
γ̂RE. Then, Jadhav and Kashid [25] obtained the MMSE of the JRE as

MMSE(γ̂JRE) = Var(γ̂JRE) + Bias(γ̂JRE)
(
Bias(γ̂JRE)

)>
= σ2(I − k2A−2)Λ−1(I − k2A−2) + k4A−2γγ>A−2.

The MJRE is proposed by [12] as
γ̂MJRE = (I − k2A−2)γ̂RE

= (I − k2A−2)(I − kA−1)γ̂OLS.

The MMSE of the MJRE is given by
MMSE(γ̂MJRE) = σ2(I−k2A−2)(I−kA−1)Λ−1(I−kA−1)(I−k2A−2)+k2wrA−1γγ>A−1wr,

where wr = (I + kA−1 − k2A−2).
The LE proposed by [27], which Jackknifed procedure is applied on a transformed set

of regressors is defined as
γ̂LE = (I − (1 − d)B−1)γ̂OLS,

where 0 < d < 1 shrinkage parameter and B = (Λ + I).
Akdeniz Duran and Akdeniz [2] proposed the Jackknifed Liu estimator (JLE) as

γ̂JLE = (I − (1 − d)2B−2)γ̂OLS.

Then, they obtained the MMSE of the JLE as
MMSE(γ̂JLE) = σ2(I − (1 − d)2B−2)Λ−1(I − (1 − d)2B−2) + (1 − d)4B−2γγ>B−2.

The modified Jackknifed Liu estimator (MJLE) are proposed by [2] as
γ̂MJLE = (I − (1 − d)2B−2)(I − (1 − d)B−1)γ̂OLS.

The MMSE of the MJLE is given by
MMSE(γ̂MJLE) =σ2(I − (1 − d)2B−2)(I − (1 − d)B−1)Λ−1

x(I − (1 − d)B−1)(I − (1 − d)2B−2) + (1 − d)2wlB
−1γγ>B−1wl,

where wl = (I + (1 − d)B−1 − (1 − d)2B−2).
The transformation set of regressors for Jackknifed procedure which LTE proposed by

[31] is defined as follows
γ̂LTE = (I − (k + d)A−1)γ̂OLS,

where −∞ < d < ∞ and k ≥ 0.
Alkhateeb and Algamal [8] proposed JLTE and the MMSE of the JLTE as follows

respectively
γ̂JLTE = (I − (k + d)2A−2)γ̂OLS,

MMSE(γ̂JLTE) = σ2(I − (k + d)2A−2)Λ−1(I − (k + d)2A−2) + (k + d)4A−2γγ>A−2.

Then, they are proposed the modified Jackknifed Liu-type estimator (MJLTE) as
γ̂MJLTE = (I − (k + d)2A−2)(I − (k + d)A−1)γ̂OLS.

The MMSE of the MJLTE is given by
MMSE(γ̂MJLTE) =σ2(I − (k + d)2A−2)(I − (k + d)A−1)Λ−1

x(I − (k + d)A−1)(I − (k + d)2A−2) + (k + d)2wltA
−1γγ>A−1wlt,
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where wlt = (I + (k + d)A−1 − (k + d)2A−2).

2.2. The generalized linear model estimator and the MSE properties of
the estimators

In this section, bias vectors, covariance matrices, and MMSEs of the listed estimators
are derived. Before starting to derive these functions, following [2,8,54,55], the canonical
form of the model and the estimators are obtained. For this purpose, consider the trans-
formation G>X>ŴXG = Z>ŴZ = ΛML and Z = XG where ΛML = diag(λ1, λ2, ..., λp)
such that G is a pxp dimensional orthogonal matrix whose columns are the normalized
eigenvectors corresponding to the ordered eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp > 0 of the matrix
X>ŴX. The GLMs of β̂ML can be written as

β̂ML = (X>ŴX)−1X>Ŵ ẑ,

where ẑ is a vector of adjusted response such that ẑ = ηi+(y−µ)/µ where µ = exp(Xβ̂ML),
η = X̂β̂ML and Ŵ , diag(µi) for PR, diag(µi/(1+αµi)) for NBR, diag[(µi)2] for GR models.
The maximum likelihood estimator (MLE) of β is asymptotically normally distributed with
a covariance matrix

COV(β̂ML) = (X>ŴX)−1. (2.4)
Thus, the vector of coefficients of the Jackknifed models can be expressed as α̂ML =
G>β̂ML. Therefore, we handle the canonical forms of JRE, MJRE, JLE, MJLE, JLTE
and MJLTE.

The JRE and the MJRE proposed by [54,55] in the PR and NBR as
α̂JRE = (I + kC−1)α̂RE = (I − k2C−2)α̂ML,

where C = (ΛML +kI) = (Z>ŴZ +kI) and k > 0. This estimator, as an almost unbiased
ridge estimator, was addressed in the GR by [10] and in the NBR by [39].

Moreover, the MJRE proposed by [54,55] in the PR and NBR as
α̂MJRE = (I − k2C−2)(I − kC−1)α̂ML.

