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1. Introduction

The exponential Diophantine equation e* + f¥ = ¢? involves coprime positive integers e, f, and
g greater than 1. Solutions (x,y,z) satisfying this equation are referred to as valid solutions to
the provided equation [1]. In 1956, Sierpinski [2] demonstrated that by substituting exponential
expressions for the sides of the Pythagorean theorem into variables, the exponential Diophantine
equation 3* + 4Y = 5% has a unique solution, specifically (2,2,2). Furthermore, JeSmanowicz [3]
extended this equation to various Pythagorean triples, affirming that for positive integers e, f, and g
that satisfy the exponential Diophantine equation, the unique solution remains (2,2, 2).

In 1994, Terai [4] proposed that if the equation ek + f = g™ holds for positive constant integers k, I,
and m with m > 2, multiple known solutions (k, [, m) exist for the equation, except for certain specific

sets of triples (e, f,g). This conjecture is proved for many special cases. One of them is as follows:
z y
(pd? +1)" + (ud* = 1)" = (wd)y* (1.1)
This study explores the solutions of the following exponential Diophantine equation

(9¢* +1)" + (164> —1)" = (5d)° (1.2)

2 is satisfied.

(1.2) is a specific case derived from (1.1), particularly when the condition p +u = w
Several specific instances of (1.1) have been explored, confirming the validity of Terai’s conjecture.

Some of these are as follows:
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i. (42 +1)" + (542 — 1)* = (3d)° [5]

ii. (d®+1)" + (yd? —1)" = (zd)¢, 14y =2 [6]

iti. (12d2 +1)" 4+ (13d2 — 1)" = (5d)° [7]

iv. (zd?+1)" + (yd* —1)" = (2d)°, 2|d [8]

v. (zd® +1)" + (yd? — l)b = (2d)¢, d =7F1 (mod 5) [9]

vi. (1842 +1)" + (7d* — 1)" = (5d)° [10]

vii. (x4 1)d® +1)* + (zd? — 1)" = (2d)°, 22+ 1 = 22 [11]
viii. (3zd? — 1) + (z(z — 3)d? + 1) = (2d)° [12]

ir. (4d>+1)" + (21d2 — 1)" = (5d)° [13]

z. (5pd® — 1) + (p(p — 5)d® + 1)" = (pd)° [14]

zi. (3d%+1) + (bd? —1)" = (cd)© [15]

zii. (42 +1)" + (4542 —1)" = (7d)° [16]

wiii. (6d2+1)" + (3d2 — 1)" = (3d)° [17]

ziv. (c(c—1)d?>+ 1) + (cld® - 1)b = (ed)° [18]

w. (44d? + 1) + (5d2 — 1)* = (7d)° [19]

This research is dedicated to exploring and analyzing Terai’s conjecture, focusing specifically on in-
vestigating the exponential Diophantine equation.

2. Preliminaries

This section presents some basic properties to be required in the following section.

Theorem 2.1. For any positive integer d, (1.2) possesses a sole and distinct positive integer solution,

namely, (z,y,2) = (1,1,2).

The proof of this theorem involves several important steps. Firstly, elementary methods, such as
congruences and properties of the Jacobi symbol are employed to simplify the solution. Particular
attention is given to the case where x = 1, especially when d = +2 (mod 5). Subsequently, a lower
bound for linear forms in two logarithms, as established by Laurent [20], is utilized.

In cases where d = 0 (mod 5), a result concerning linear forms in p-adic logarithms, as detailed in
Bugeaud’s study [21], is applied. Conversely, for the case d = £1 (mod 5), an earlier version of the

Primitive Divisor Theorem, is attributed to Zsigmondy [22].

Definition 2.2. The expression of the absolute logarithmic height for any non-zero algebraic number

a with degree m over Q is provided by the following
1 ks .
ha) = - <1og <|aor + log (max{1, |a<l>|})>>
m ;
=0
Here, the symbol ag denotes the leading coefficient of the minimal polynomial of o over Z, and o?
represents the conjugates of a.

