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Parkinson’s disease is one of the neurodegenerative disorders that significantly 
affect human health. Patients experience various negative effects such as tremors, 
walking disorders, and impaired speech. The disease also causes instability in 
walking, leading to tremors, and affects their writing skills. Studies on detection of 
disease generally focus on speech analysis. However, PD can be diagnosed by 
exploiting the loss of motor ability. In this work, a data set which was recorded at 
Cerrahpasa Faculty of Medicine, Istanbul University is considered. The data were 
collected from 15 healthy subjects and 57 with Parkinson’s Disease.by a graphic 
tablet. Each subject asked to draw a spiral in two different conditions which are 
named as static spiral test (SST) and dynamic spiral test (DST) respectively, and the 
drawings transformed into X, Y and Z axis of movement, Grip Angle, and Pressure 
data. During the study, the effectiveness of SST and DST conditions are considered. 
Various machine learning algorithms have been tested to determine the best 
classifier. The effect of features was also considered by utilizing a feature 
elimination process. As a result, the best classification performance was obtained as 
90,32% by using Kernel Naïve Bayes network with DST and SST + DST data, by 
omitting Z axis. 

  

OTOMATİK PARKİNSON HASTALIĞI TEŞHİSİ: BİR ÖZELLİK SEÇİMİ YAKLAŞIMI 
 

Anahtar Kelimeler Öz 
Yapay Zeka, 
Biyomedikal Hesaplama, 
Biyomedikal Sinyal, 
Makine Öğrenmesi, 
Eğiticili Öğrenme. 
 

Parkinson hastalığı, insan sağlığını önemli ölçüde etkileyen nörodejeneratif 
bozukluklardan biridir. Hastalar, titreme, yürüme bozuklukları ve konuşma 
bozuklukları gibi çeşitli olumsuz etkiler yaşarlar. Hastalık ayrıca yürüme 
dengesizliğine, titremelere ve yazma becerilerini etkiler. Hastalığın tespiti üzerine 
yapılan çalışmalar genellikle konuşma analizine odaklanmaktadır. Ancak, Parkinson 
hastalığı motor yetenek kaybını kullanarak teşhis edilebilir. Bu çalışmada, İstanbul 
Üniversitesi Cerrahpaşa Tıp Fakültesi'nde kaydedilen bir veri seti incelenmektedir. 
Veriler, 15 sağlıklı denekten ve Parkinson hastalığı olan 57 denekten bir grafik 
tableti kullanılarak toplandı. Her denekten, sırasıyla statik spiral testi (SST) ve 
dinamik spiral testi (DST) olarak adlandırılan iki farklı koşul altında bir spiral 
çizmesi istenmiş ve çizimler X, Y ve Z eksenlerine hareket, Kavrama Açısı ve Basınç 
verilerine dönüştürülmüştür. Çalışma sırasında, SST ve DST koşullarının etkinliği 
dikkate alınmıştır. En iyi sınıflandırıcıyı belirlemek için çeşitli makine öğrenimi 
algoritmaları test edilmiştir. Özelliklerin etkisi, bir özellik elemesi süreci 
kullanılarak da dikkate alınmıştır. Sonuç olarak, Z eksenini ihmal ederek DST ve SST 
+DST verileri ile Kernel Naive Bayes ağı kullanılarak %90,32'lik en iyi sınıflandırma 
performansı elde edilmiştir. 
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Highlights 

• Parkinson's disease diagnosis was conducted using classical machine learning methods without 
heuristic approaches. 

• Through feature selection, it was observed that data from the Z-axis had the least impact on Parkinson's 
disease diagnosis. 

• It was observed that the diagnosis of Parkinson's disease using data from the Dynamic Spiral Test and 
Static Spiral + Dynamic Spiral Test was higher compared to data from the Static Spiral Test. 

Purpose and Scope  

This study focuses on the diagnosis of Parkinson's disease using machine learning methods that do not have a 
high computational load. Thus, it is aimed to develop an auxiliary tool that can work on simple personal devices 
and provide additional insight to physicians when necessary. 
 
Design/methodology/approach  

In this study, feature calculations were made on hand-drawn data and the obtained features were divided into 
test and training data sets. Feature selection was performed on data to determine the most effective features for 
diagnosis of Parkinson's disease. The data was applied to different classifiers to determine the best classifier for 
this problem. 
 