Akdeniz Duran and Akdeniz [2] proposed the JLE and the MJLE as follows respectively
α̂JLE = (ΛML + I)−1(Z>Ŵ ŝ + dα̂ML) = (I − (1 − d)2D−2)α̂ML,

α̂MJLE = (I − (1 − d)2D−2)(I − (1 − d)D−1)α̂ML,

where D = (ΛML + I) and 0 < d < 1.
The JLTE in the PR proposed by [8] as follows:

α̂JLTE = (I + (k + d)C−1)α̂LTE = (I − (k + d)2C−2)α̂ML,

where k > 0 and 0 < d < 1.
From here, we obtain the MJLTE as

α̂MJLTE = (I − (k + d)2C−2)(I − (k + d)C−1)α̂ML,

where k > 0 and 0 < d < 1.
In order to obtain the MMSE functions of the estimators, both the bias vectors and the

covariance matrices of the estimators are needed. It is known that α̂ML is asymptotically
unbiased and its covariance is obtained by Equation (2.4) as COV(β̂ML) = Λ−1

ML. Note
that the matrix Λ−1

ML is positive definite, since all eigenvalues are assumed to be positive.
Now, for GLMs the bias vectors and the covariance matrices of estimators are obtained

bias(α̂JRE) = −k2C−2α,

COV(α̂JRE) = φ(I − k2C−2)Λ−1
ML(I − k2C−2),

bias(α̂MJRE) = −kC−1wRα,

COV(α̂MJRE) = φ(2I − Rk)R2
kΛ−1

ML[(2I − Rk)R2
k]>,
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where wR = (I + kC−1 − k2C−2), Rk = I − kC−1 and φ = (n − p)−1∑p
j=1(yi − µ̂i)2/µ̂i

2.

bias(α̂JLE) = −(1 − d)2D−2α,

COV(α̂JLE) = φ(I − (1 − d)2D−2)Λ−1
ML(I − (1 − d)2D−2),

bias(α̂MJLE) = −(1 − d)D−1wLα,

COV(α̂MJLE) = φ(2I − Fd)F 2
d Λ−1

ML[(2I − Fd)F 2
d ]>,

where wL = (I + (1 − d)D−1 − (1 − d)2D−2) and Fd = I − (1 − d)D−1.

bias(α̂JLTE) = −(k + d)2C−2α,

COV(α̂JLTE) = φ(I − (k + d)2C−2)Λ−1
ML(I − (k + d)2C−2),

bias(α̂MJLTE) = −(k + d)C−1wLT α,

COV(α̂MJLTE) = φ(2I − Hd)H2
dΛ−1

ML[(2I − Hd)H2
d ]>,

where wLT = (I + (k + d)C−1 − (k + d)2C−2) and Hd = I − (k + d)C−1.
MMSE of the MLE is given as

MMSE(α̂ML) = φΛ−1
ML,

Thus, using both the bias vectors and the covariance matrices, MMSEs of estimators are
obtained respectively as

MMSE(α̂JRE) = φ(I − k2C−2)Λ−1
ML(I − k2C−2) + k4C−2αα>C−2,

MMSE(α̂MJRE) = φ(I−k2C−2)(I−kC−1)Λ−1
ML(I−kC−1)(I−k2C−2)+k2wRC−1αα>C−1wR,

MMSE(α̂JLE) = φ(I − (1 − d)2D−2)Λ−1
ML(I − (1 − d)2D−2) + (1 − d)4D−2αα>D−2,

MMSE(α̂MJLE) =φ(I − (1 − d)2D−2)(I − (1 − d)D−1)Λ−1
ML

x(I − (1 − d)D−1)(I − (1 − d)2D−2) + (1 − d)2wLD−1αα>D−1wL,

MSE(α̂JLTE) = φ(I − (k + d)2C−2)Λ−1
ML(I − (k + d)2C−2) + (k + d)4C−2αα>C−2,

MSE(α̂MJLTE) =φ(I − (k + d)2C−2)(I − (k + d)C−1)Λ−1
ML

x(I − (k + d)C−1)(I − (k + d)2C−2) + (k + d)2wLT C−1αα>C−1wLT .

2.2.1. Proposed Jackknifed two-parameter estimators. In this study, the JTPE
and the MJTPE were derived from the GLMs to cope with the multicollinearity problem
and to reduce biasing of the TPE. We improve a new TPE for the PR, NBR and GR
models by the following studies of [46] TPE as follows:

β̂k,d = (X>ŴX + kI)−1(X>ŴX + kdI)β̂ML,

where k > 0 and 0 < d < 1.
The Jackknifed method on an estimator is applied a removal systematically of each one

observation from a data set and calculating of the estimate, then finding average of these.
To apply this idea, let s−i, Z−i and W[−i] denote, respectively, the vector s with its ith
row deleted, the matrix Z with the ith row deleted, and the matrix W with the ith row
and column deleted. The TPE in the GLMs with the ith observation deleted is given by

α̂−i = (Z>
−iŴ[−i]Z−i + kI)−1(Z>

−iŴ[−i]Zi + kdI)Z>
−iŴ[−i]ŝ−i, (2.5)

where since Z>
−iŴ[−i]Z−i = Z>ŴZ−z>

i w[i]ẑi, and Z>
−iŴ[−i]ŝ−i = Z>Ŵ ŝ−z>

i w[i]ŝi. Then,
we can write Eq.(2.5) as follows

α̂−i = (Z>ŴZ + kI − z>
i w[i]ẑi)−1(Z>ŴZ + kdI − z>

i w[i]ẑi)(Z>Ŵ ŝ − z>
i w[i]ŝi), (2.6)
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and (Z>ŴZ+kI−z>
i w[i]ẑi)−1(Z>ŴZ+kdI−z>

i w[i]ẑi) is obtained from the ShermanMor-
rison Woodbury theorem as [17]