The linear form defined by L = kjaq + kaag is an expression involving two real algebraic numbers, ay
and «g, where the absolute values of both «; and as are greater than or equal to 1. The coefficients
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k1 and ko are positive integers. The linear form is as follows:
A =kologas — kilogag

Let D = [Q(aq, a2) : Q]. Set
/ k1 ko

= Dlog Ky | Dlog K,
where K7 and K3 are real numbers greater than 1, satisfying

|logai| 1 }

D 'D
The following proposition is a specific instance derived from Corollary 2 in [20], with the values m = 10
and Cy = 25.2 chosen as indicated in Table 1 [20].

log K; > max {h(ai), ie{1,2}

Proposition 2.3. [20] Given the previously defined variables A, «;, D, K;, and k' where o; > 1, for
i € {1,2}, and assuming that «; and a9 are not multiplicatively related, the following inequality is
valid:

log |A| > —25.2 D* <max {log k' +0.38, %, 1}) log K1 log Ko

In this context, a specific case is considered where y; = yo = 1 from Theorem 2 [21], referencing
a result from [21]. Prior to investigating this result, it is pertinent to reintroduce some notations.
Take an odd prime p and define v, as the p-adic valuation normalized such that v,(p) = 1. Consider
two nonzero integers a; and ag. The smallest positive integer g satisfying the following conditions is
identified:

vp(a1? —1) >0 and wvp(ax? —1) >0

Suppose that there exists a real number E such that

1
Up(algf]-) >FE > E

The following theorem provides a specific upper bound for the p-adic valuation of
A =a" — gy
where k1 and k3 are positive integers.
Proposition 2.4. [21] Let K1, K5 > 1 be real numbers such that
log K; > max {log|a;|, Elogp}, i€ {1,2}

and put
k1 ko

- log Ko + log K3

If a1 and a9 are multiplicatively independent then, the upper estimates can be expressed as follows

36.1g
< =g
() < Faiog )1

t/

(max{logt' + log(FElogp) + 0.4,6F log p, 5})2 log K1 log Ko

Proposition 2.5. [22] Consider relatively prime integers E and F' with £ > F > 1. Define the
sequence {an}n>1 as
anp =E" + F"

For n > 1, the sequence a, has a prime factor not dividing ajasas - - - a,—1, except when (E, F,n) #
(2,3,1).
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3. Main Results

This section presents the proof of Theorem 2.1, based on a series of lemmas.

Lemma 3.1. If (z,y, z) represents a positive integer solution of (1.2), then it follows that y must be
an odd integer.

PRrOOF. If z < 2, the solution (z,y,2) = (1, 1,2) is clearly the only solution to (1.2). However, when
assuming z > 3, taking (1.2) modulo d? results in 1 + (—1)Y =0 (mod d?). This implies that y must
be odd since d? > 2. [J

Lemma 3.2. In (1.2), if d is even, then x is also even. Conversely, if d is odd, then z is odd as well.
PROOF. Applying modulo d? to (1.2), it follows that
14+ 9d%¢ + (—1) +16d*y =0 (mod d®)

and thus
92 4+ 16y =0 (mod d)

It can be seen from here that if d is even, then x is also even. Similarly, if d is odd, then x is also odd.
O

Lemma 3.3. [23] Consider positive integers p, u, and w and d > 1 such that p +u = w?. Suppose a
positive integer solution (x,y, z) to the exponential Diophantine equation

(pd? +1)" + (ud® —1)" = (wd)*
where x > y. The following inequalities hold true:
(2 — log(“}f)) r<z<2r
log(wd) -
Moreover, if y is the larger value, then

232
log (%)
2———F Jy<z<2y

log(wd)
In particular, when M = max{x,y} > 1, it follows that

s (sts)
& min{p,ufdi2 }

2= log(wd)

M < z<2M

This refined characterization delineates the possible range of values for z based on the parameter M
and the given variables.

3.1. The Case 5|d

This section proves that Theorem 2.1 holds true under the condition 5|d.

Lemma 3.4. If a positive integer solution (x,y, z) to (1.2) is considered under the assumption that
d is congruent to 0 in modulo 5, then the only positive integer solution to (1.2) is (z,y,2) = (1,1, 2).

PrROOF. Certainly, (1,1,2) is the unique solution of (1.2) when M = max{x,y} = 1. Assume that
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M > 1. Applying Lemma 3.3 for d > 5, it follows that

1.68M < (2 1()!3(295)) <z<2M

~ log(25)

Thus, it follows that z > 5. Given that y is odd, as stated in Lemma 3.1,
A= a1t — a®?
is set up where a1 = 9d®> + 1, ap = 1 — 16d?, s1 = z, and sy = y.