Findings  

As a result of the experiments, it was seen that the Z parameter was the least important feature. In most cases, 
removing the Z parameter increased the accuracy of the DST and SST + DST dataset. The best results were 
obtained by subtracting Z data for DST and merged data. Our results suggest that changes in the Z axis are less 
significant for the diagnosis of Parkinson’s disease. 
 
Originality  

The originality of this study lies in demonstrating that the diagnosis of Parkinson's disease can be achieved by 
using simpler classifiers. Moreover, by applying a feature elimination method, it was shown that the Z axis 
information should be omitted. As a result, it was proven that Parkinson's data can be collected by using simpler 
hardware. 

 
1. Introduction  
 

Parkinson’s disease is a neurodegenerative disease that generally affects 2-3% of the population aged 65 and over. 
Parkinson's disease occurs due to low dopamine release. Dopamine enables brain cells to communicate with each 
other, and disruption or loss of cells that produce dopamine causes low dopamine release (Chawla et al., 2024, Kumar 
et al., 2024). Thus, the person begins to develop Parkinson's disease. Clinical diagnosis can be made more easily in 
cases with advanced and fully developed classical motor features of Parkinson's disease. However, in the early phases 
of the disease, the error rate in clinical diagnosis can reach up to 24% (Poewe et al., 2017).  
 
Various studies have been conducted on different data sets and detection methods for the diagnosis of Parkinson's 
disease (Alalayah et al., 2023; Göker, 2023; Shafiq et al., 2022; Soman et al., 2023; Tsai et al., 2023). These studies can 
assist doctors in diagnosing the disease. Along with physical effects, characteristic effects can also be observed in 
patients' speech (Alalayah et al., 2023; Ali et al., 2023; Guatelli et al., 2023; Saleh et al., 2024; Skodda, 2011; Uebelacker 
et al., 2014; Zhao and Li, 2023; Yuan et al., 2024). Therefore, the detection of Parkinson's disease is also carried out 
using voice data, and various studies are being conducted on this subject. (Bolat and Bolat, 2010) can be given as an 
example of these studies. In this study, voice samples were taken from 31 people, 23 of whom had Parkinson's disease. 
The data obtained from these sound samples were used to classify. Four different classifiers were used for 
classification. These classifiers are probabilistic neural networks, generalized regression neural networks, support 
vector machine, and k-nearest Neighbors (k-NN) networks. Half of the data set consisting of sound samples was used 
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as the training set and the other half was used as the test set.  
 
In (Amato et al., 2021), a multi-level analysis was conducted that progressively combined features extracted from the 
speech signal, the voiced segments, and the on-set/off-set regions. As a result, a total of 126 features emerged. 
Additionally, the performance of the feature fusion schemes was compared to identify the best model configuration, 
using 25 isolated words pronounced by each subject. The database consisting of 50 healthy controls and 50 PD 
patients, was used for validation and testing. An optimized k-NN model was implemented for the binary classification 
of PD patients versus healthy people, achieving a 94.3% accuracy in testing on the PC-GITA database.  
 
Diagnosis of Parkinson’s Disease using ANN (Çimen and Bolat, 2016) aims to investigate the effectiveness of artificial 
neural networks (ANNs) in diagnosing Parkinson's disease. The data used in this work include 150 participants' data, 
including 75 healthy individuals and 75 Parkinson's disease patients, and ANNs are utilized to classify the participants 
based on their clinical features. In this study, ANNs diagnosed Parkinson's disease with a high accuracy of up to 98%. 
Herewith, the study suggests that ANNs hold promise as a diagnostic tool for Parkinson's disease. 
 
Parkinson's disease not only affects the patient’s voice but also has a variety of physical complications such as slowing 
down in physical movements and reflexes, and altered writing abilities due to tremors in hand movements 
(Khatamino et al., 2018; Kumar and Ghosh, 2023; Sankineni et al., 2023), etc. Therefore, there are studies on this 
disease that use alternative methods rather than speech signals. 
 