(Z>
−iŴ[−i]Z−i + kI)−1(Z>

−iŴ[−i]Zi + kdI) = (Z>ŴZ + kI)−1(Z>ŴZ + kdI)

+ (Z>ŴZ + kI)−1(Z>ŴZ + kdI)ẑiw[i]

x[I − z>
i (Z>ŴZ + kI)−1(Z>ŴZ + kdI)ẑiw[i]]−1

xz>
i (Z>ŴZ + kI)−1(Z>ŴZ + kdI).

(2.7)

Writing (2.7) in (2.6) and after multiplying the terms in parenthesis, we get

α̂−i = α̂T P E −
K−1ziw[i]ŝi

1 − wkd−ii
+ K−1ẑiz

>
i

1 − wkd−ii
α̂T P E ,

where α̂T P E = (Z>ŴZ +kI)−1(Z>ŴZ +kdI)Z>Ŵ ŝ, K−1 = (Z>ŴZ +kI)−1(Z>ŴZ +
kdI) and wkd−ii = z>

i K−1ẑiw[i]. It can be shown, after algebraic simplifications, that

α̂−i = α̂T P E − (Z>ŴZ + kI)−1(Z>ŴZ + kdI)ẑiw[i]

[
ŝi − z>

i α̂T P E

1 − wkd−ii

]
. (2.8)

From [22] are proposed the weighted pseudo-values as

Pi = α̂T P E + n(1 − wkd−ii)(α̂T P E − α̂−i), (2.9)

and the corresponding weighted Jackknifed estimator as

α̂JT P E = P = n−1∑Pi.

The JTPE is obtained by using Eqs. (2.8), (2.9) and
∑n

i=1 ziw[i]ŝi = Z>Ŵ ŝ,
∑n

i=1 ẑiw[i]z
>
i =

Z>ŴZ the equations as

α̂JT P E = (I + k(1 − d)C−1)α̂T P E , (2.10)

where C = (Z>ŴZ + kI), k > 0 and 0 < d < 1. After writting α̂JT P E as a linear
transformation of the OLS estimator, α̂T P E = (I − k(1 − d)C−1)α̂ML, α̂JT P E in Equation
(2.10) becomes

α̂JT P E = (I − k2(1 − d)2C−2)α̂ML. (2.11)
The proposed estimator includes the special cases of the α̂ML and the α̂JRE .

Case 1: When k = 0 or d = 1 the α̂JT P E will becomes the α̂ML, α̂JTPE(0, d) =
α̂JTPE(k, 1) = α̂ML.

Case 2: When d = 0 the α̂JTPE will becomes JRE, α̂JTPE(k, 0) = α̂JRE.
From (2.11), proposed the MJTPE, based on [2, 8, 12] as

α̂MJT P E = (I − k2(1 − d)2C−2)(I − k(1 − d)C−1)α̂ML.

Now, the bias vectors and the covariance matrices of TPE, JTPE and MJTPE are obtained
respectively by

bias(α̂TPE) = −k(1 − d)C−1α,

COV(α̂TPE) = φ(I − k(1 − d)C−1)Λ−1
ML(I − k(1 − d)C−1),

bias(α̂JTPE) = −k2(1 − d)2C−2α,

COV(α̂JTPE) = φ(I − k2(1 − d)2C−2)Λ−1
ML(I − k2(1 − d)C−2),

bias(α̂MJTPE) = −k(1 − d)C−1wT P α,

COV(α̂MJTPE) = φ(2I − Kd)K2
dΛ−1

ML[(2I − Kd)K2
d ]>,
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where wT P = (I + k(1 − d)C−1 − k2(1 − d)2C−2 and Kd = I − k(1 − d)C−1. Thus, using
the bias vectors and the covariance matrices of TPE, JTPE and MJTPE, MMSEs of TPE,
JTPE and MJTPE are obtained respectively as

MMSE(α̂TPE) = Var(α̂TPE) + Bias(α̂TPE)
(
Bias(α̂TPE)

)>
= φ(I − k(1 − d)C−1)Λ−1

ML(I − k(1 − d)C−1) + k2(1 − d)2C−1αα>C−1,

MMSE(α̂JTPE) = Var(α̂JTPE) + Bias(α̂JTPE)
(
Bias(α̂JTPE)

)>
= φ(I − k2(1 − d)2C−2)Λ−1

ML(I − k2(1 − d)2C−2) + k4(1 − d)4C−2αα>C−2,

MMSE(α̂MJTPE) =Var(α̂MJTPE) + Bias(α̂MJTPE)
(
Bias(α̂MJTPE)

)>
= φ(I − k2(1 − d)2C−2)(I − k(1 − d)C−1)Λ−1

ML

x(I − k(1 − d)C−1)(I − k2(1 − d)2C−2) + k2(1 − d)2wT P C−1αα>C−1wT P .