Considering p = 5 and setting g = 1 satisfies the condition outlined before Proposition 2.4. Therefore,
set £ = 2 and apply Proposition 2.4 to obtain

22 < 8(1:?;5)4 (max {log s + log(2log5) + 0.4,121og 5, 5})2 log <9d2 + 1) log (16al2 — 1) (3.1)

where
’ X Yy

* T log (1622 —1) " log (0 + 1)

Since z > 5, applying modulo d* to (1.2) yields 9z + 16y = 0 (mod d?). Then, M > %. As

log 25

RGOy
log(5d)

by Lemma 3.3, (3.1), and r' < 4

log (%) 36.1 M 2
22— <o log [ ——= | +log(2log5) + 0.4, 12log 5
( log(5d) | " ~8(log5)" (max{og <log3d)+ B(210g5) +04, 12log }>

log (9d2 + 1) log (16d2 - 1)

—~

(3.2)

is obtained. Let Y,
k = max {log () + log(2log5) + 0.4, 121og 5}
log 3d

Suppose
M
k=1 — log(21 4 >121
Og(log3d)+0g( 0g5)+ 0.4 > 12logh

The inequality
log M > 12log 5 — log(2log5) — 0.4

leads to the conclusion that M > 50841462. However, from (3.2)
2M < (0.68)(log M + 1.57)% log(225M + 1) log(400M — 1)
and this implies M < 8128. This discrepancy results in a contradiction. If & = 12log5, then (3.2)

takes the form

o2 (. log (%)
=~ |2— — 77 ) <25110¢(9d* + 1) log(16d% — 1
25 ( log(5d) | = 0g(9d” +1) log( )

This implies that d < 629. Hence,

M

251 log (9d2 + 1) log (164> — 1)
- (%)
212~ log(5d)
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1.68z < (2 10g(295)>;1:< (2—10g(295))x<z§2x (3.3)

~ log(25) log(5d)

and

log 26 log 26d2:26
1.84y < (2—(16)) y < (2—(1&‘216) y (3.4)

log(25) log(5d)

2542
log(m)
<[2————F+F|y<z<2y

log(5d)
(3.3) and (3.4) lead to the conclusion that there are no positive integer solutions for (1.2) when z < 6.
Assuming z > 6, an analysis of (1.2) is performed by considering congruences modulo d*, d®, and d®.

i. Applying modulo d* to (1.2) results in 9d%x + 16d*y = 0 (mod d*) which is further expressed as

924 16y =0 (mod d?) (3.5)

it. Analysis of (1.2) yields a simplified expression

1 1
9z + 9%1295(”:2) + 16y — 162d2y(y2) —0 (mod dY) (3.6)

iii. The analysis extends to modulo d® with a more complex expression

(r—1) (z—1)(x—2)

9z + 92d*% +93q4T .

-1 —1 -2

(3.5)-(3.7) summarize the congruence conditions derived from (1.2) modulo d?, d*, and d°, respectively.
These conditions lead to bounds on all the variables z, y, and z. Through an exhaustive search using
a Maple program running for several hours, no additional positive integer solutions (d,z,y, z) were
discovered for (1.2) beyond the solution (z,y, z) = (1,1,2) when 5|d. Hence, it is confirmed that there
are no other positive integer solutions to (1.2). [

3.2. The Case d = +2 (mod 5)
This section proves that Theorem 2.1 holds true under the condition d = £2 (mod 5).

Lemma 3.5. For a positive integer solution (z,y, z) to (1.2) where d = £2 (mod 5), it is established
that the sole positive integer solution is (z,y,2) = (1,1,2).

Let d be even. Thus, z is also even from Lemma 3.2. Applying modulo 5 to (1.2) results in the
equation
2" +3Y=0 (mod 5)

However, this is impossible when x is even and y is odd.

Proceed by first establishing Lemma 3.6 and Lemma 3.7, starting with the assumption that d is odd,
which implies that x is also odd as indicated in Lemma 3.2.

Lemma 3.6. If d is odd and d = +2 (mod 5), then z = 1 and y is odd.