Mounika and her team worked on detecting Parkinson's disease by considering deep learning approaches and stated 
the success rate as 94.87% with RNN (Mounika and Rao, 2021). Tayal (Tayal, 2018), achieved a success rate of 91% 
by working with SVM. In his paper (Tiwari, 2016), Tiwari proposed a method using the random forest classifier and 
used this method on a data set with 20 features and used a feature selection algorithm in his study and the accuracy 
obtained was 90.3%. 

 
Johri and Tripathi  actualized the comparative analysis with various Machine Learning (ML) classifier algorithms like 
k-NN, XGBoost, SVM, and Random Forest and observed that Random Forest provides better performance with an 
accuracy of 90% (Johri and Tripathi, 2019). 
 
Rabie Fadil et al (Fadil et al., 2021) implied that the most suitable classifier was found by testing Random Forest, SVM, 
Decision Tree, Neural Network, kNN, and Gaussian Naive Bayes. The best classification performance was obtained 
using Random Forest with 80% accuracy. 
 
In the study conducted in India (Sandhiya et al., 2022), the spiral/wave drawing datasets taken from the machine 
learning repository at the University of California, Irvine was used and classification was performed with Random 
Forest Classifier and the accuracy was stated as 71.33%. 

 
Elshewey et al compared 6 different ML methods and calculated performance metrics for all of the methods. During 
the test, hyperparameter tuning was performed. The test results also demonstrate that SVM outperformed the other 
methods with an accuracy of 92.3% (Elshewey et al., 2023). 

 
The organization of this paper is as follows. Section 2 describes the materials. Section 3 describes the methodology 
implemented to diagnose Parkinson’s'. Section 4 presents our results of the methods applied in Section 3. Finally, 
Section 5 presents conclusions and discussion on the implications of the research. 
 
2. Materials 
 
In this study, a data set downloaded from the publicly available UCI Machine Learning Repository, which was initially 
provided by (Isenkul et al., 2014) at the Department of Neurology Diagnostics within Istanbul University's Cerrahpasa 
Faculty of Medicine, is considered.  
 
The Parkinson's disease handwriting data were collected by a graphic tablet at the Department of Neurology in 
Cerrahpaşa Faculty of Medicine, Istanbul University. The data set consists of 15 healthy individuals and 25 Parkinson's 
disease patients (Isenkul et al., 2014) initially. Later, the Authors expanded the data set by adding new data taken 
from 32 Parkinson's disease patients.  
 
During the data-collecting process, the Authors asked the subjects to perform two missions. In the first mission, three 
wound Archimedean spirals appeared on the graphic tablet and patients were asked to retrace the same spiral as 
much as possible using the digital pen. During the test, X, Y, and Z coordinates, Pressure and Grip Angle of the pen were 
taken on the graphic tablet and recorded as a time series. This mission is called Static Spiral Test (SST) (Isenkul et al., 
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2014). 
 
In the second mission, the patients were subjected to the Dynamic Spiral Test (DST). In DST, unlike SST, the 
Archimedean helix flashes at certain time intervals. These flashings force the patient to keep the pattern in mind and 
continue drawing. The purpose of this mission is to determine how the loss of information changes the patient's 
drawing performance. As a result of this test, it was observed that most of the patients continued to draw, but almost 
all of them lost the pattern (Isenkul et al., 2014). Figure 1 shows examples of drawings made by healthy and 
Parkinson’s subjects respectively. 
 

      
Figure 1. a) Healthy People Drawing, b) PD People Drawing (Isenkul et al., 2014) 

 
3. Method 
 
As seen in Figure 1, there are distinct visual differences between healthy people and people with Parkinson’s and it is 
possible to exploit these differences to develop an automatic diagnosis system. In this study, various ML methods 
were used to detect Parkinson's disease. First, the initial and additional data sets were merged, and a new data set 
consisting of 72 data was created. Then, during the first phase, SST and DST data were considered separately to 
determine whether one of these is distinctively better than the other. Finally, a new data set was created by combining 
these two and the learning process was repeated to see if any improvement could be acquired. In all trials, all features 
were used first, and then feature selection was performed to determine the most dominant features. During feature 
selection, features were removed from the data set one by one or in groups of two or three, and training and testing 
were performed. Since the number of features is small enough, a brute-force search was applied. 
 