3. The performance of the estimators
We have already seen in the previous section that, the JTPE and the MJTPE are biased

and hence the appropriate criterion to measure the performance of these estimators are
bias vectors and covariance matrices. To do so, will be proved of theorems that provide
conditions that JTPE is superior to the MLE, JRE, JLE and JLTE by this criterion.

3.1. Bias comparisons of the estimators
The aim of proposing the JTPE in PR, NBR and GR models was to reduce the bias

of the ridge and Liu parameters. Hence, bias comparisons are presented in the following
theorem. According to Theorems 3.1-3.2, both the total squared bias and the absolute
bias of each individual parameter of the JTPE are less than those of the others estimators
respectively.

Theorem 3.1: In the PR, NBR and GR models, the total squared bias of JTPE is
always less than the squared bias of TPE, namely, ‖bias(α̂JTPE)‖2 < ‖bias(α̂TPE)‖2 holds
for all k > 0 and 0 < d < 1.

Proof: From the bias vectors of TPE and JTPE, we obtain

‖bias(α̂TPE)‖2 − ‖bias(α̂JTPE)‖2 =
p∑

j=1

k2(1 − d)2α
2
j

(λj + k)2 −
p∑

j=1

k4(1 − d)4α
2
j

(λj + k)4

=
p∑

j=1

k2(1 − d)2α
2
j [(λj + k)2 − k2(1 − d)2]

(λj + k)4 ,

(3.1)

where λj is the eigenvalue of Λ, which is always positive for k > 0 and 0 < d < 1 hence,
it is easily seen that Equation (3.1) is positive.

Theorem 3.2: The absolute value of the jth component of the bias of the JTPE is
always smaller than the jth component of the bias of the TPE for all k > 0 and 0 < d < 1.

Proof: The difference between the absolute values of the jth component of the bias
vectors

|bias(α̂TPE)| − |bias(α̂JTPE)| = k(1 − d)(λj + kd)
(λj + k)2 |αj |

which is strictly positive for all values of k > 0 and 0 < d < 1 such that |αj | is the absolute
value of the jth element of α̂. Thus, the proof is finished.
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According to Theorem 3.1, that is, ‖bias(α̂JTPE)‖2 < ‖bias(α̂JRE)‖2 is applicable to all
0 < d < 1. From the bias vectors of JRE and JTPE, we obtain

‖bias(α̂JRE)‖2 − ‖bias(α̂JTPE)‖2 =
p∑

j=1

k4α
2
j

(λj + k)4 −
k4(1 − d)4α

2
j

(λj + k)4

=
p∑

j=1

k4α
2
j (1 − (1 − d)4)
(λj + k)4 ,

which is always positive for 0 < d < 1.
According to Theorem 3.2, the difference between the absolute values of the jth com-

ponent of the bias vectors

|bias(α̂JRE)| − |bias(α̂JTPE)| = k2(1 − (1 − d)2)
(λj + k)2 |αj |,

which is strictly positive for all values of 0 < d < 1 such that |αj | is the absolute value of
the jth element of α.

According to Theorem 3.1, namely, ‖bias(α̂JTPE)‖2 < ‖bias(α̂JLE)‖2 holds for all 0 <
k < 1. From the bias vectors of JLE and JTPE, we obtain

‖bias(α̂JLE)‖2 − ‖bias(α̂JTPE)‖2 =
p∑

j=1

(1 − d)4α
2
j

(λj + 1)4 −
k4(1 − d)4α

2
j

(λj + k)4

=
p∑

j=1

(1 − d)4α
2
j [(λj + k)4 − k4(λj + 1)4]

(λj + 1)4(λj + k)4

where λj is the eigenvalue of Λ, which is always positive for 0 < k < 1.
According to Theorem 3.2, the difference between the absolute values of the jth com-

ponent of the bias vectors

|bias(α̂JLE)| − |bias(α̂JTPE)| = (1 − d)2[(λj + k)2 − k2(λj + 1)2]
(λj + 1)2(λj + k)2 |αj |,

where λj is the eigenvalue of Λ, which is always positive for 0 < k < 1 such that |αj | is
the absolute value of the jth element of α.

According to Theorem 3.1, ‖bias(α̂JTPE)‖2 < ‖bias(α̂JLTE)‖2 holds for all k > 0 and
0 < d < 1. From the bias vectors of JLTE and JTPE, we obtain

‖bias(α̂JLTE)‖2 − ‖bias(α̂JTPE)‖2 =
p∑

j=1

(k + d)4α
2
j

(λj + k)4 −
k4(1 − d)4α

2
j

(λj + k)4

=
p∑

j=1

α2
j [(k + d)4 − k4(1 − d)4]

(λj + k)4 ,

which is always positive for k > 0 and 0 < d < 1.
According to Theorem 3.2, the difference between the absolute values of the jth com-

ponent of the bias vectors

|bias(α̂JLTE)| − |bias(α̂JTPE)| = [(k + d)2 − k2(1 − d)2]
(λj + k)2 |αj |,

which is strictly positive for all values of k > 0 and 0 < d < 1 such that |αj | is the absolute
value of the jth element of α.



Jackknifed estimators in generalized linear models 693

3.2. Variance comparisons of the estimators
The total variance of an estimator β̂∗ is defined as the trace of its covariance matrix

Var(β̂∗) = tr[Cov(β̂∗)]. In the following theorems, the total variances of the estimators
are compared.