PRrROOF. With reference to Lemma 3.2, our focus is directed specifically towards the scenario where
d > 2 is an odd number. Additionally, as implied by Lemma 3.1, it is established that y is an odd
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O +1\ _ [ 25d* \ _|
1642 —-1) \16d2—1)
(62 —1) = (36 —1) (e —7)
16d2 — 1 16d2 — 1) \16d2 — 1

(o
<16d2 - 1) (16d2 - 1)
d
Ol

= (_1)(—1)%(_1)(&[2_1)%

integer. Consequently,

and

= (~1)(~1) 7T G#-14D

=-1

Using the Jacobi symbol notation (%) deduce that z is an even integer. Suppose that > 3. Applying
modulo 8 to (1.2)
22+ (-1 =1 (mod 8)

and thus

2 =2 (mod 8)
This implies that z must be equal to 1. [
Consequently, (1.2) transforms into the following

9d% +1+ (164> — 1) = (54)° (3.8)

Lemma 3.7. y > = (d® — 9)
PROOF. As y > 3 and z = 1, (1.2) leads to
(5d)* > 9d* +1 + (16d2 — 1)3 > (5d)?
Applying modulo d* to equation (3.8) yields
9d> +1+16d’y —1=0 (mod d*)

and thus
9+ 16y =0 (mod d?)

Having established this claim, the subsequent step involves deriving an upper bound for y. [J
Lemma 3.8. y < 2521 log5d

Proor. Consider
(9¢* +1)" + (164> —1)" = (54)° (3.9)

If y = 1, then clearly z = 2. Assume that y > 3. Then, z > 2 from (3.9). For simplicity set the
following notation p = 9d%>+1, ¢ = 16d®> — 1, and r = 5d and consider the linear form of two logarithms

A =zlogr—yloggq
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Since ;
0<A<et-1=__-1=2 (3.10)
qY qv
then
log A < logp —ylogq (3.11)
From Proposition 2.3,
4 ' 2
log A > —25.2D (max {logt + 0.38, 10}) log qlogr (3.12)
where
tl _ Y + z
logr = loggq
and

¢ = =g —r* =q(r* —p)—r* = (q¢— 1)r* —pq > (16d2 — 2) 25d% — (9d2 + 1) (16al2 — 1) >0

Since z > 2, then ¢¥t! > r*. Therefore, t < 213;} Write M = %, and thus
1

t < 2M +
log r

Combining (3.11) and (3.12),

1 2
ylogq < logp + 25.2 (max {log (ZM + 1) + 0.38, 10}) log glogr
ogr

log p
logqlogr

Since < 1 and logr = log5d > 2, for d > 3, the inequality can be expressed as follows:

M < 1+ 25.2 (max{log(2M + 0.5) + 0.38,10})*
If log(2M + 0.5) + 0.38 > 10, then M > 7532. However, the inequality
M < 1+ 25.2(log(2M + 0.5) 4 0.38)?

implies that M < 1867. Thus, max {log(2M + 0.5) + 0.38,10} = 10 implies M < 2521. Hence,
x < 2521 log bd. By combining Lemma 3.7 and Lemma 3.8,

L /oo

W (d - 9) < 2521 log 5d
This implies d < 566. From (3.10),
z logq < D

Y B logr ~ yqYlogr

Thus,
logg =2 P
logr vy yqYlogr
which further implies
logqg = 1
logr y| 292
Thereby, § is a convergent in the simple continued fraction expansion to ﬁgg. Consider i = ‘;—Z
where ‘g—: represents the n-th convergent of the simple continued fraction expansion of ﬁ%. Since

ged(an, by) = 1, it follows that b, < y. Hence, an upper bound for b, is given by b, < 2521log5d
according to Lemma 3.8. Any such convergent ‘g—: satisfies

1
bn (bn + bn+1)

logg an
logr by,
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By setting bp11 = tupt1bp + bp—1,
1
(bn)2(by + bnt1)

where u,, is the n-th partial quotient of the simple continued fraction expansion of iggg refer to [24].

logg an
logr b,

p < p
yq¥logr ~ b,gbnlogr

Therefore, b, and u,41 satisfy

¢’ logr
pbn

As a final step, a short computer program in Maple was utilized to verify that no convergents ‘g—z of

{ggg satisfy equation (3.13) when b, < 2521log(5d), for 1 < d < 566. This process took only a few

seconds to complete, concluding the proof. Therefore, Lemma 3.5 is also proven. []

Un+1 + 2> (313)

3.3. The Case d = +1 (mod 5)
This section proves that Theorem 2.1 holds true under the condition d = +1 (mod 5).

Lemma 3.9. (1.2), with d being a positive integer such that d = +1 (mod 5), possesses a unique

positive integer solution (x,y,z) = (1,1, 2).