The proposed approach for Parkinson's disease diagnosis is described below (Figure 2). While training a model, first 
the standard deviations, averages, integrals, and standard deviations of the derivative of each feature were calculated. 
A feature elimination process was done on these features during preprocessing and a series of subsets were created. 
The generated data sets are divided into training and test data randomly. Non-heuristic classical ML networks were 
trained with the training sets and tested with the test data set. 
 

 
Figure 2. Proposed Method 
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In this study, 24 variations of 5 different supervised ML techniques (The MathWorks Inc., 2023) including Bayes, 
Discriminant & Regression, k-NN, Decision Tree, and SVM were fed by above mentioned data. The purpose was to 
identify the most effective classifier for Parkinson's patient classification by comparing it with other ML methods.  To 
determine the most distinctive features, feature selection was applied to the data. The classifiers considered in this 
work are summarized below: 
 
Bayes: A Bayesian network is a probabilistic graphical model used to describe random variables and their conditional 
relationships.  In a Bayesian network, there are nodes and their parent nodes. Each parent node has a value and 
according to these values nodes have a probability distribution (Pearl, 1985). Probabilistic reasoning, decision-
making, and prediction are among the applications for Bayesian networks. They are solution-oriented networks, 
especially for problems involving uncertainty such as medical diagnosis or financial forecasting. 
 

The formula of the Bayes Theorem is as follows: 
 

𝑃(𝐴|𝐵) = 𝑃
𝑃(𝐴|𝐵)∗𝑃(𝐴)

𝑃(𝐵)
      (1) 

 

where the probability P(A|B) is called the posterior probability, and the marginal probability of the event P(A) is called 
the prior probability. 
 
SVM: Support-vector machine network is an ML algorithm used to solve classification problems with two groups. It 
works by mapping input vectors to a feature space with high dimensions and creating a linear decision surface in that 
space. The decision surface has unique properties that make the learning machine highly effective in generalizing 
(Cortes and Vapnik, 1995). The SVM aims to maximize the margin between two groups or classes.  

 
New data point stated as 𝑥𝑛𝑒𝑤 and the decision function can be explained according to the hyperplane by: 
 

𝑓(𝑥𝑛𝑒𝑤) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏
𝑛

𝑖=1
     (2) 

 
where the 𝑥 is the new sample, 𝛼𝑖  is the Lagrange multipliers, 𝑦𝑖  is the labels of the training samples and 𝑏 is bias term, 
and 𝑓(𝑥𝑛𝑒𝑤) is the predicted class label and the 𝐾(𝑥𝑖, 𝑥) is the kernel function, which returns +1 and -1 (Di Caro, 2019). 
If the expression inside the function is positive, it returns +1 and if it is negative, it returns -1. 
 
Discriminant & Regression: Discriminant network is a Bayesian network designed specifically for classification. It 
consists of a set of nodes representing input features and a single output node representing the class label. Each node 
has a conditional probability distribution (CPD) in the network. The distribution of the input nodes is estimated from 
the training data and the CPD of the output node is estimated using a discriminant function. 
 
A regression network is a Bayesian network designed for regression tasks. It consists of nodes which represent the 
input features and a single output node representing the target variable. A regression network is used to calculate the 
expected value of the target variable, which is based on the values in the input variables. 
 
Discriminant and regression networks can be trained using three different methods. These methods can be specified 
as maximum likelihood estimation, Bayesian parameter estimation, and gradient-based optimization. The choice of 
training method depends on the problem and data. Once the network is trained, it can be used to make predictions on 
new data by inferring the network using the observed values of the input variables.  
 
k-NN: The k-NN is an algorithm that can be used in classification and regression, and this algorithm is non-parametric. 
It works by finding the k nearest neighbors to a new observation in the training set and using their values to make a 
prediction for the new observation. A k-NN model starts with a set of training data consisting of input-output pairs 
(X, Y). When a new input observation is received, the k closest training observations to that input based on some 
distance metric (such as Euclidean distance) are found. The output value for the new observation is then determined 
by taking the average (for regression) or majority vote (for classification) of the output values of its k nearest 
neighbors. The choice of k is an important hyperparameter that needs to be tuned for each problem. A smaller value 
of k leads to a more flexible model that can fit complex, nonlinear relationships in the data; but may also be more 
susceptible to noise and overfitting. A larger value of k leads to a smoother model that may also be less able to capture 
complex relationships in the data. Euclidian distance can be expressed with ℓ2-norm (|| . ||2). The Euclidian distance 
is calculated between these two parameters and the k-NN is selected according to the smallest distance to the new 
data point. Implementation and interpretation of k-NN are easy and that is one of the advantages of the k-NN 
algorithm. K-NN does not require any assumptions about the underlying distribution of the data, making it easy to 
use in a wide range of applications. The biggest disadvantage of this network is seen in large data sets. It may not 
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perform well on large datasets and high-dimensional inputs if the training data is not representative of the base 
population. 
 