Theorem 3.3: The total variance of the JTPE is always less than the total variance of
MLE for all values of k > 0 and 0 < d < 1, namely, Var(α̂ML)-Var(α̂JT P E)> 0.

Proof: Since the total variance of JTPE is given as

V ar(α̂JT P E) = tr(Cov(α̂JT P E)) = φ
p∑

j=1

λj [λj + 2k(1 − d)2]
(λj + k)4 ,

the difference of the variances of MLE and JTPE is obtained as

V ar(α̂ML) − V ar(α̂JT P E) = φ
p∑

j=1

1
λj

− φ
p∑

j=1

λj [λj + 2k(1 − d)2]
(λj + k)4

= φ
p∑

j=1

(2kdλj + k)(2λ2
j + 4kλj + k2 − 2kdλj)

λj(λj + k)4

which is positive for all k > 0 and 0 < d < 1. Thus, the proof ends.
According to Theorem 3.3, Var(α̂JRE)-Var(α̂JT P E)> 0 for k >

2d−λj

2 and 0 < d <
λj+2k

2 .

V ar(α̂JRE) − V ar(α̂JT P E) = φ
p∑

j=1

λj(λj + 2k)2

(λj + k)4 − φ
p∑

j=1

λj [λj + 2k(1 − d)2]
(λj + k)4

= φ
p∑

j=1

4dλj [λj + k(2 − d)]
(λj + k)4

which is positive for all k >
2d−λj

2 and 0 < d <
λj+2k

2 .
According to Theorem 3.3, Var(α̂JLE)-Var(α̂JT P E)>0 for k > 0 and 0 < d < 1.

V ar(α̂JLE) − V ar(α̂JT P E) = φ
p∑

j=1

λj [λj + 2(1 − d)2]
(λj + 1)4 − φ

p∑
j=1

λj [λj + 2k(1 − d)2]
(λj + k)4

= φ
p∑

j=1

2(k − 1)[dλ2
j + k(1 − d) + λj(k2 + 1)]

(λj + 1)4(λj + k)4

which is positive for all k > 0 and 0 < d < 1.
According to Theorem 3.3, namely, Var(α̂JLT E)-Var(α̂JT P E)>0 for k > 0 and 0 < d < 1.

V ar(α̂JLT E) − V ar(α̂JT P E) = φ
p∑

j=1

λj [λj + 2(k + d)2]
(λj + k)4 − φ

p∑
j=1

λj [λj + 2k(1 − d)2]
(λj + k)4

=
p∑

j=1

4dλj [λj(1 + k) + 2k + d(1 − k)2]
(λj + k)4

which is positive for all k > 0 and 0 < d < 1.

4. Selection of biasing parameter
There is no definite rule for estimating the ridge parameter, k, which is a positive

constant, and the Liu parameter, d, which is between zero and one. We adapt ridge
parameters which Kibria [28], Alkhamisi et al. [9] and Muniz et al. [37] proposed the best
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values of k for the ridge regression model. The most classical ridge parameter estimator
is k̂ = σ̂2

α̂2
max

proposed by [23]. Based on this, Alkhamisi et al. [9] take harmonic average
of the ridge parameter developed it as follows

k̂1 = pϕ̂2∑p
j=1 α̂2

j

, j = 1, ..., p.

We estimate it by α̂2
j is the jth element of α̂ = γ>β̂ML and γ is the eigenvector of the

X>ŴX. Practically, we used different values Ŵ for the PR, the NBR and the GR models.
Kibria [28] estimated the ridge parameter using geometric mean and median in his study.

The prediction he suggested for the geometric mean, which has the best performance
among the parameters adapted for GLM as follows:

k̂2 = ϕ̂2(∏p
j=1 α̂2

j

)1/p
, j = 1, ..., p.

The best estimate chosen among the estimates suggested by [9] is adapted to GLM as
follows:

k̂3 = max
(√

ϕ̂2

α̂2
j

)
, j = 1, ..., p.

In addition, the following the estimator selected from some new estimators proposed by
[37], we modify the estimator for the GLM as

k̂4 = max
(√

tmaxϕ̂2

(n − p)ϕ̂2 + tmaxα̂2
j

)
, j = 1, ..., p,

where tmax is defined as the maximum eigenvalue of the X>ŴX.
In addition, we adapt d values which Månsson [33] proposed the best values of d for the

LR model

d̂1 = min
{

tjα̂2
j

2(1 + tjα̂2
j )

}
, j = 1, ..., p,

d̂2 = max
[
0, min

(
α̂2

j − ϕ̂2

1/tj + α̂2
j

)]
, j = 1, ..., p,

where tj is defined as the jth eigenvalue of the X>ŴX.

5. The Monte-Carlo simulation
In this section, the simulated data sets are used to evaluate the performance of the

new proposed JTPE on MLE, JRE, JLE and JLTE. Similarly, we show the performance
of MJTPE on the MLE, MJRE, MJLE, and MJLTE. We start by describing how the
data are generated and which factors have been varied in the design of the experiment.
Performance evaluations of these Monte Carlo simulation studies are discussed.