ProoFr. Consider the positive integers k1 and ko and a positive integer d satisfying d = £1 (mod 5).
(1.2) is expressed as follows:

9> +1=5"4, (92 +1) =5h7a (3.14)
164> ~1=52B, (164> - 1)y = 5k2v gy (3.15)
where A and B are nonzero integers not congruent to 0 modulo 5. Then, (1.2) can be rewritten as
5MT AT 4 5MYBY = (5m)? (3.16)
Firstly, consider the case kiz > koy. This implies
5k2y <5k1:1:fk2yA:v + By) — 57

which leads to
koy = z (3.17)

Substituting (3.17) back into (3.16),
(942 +1)" = ((5a)™)" - (164> - 1)’ (3.18)
Applying Proposition 2.5 [22], y = 1 is found. Therefore, (3.15) simplifies to
(1642 - 1)y = 5k pY = 5k g (3.19)
Substituting (3.17) into (3.19) with y = 1,
16d*> =5°B +1 (3.20)
Delve into the case z = 3, for (1.2). This transforms into
(9¢2 +1)" +16d% — 1 = (54)°
However, when x > 2, it leads to
(5d)° > (942 +1)" > (94> + 1)2 > 924

which results in the contradiction 53 > 92d since d > 1.
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Indeed, when y = 1 is set and z = 1 in (1.2), it simplifies to
9d*> + 1 +16d*> — 1 = (5d)>
However, this results in a contradiction under the condition d = £1 (mod 5).

When z > 4, investigating (1.2) in modulo d* results in the inference that y = 1. This deduction is
made by employing Proposition 2.5 in [22]. This simplifies the equation to

9d%z +16d> =0 (mod d*)

and thus
92416 =0 (mod d?)

It can be observed that

d* < 9x +16 (3.21)
Substituting (3.20) into (3.21),
5°B < 144z + 255 (3.22)
Since = < z, (3.22) turns into (3.23):
5°B < 144z + 255 (3.23)

As a result, there are no positive integer solutions, for z > 4, and z = 4, the equation does not have
any positive integer solutions for appropriate values of x and y. Similarly, by employing analogous
procedures when koy > kiz, it can be deduced that there exist no positive integer solutions for z > 3.

Finally, investigate the scenario kjx = koy. Summing up (3.14) and (3.15),
25d* = 5" A+ 5728
Analyze this equation based on the positive integers k1 and ks:
1. k1 =2and ko >3
If k1 = 2, then it is observed that ks must be even while y is odd. Thus,
2z = koy (3.24)

and there is a positive integer such that ks satisfies 2ks = ky. Putting it into the (3.24), z = ksy is
acquired. Then, (1.2) becomes

ks \ Y
((9d2 +1) 3) + (1642 =1)" = (54)°
Apply Proposition 2.5 [22], y = 1 is seen. Consequently, there are no solutions for = > 2.

1. k123andk2:2

ki oy

ko
since k1 = koy. Note that ged(z,y) = 1. Indeed, if there exists an odd prime p > 1 such that p|x and
ply, then by Zsigmondy Theorem [22] there is no solution, for x and y. Hence, it is clear that = = 2
and ko = 2 where y is odd. Therefore,

y=k >3 and r=ky=2

(3.16) becomes
5ke AT 4 5k BY — (5d)7
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and thus
5% (A% + BY) = (5d)°
If 51 (A% + BY), then 2y = 2. Then, (1.2) becomes
(96> +1)" = ((50)?)" — (164> — 1)
Applying Proposition 2.5 from Zsigmondy’s theorem, it follows that y = 1. However, this leads to a
contradiction. Therefore, there exist no positive integer solutions, for  and y. Thus, z < 2.

If 5| (A2 + BY), by (3.17) and (3.19),
16d> -1 =5"B = 25B

and thus
902 +1=5"4

If add the above equations side by side, then
252 = 5M 4+ 258 (3.25)

When taking (3.25) modulo 5,
1= B (mod5)

In conclusion, no positive integer A can be found that satisfies the condition 5 | (A2 + BY).

O
4. Conclusion

This research investigates the equation (1.2) with specific parameters (p, u, w) = (9,16,5) and deter-
mines the unique solution (x,y,z) = (1,1,2) when d > 1. Particularly, it addresses an unexplored
area in the literature by considering the case where u is a positive even integer and p is an odd integer
in the equation

(pd2 + 1>z + (ud2 - 1)y = (wd)?

In doing so, it guides future research in solving equations where the coefficient v is a positive even
integer and contributes to the existing knowledge in this field. The aim is to take a step towards
finding and generalizing many equations, leading to a generalized equation.
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