Decision Tree: Decision tree is one of the predictive models for classification and regression. It divides the input 
space into smaller subsets based on the values of the input features and assigns a label or value to each leaf node of 
the tree. When making classification, decision trees assign a label to each leaf node based on the majority class of 
training examples reaching that node. For regression, it assigns a value to each leaf node based on the mean or median 
value of the training samples reaching the node. 
 
Easy interpretation is one of the advantages of decision trees. Decision trees provide insight into important features 
and relationships in the data. However, they may be sensitive to small changes in the training data. If the decision tree 
is too deep or the stopping criteria are not set well, it may cause a tendency to over fit. To solve these problems, 
ensemble methods such as gradient boosting and random forests are often used to combine multiple decision trees 
into a more robust and accurate model. 
 
4. Application and Results 
 

In this work, detection of Parkinson's disease was carried out by using data obtained from SST and DST tests. First, 
two data sets were used separately to see if any of them were far better than others. Therefore, these data sets were 
merged into a single data set and the entire work was repeated to see if any improvement could be gained. The data 
set contains data from 15 healthy individuals and 57 PD patients. To perform a statistical confirmation test, the data 
was split into three parts equally, and a 3-fold cross-validation was applied.  
 
While testing the performance of cross-validated data, feature elimination was conducted to observe the impact of 
specific features in Parkinson's disease diagnosis. Each feature was removed individually and in groups of two and 
three, and their success rates were evaluated by testing the 24 variations of the 5 supervised ML techniques. Due to 
the low number of features in the data set, heuristic methods were not required, and a brute-force feature elimination 
method was deemed adequate. The main reason for performing feature elimination is to eliminate noisy data if it 
exists. Features were obtained by calculating the standard deviation, mean, integral, and standard deviation of the 
derivative of each of the X, Y, Z, Pressure, and Grip Angle data. 
 
Tables 1, 2, 3, and 4 show results obtained with SST data only. As seen in Table 1, Bagged Trees, one of the Decision 
Trees algorithms, achieved the best accuracy with 87.10% in almost every case. Table 2 clearly shows the effect of the 
Z parameter for the cases without Z, without Z and Grip Angle, and without Z and Pressure. As illustrated in Table 3, 
while not as effective as Decision Trees, SVM algorithms achieve an overall performance of 83.87%, ranking second. 
However, a review of the k-NN results presented in Table 4 indicates that this algorithm does not demonstrate a 
comparable level of performance. 
 

Tablo 1. Decision Trees Accuracies for SST 
 w/ all 

Features 
w/o X w/o Y w/o Z 

w/o 
Pressure 

w/o Grip 
Angle 

w/o Z-
Grip 

w/o Z-
Pressure 

w/o XYZ 

Fine Tree 77,42% 80,65% 74,19% 77,42% 41,94% 77,42% 77,42% 41,93% 77,42% 
Medium Tree 77,42% 80,65% 74,19% 77,42% 41,94% 77,42% 77,42% 41,93% 77,42% 

Coarse Tree 77,42% 80,65% 74,19% 77,42% 41,94% 77,42% 77,42% 41,93% 77,42% 
Boosted Trees 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 

Bagged Trees 87,10% 87,10% 87,10% 87,10% 87,10% 83,87% 87,10% 80,65% 87,10% 
RUSBoosted Trees 74,19% 74,19% 54,83% 74,19% 38,71% 70,97% 61,29% 38,71% 67,74% 

 
Table 2. Discriminant & Regression and Bayesian Accuracies for SST 

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Linear Discriminant 74,19% 74,19% 77,42% 64,51% 64,51% 80,65% 87,10% 45,16% 64,51% 