5.1. The algorithm of the simulation experiment
In this subsection, simulation studies are conducted under various schemes, since the

distribution shape parameter, the degree of multicollinearity, the number of explanatory
variables, the number of sample sizes and the ridge and the Liu parameters affect the
superiority of the estimators. The Monte Carlo simulation study is carried out using R
software [14]. We consider the following settings.

(1) The sample sizes are taken as n = 30, 75, 100 and 250 to observe the effect of
the number of observations, and the number of explanatory variables are taken as
p = 3 and 5.
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(2) Following [34], the explanatory variables x>
i = (xi1, xi2,

..., xip) have been generated from the following formula

xij = (1 − ρ2)1/2wij + ρwi(p+1), i = 1, 2, ..., n, j = 1, 2, ..., p,

where wij are explanatory standard normal pseudo-random numbers generated
using the standard normal distribution and ρ2 represents the degree of correlation
between any two explanatory variables. In the design of the experiment, we obtain
three different values of ρ2 corresponding to 0.90, 0.95, and 0.99. The explanatory
variables are then standardized using unit length scaling so that X>X is a matrix
of correlations.

(3) The parameter vector β is taken as the normalized eigenvector corresponding to the
largest eigenvalue of X>X by following [49] for each set of explanatory variables.

(4) We generate the response variable of the observations n from the PRyi ∼ P(µi),
NBR yi ∼ NB(n, s = 1

α
,

s

s + µi
) where the parameter s = shape is chosen as s =

10 and GR yi ∼ Gamma(n, rate = s/µi), where the parameter s = shape is chosen
as s = 5 with log-link function µi = exp(β1xi1 + β2xi2 + ... + βpxip), i = 1, 2, ..., n
and j = 1, 2, ..., p.

(5) We set µi = exp(Xβ̂L), where β̂L = (X>X)−1X>y is the OLS estimator.
(6) We determine the adjusted response variable z with the ith observation set to ẑi =

log(µ̂i)+(yi −µ̂i)/(µ̂i) for the Poisson, negative binomial, and gamma distribution.
We calculate the weight matrix Ŵ with diagonal elements of µ̂i for PR, µ̂i

1+αµ̂i
for

the NBR and (µi)2 for the GR.
(7) For explanatory variables and each sample size, the dispersion parameter is esti-

mated as ϕ̂2 = (n − p)−1∑n
i=1(yi − µ̂i)2/(µ̂i)2 by using the Pearson method for

the GR and taken as ϕ̂2 = 1 for the PR and the NBR.
(8) The number of replications is chosen as 2000 in the Monte-Carlo simulation study.

The superiority of the estimators is examined in terms of the simulated MSE
(SMSE)

SMSE(α̂) = 1
2000

5000∑
i=1

(α̂(i) − α)>(α̂(i) − α),

where the subscript(i) refers to the ith replication and α̂(i) is defined as

a) α̂ML = Λ−1
MLZ>Ŵ ŝ,

b) α̂JRE = (I − k2C−2)α̂ML,
c) α̂MJRE = (I − k2C−2)(I − kC−1)α̂ML,
d) α̂JLE = (I − (1 − d)2D−2)α̂ML,
e) α̂MJLE = (I − (1 − d)2D−2)(I − (1 − d)D−1)α̂ML,
f) α̂JLTE = (I − (k + d)2C−2)α̂ML,
g) α̂MJLTE = (I − (k + d)2C−2)(I − (k + d)C−1)α̂ML,
h) α̂JT P E = (I − k2(1 − d)2C−2)α̂ML,
) α̂MJT P E = (I − k2(1 − d)2C−2)(I − k(1 − d)C−1)α̂ML.

We first use SMSE plots generated using "ggplot2" package [56] in R software [14] to
obtain the bias parameter with the minimum SMSE one among the ridge and Liu bias
parameters given in Section 4. These parameters are placed into JRE, JLE, JLTE and
JTPE when the response variable is Poisson, negative binomial, and gamma. Our aim
here is to select the best parameter from biasing parameters that have been suggested
numerous times in the literature and to find the best Jackknifed estimator by using the best
parameter. Thus, we obtain the minimum bias estimator using biasing parameters with the
minimum SMSE value. While n = 30, 75, 100, 250, p = 3 and ρ2 = 0.99, their performance
as a function of the correlation among explanatory variables of MLE, JRE, JLE, JLTE and
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JTPE respectively is presented in Figures 1-3, PR, NBR and GR. According to Figures 1-2,
as n increases, it appears that with minimum SMSE values the estimators of parameters
k3 and d2. According to Figure 3, as n increases, it appears that with minimum SMSE
values there are estimators of the parameters k4 and d1.

The results of the simulation study are given in Tables 1-3, which are presented in
Appendix. The main results of the simulation study are as follows:

(1) When n is constant, with increasing correlation the degree of correlation also
increases SMSE values of all estimates. This is a natural result because with the
increase of the multicollinearity problem, the weighted cross-matrix problem is also
increasing. This increase of SMSE is particularly large for MLE and is particularly
decreases when applying biased estimators. Tables 1-3. show that for all biased
estimators it can be seen that it performs better than MLE.

(2) As the number of explanatory variables increases, the SMSE value of MLE also
increases. Therefore, the negative impact of increasing the number of explanatory
variables is greater for MLE than biased estimators are too much. However, the
estimator least affected by this increase was JTPE and MJTPE.

(3) It can be said that sample sizes have a decreasing effect on SMSE values. Work-
ing with more very sample sizes will further reduce the value of estimated MSE
(EMSE).

(4) Compared to Poisson, the negative binomial and gamma distribution is the re-
sponse variable in GLM, gamma has lower SMSE values.

(5) Generally, in the case of multicollinearity from tables, using the Jackknifed tech-
nique reduced SMSE values and modified Jackknifed technique further improved
EMSEs comment can be made. It can be said that this is supported by the results
of many authors in the literature on these results [11,54,55,57].

Figure 1. SMSE values of the estimators in the PR for different ρ and n values.

Figure 2. SMSE values of the estimators in the NBR for different ρ and n values.
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Figure 3. SMSE values of the estimators in the GR for different ρ and n values.

6. Numerical examples
In this section, we illustrate the benefits of new estimators using real data sets.

6.1. Poisson regression: Aircraft damage data set
We use the aircraft damage data set for PR presented by [38] that dates back to the

Vietnam War. Considerable resources were deployed against the A-4 and A-6, including
small arms, AAA or anti-aircraft artillery, and surface-to-air missiles. It contains data
from 30 strike missions that involved these two types of aircraft. The regressor X1 is an
indicator variable (A-4 = 0 and A-6 = 1), and the other regressors X2 and X3 are the bomb
load (in tons) and the total of months of experience of aircrew. The response variable,
Y is the number of locations where damage was inflicted on the aircraft. Firstly, the
Pearson χ2 goodness-of-fit test is used before performing the Poisson distribution on the
response variable. The chi-squared statistics and the corresponding p-value are obtained
as 3.1864 and 0.2033, respectively. Since this p-value exceeds the significance level 0.05, we
conclude that the data set follows the Poisson distribution. This result is also supported
by the graphical presentations shown in Figure 4. Theoretical and empirical density and
distribution plots show a good fitting to the Poisson distribution. The goodness of fit test
and the plots are performed using the fitdistrplus package [16] in R software [14].

Figure 4. Diagnostics for goodness of fit to the Poisson distribution for the air-
craft damage dataset.

The data matrix X is centered and standardized so that X>ŴX is in correlation
form. Myers et al. [38] claim that this data set exhibits multicollinearity. Including the
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constant term has been obtained as λ1 = 354.136144, λ2 = 10.436062, λ3 = 7.371267 and
λ4 = 1.775029 the eigenvalues of the matrix X>ŴX. The condition number computed
CN = λ1

λ4
∼= 119.51006, which is a measure of multicollinearity (λmax and λmin are the

maximum and minimum eigenvalues of X>ŴX, respectively), which shows that there
exists severe multicollinearity. We present the correlation matrix of the data in Figure
5. Figure 5 one can see the bivariate correlations and we also see that there is a high
correlation (0.836) between the variables X1 and X3. In this case, biased estimators should

Figure 5. Correlation plots of the aircraft damage dataset.

be used as an alternative to MLE. We find the ridge parameter as k3 = 0.007463192 and
the Liu parameter as d2 = 0.04269131 for PR.

Estimated coefficients, estimated MSE values and biases of these methods are presented
in Table 4 which is provided in Appendix. According to the results, one can conclude that
the signs and magnitudes of the MLE coefficients are negatively affected by collinearity
compared to the biased estimators. The bias values of MLE are quite higher than those of
biased estimators. The estimated theoretical MSE of the MLE is also inflated. However,
the signs and magnitudes of the biased estimators are similar to each other and seem to be
more stable than the MLE. The bias values of the JTPE are lower than those of the MLE,
JRE, JLE and JLTE and this is an expected situation since the variance of the JTPE
is always lower than that of the biased estimators according to Theorem 3.3. The bias
values of the JTPE are lower than those of the biased estimators. This situation is again
consistent with Theorems 3.1-3.2. According to Table 4, MSE of the JTPE is always less
than MSE of the MLE, JRE, JLE, and JLTE. Moreover, modified Jackknifed estimators
improved the magnitudes of all biased estimators.

6.2. Negative binomial regression: Swedish traffic data set
In this subsection, we illustrate for NBR using a real data set taken from the Depart-

ment of Transport Analysis in Sweden (www.trafa.se). A regression model is estimated,
where the dependent variable (Y ) is the number of pedestrians killed, and the explana-
tory variables are the number of kilometers driven by cars (X1), buses (X2), trucks (X3)
and motorcycles (X4), respectively. In this application, we try to investigate the effect of
changing the usage of cars and trucks on the number of pedestrians killed. Data are pooled
for different counties (the total number is 21) in Sweden during 2017. Firstly, the Pearson
χ2 goodness-of-fit test is used before performing the negative binomial distribution on the
response variable. The chi-squared statistics and the corresponding p-value are obtained
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as 0.7669 and 0.3812, respectively. Since this p-value exceeds the significance level 0.05,
we conclude that the data set follows the negative binomial distribution. This result is also
supported by the graphical presentations shown in Figure 6. Theoretical and empirical
density and distribution plots show a good fitting to the negative binomial distribution.

Figure 6. Diagnostics for goodness of fit to the negative binomial distribution
for the Swedish traffic dataset.

The data matrix X is centered and standardized so that X>ŴX is in correlation
form. Including the constant term has been obtained as λ1 = 661.428437, λ2 = 76.2894,
λ3 = 16.049592, λ4 = 6.161682 and λ5 = 2.124143 the eigenvalues of the matrix X>ŴX.
The computed condition number CN = λ1

λ5
∼= 311.386021, which is a measure of multi-

collinearity (λmax and λmin are the maximum and minimum eigenvalues of X>ŴX, re-
spectively), which shows that there exists severe multicollinearity. In addition, we present
the correlation matrix of the data in Figure 5. Figure 5 one can see that the bivariate
correlations and we also see that there is a high correlation (0.831) between the variables
X1 and X2 and (0.701) between X1 and X3.

Figure 7. Correlation plots of the Swedish traffic dataset.

In this case, biased estimators should be used as an alternative to MLE. We find the
ridge parameter as k3 = 0.4709132 and the Liu parameter as d2 = 0.01160828 for NBR.
We present the estimated coefficients, the estimated MSE values and the biases of the
estimators considered in Tables 5, which is provided in Appendix. According to results,
we observe that the coefficients of the JRE, JLE, JLTE and JTPE have signs similar
to those of MLE. When we compare the biases values of estimators, it is observed that
the JTPE have lower biases values than the biased estimators, which makes them more
stable. Thus, the JTPE should be preferred since they are compared with the coefficients
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of the biased estimators and the MLE. This situation is again consistent with Theorems
3.1-3.2. According to Table 5, the MSE of JTPE is always less than the MSE of MLE,
JRE, JLE, and JLTE. Moreover, modified Jackknifed estimators improved the magnitudes
of all biased estimators.

6.3. Gamma regression: Weather data set
This subsection illustrates the results with a real-life data set, first analyzed by [13]. The

data correspond to the weather factors and nitrogen dioxide concentrations (Y ), in parts
per hundred million (p.p.h.m.), for 26 days in September 1984 measured at a monitoring
station in the San Francisco Bay area.There are four explanatory variables. The variables
considered in the study are mean wind speed in miles per hour (X1) in mph, maximum
temperature (X2) in, insolation (X3) in langleys per day and stability factor (X4). First,
the Cramer-von-Mises (CvM) goodness-of-fit test is used before performing the gamma
distribution on the response variable. The test statistics and the corresponding p-value
are obtained as 0.0499 and 0.4344, respectively. Since this p-value exceeds the significance
level 0.05, we conclude that the data set follows the gamma distribution. This result
is also supported by the graphical presentations shown in Figure 8. The histogram with
density line and quantile plot shows a good fitting to the gamma distribution. In addition,
Kurtoglu and Özkale [30] and Çetinkaya et al. [15] computations are shown that were
performed using [13] proposed that this data set has a gamma distribution. In several air
pollution models, the random disturbance appears to have a gamma distribution.

Figure 8. Diagnostics for goodness of fit to the gamma distribution for the air-
craft damage dataset.

The data matrix X is centered and standardized so that X>ŴX is in correlation form.
Kurtoglu and Özkale [30] and Çetinkaya et al. [15] also showed that including the constant
term of the matrix X>ŴX is an ill-conditioned matrix. We present the correlation matrix
of the data in Figure 9. Figure 9 one can see the bivariate correlations and we also see
that there is a high correlation (−0.720) between the variables X1 and X2.

In this case, biased estimators should be used as an alternative to MLE. We find the
ridge parameter as k4 = 0.5574405 and the Liu parameter as d1 = 0.0005390112 for the
NBR model. We present the estimated coefficients, the estimated MSE values and the
biases of the estimators considered in Tables 6, which is provided in Appendix. According
to the results, we observe that the coefficients of the JRE, JLE , JLTE and JTPE have
signs similar to those of the MLE. When we compare the bias values of the estimators,
it is observed that the JTPEs have lower bias values than the biased estimators, making
them more stable. Thus, the JTPE should be preferred since they are compared with
the coefficients of other estimators and the MLE. This situation is again consistent with
Theorems 3.1-3.2. According to Table 6, MSE of the JTPE is always less than MSE of



Jackknifed estimators in generalized linear models 701

the MLE, JRE, JLE, and JLTE. Moreover, modified Jackknifed estimators improved the
magnitudes of all biased estimators.

Figure 9. Correlation plots of the weather dataset.

7. Conclusive remarks
In this paper, new JTPE and MJTPE are proposed in the PR, NBR and GR models in

order to overcome the effects of the multicollinearity problem. The purpose of the Jackknife
procedure is to reduce the bias, hence it is proved both theoretically and numerically that
the JTPE and MJTPE has a lower bias than that of the JRE, JLE and JLTE. Likewise, the
MJTPE has a lower bias than that of the MJRE, MJLE and MJLTE. The investigation has
been carried out with the variation of the degree of correlation, the number of observations,
and the number of independent variables. In addition, some estimators of the biasing
parameters k and d are proposed so that the performance of the new method becomes
better than that of the others in terms of both MSE and bias values. One can always find
some values of the biasing parameter so that the JTPE and MJTPE have a lower MSE
and bias. Moreover, real data applications are considered to illustrate benefits of using
the new estimators in the context of Jackknifed models. In conclusion, the use of JTPE
and MJTPE is recommended when multicollinearity is present in the Jackknifed PR, NBR
and GR models.
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