Logistic Regression 51,62% 61,29% 67,74% 45,16% 35,48% 77,42% 67,74% 35,48% 77,42% 
Gaussian Naive Bayes 67,74% 61,29% 77,42% 54,84% 74,20% 77,42% 48,39% 54,83% 35,48% 

Kernel Naive Bayes 83,87% 80,65% 83,87% 83,87% 77,42% 83,87% 83,87% 77,41% 67,74% 
Subspace Discriminant 80,65% 83,87% 80,65% 77,42% 67,74% 80,65% 80,65% 61,29% 80,65% 

 
Table 3. SVM Accuracies for SST 

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Linear SVM 80,65% 80,65% 80,65% 77,42% 83,87% 80,65% 80,65% 58,06% 74,19% 

Quadratic SVM 74,19% 74,19% 74,19% 70,94% 61,29% 80,65% 83,87% 35,48% 70,97% 

Cubic SVM 74,19% 74,19% 83,87% 74,19% 54,83% 77,42% 80,65% 41,93% 80,65% 
Fine Gaussian SVM 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 

Medium Gaussian SVM 83,87% 83,87% 83,87% 80,65% 83,87% 83,87% 83,87% 61,29% 83,87% 
Coarse Gaussian SVM 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 
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Table 4. k-NN Accuracies for SST 

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Fine k-NN 80,65% 80,65% 80,65% 70,97% 80,65% 80,65% 77,42% 48,37% 74,19% 

Medium k-NN 74,19% 74,19% 83,87% 70,97% 74,19% 83,87% 87,10% 41,94% 80,65% 
Coarse k-NN 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 

Cosine k-NN 83,87% 83,87% 80,65% 77,42% 74,19% 80,65% 87,10% 48,39% 80,65% 
Cubic k-NN 80,65% 80,65% 83,87% 70,97% 64,51% 83,87% 83,87% 51,62% 77,42% 

Weighted k-NN 83,87% 83,87% 83,87% 77,42% 77,42% 87,10% 83,87% 51,62% 80,65% 
Subspace k-NN 77,20% 77,42% 77,42% 74,19% 70,97% 80,65% 80,65% 70,97% 77,42% 

 
Tables 5, 6, 7, and 8 show the results of DST trials. Regarding to tables, the best solution is 90.32% with Kernel Naïve 
Bayes. In this case, the best solution was obtained two times; first by removing the Z parameter as in the previous, 
and by removing the Z-Grip Angle. The results indicate that the Pressure feature plays a significant role in the detection 
of PD. When the Pressure feature is excluded, a notable decline in detection accuracy is observed. 

 
Table 5. Decision Trees Accuracies for DST 

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Fine Tree 87,10% 83,87% 87,10% 87,10% 87,10% 87,10% 87,10% 87,10% 35,49% 

Medium Tree 87,10% 83,87% 87,10% 87,10% 87,10% 87,10% 87,10% 87,10% 35,49% 

Coarse Tree 87,10% 83,87% 87,10% 87,10% 87,10% 87,10% 87,10% 87,10% 35,49% 
Boosted Trees 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 

Bagged Trees 80,65% 77,42% 77,42% 83,87% 83,87% 83,87% 83,87% 87,10% 83,87% 
RUSBoosted Trees 64,52% 67,74% 67,74% 64,52% 77,42% 64,52% 80,65% 64,52% 61,29% 

 
Table 6. Discriminant & Regression and Bayesian Accuracies for DST 

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Linear Discriminant 54,84% 61,29% 64,52% 54,84% 58,06% 77,42% 80,65% 45,39% 48,39% 

Logistic Regression 61,29% 67,74% 77,42% 58,06% 58,06% 74,19% 83,87% 45,39% 70,97% 
Gaussian Naive Bayes 83,87% 74,20% 77,42% 74,19% 83,87% 87,10% 80,65% 77,42% 54,84% 

Kernel Naive Bayes 87,10% 77,42% 87,10% 90,32% 83,87% 87,10% 90,32% 87,10% 80,65% 
Subspace Discriminant 64,52% 64,52% 70,97% 67,74% 58,06% 83,87% 80,65% 58,06% 70,97% 

 
Table 7. SVM Accuracies for DST 

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Linear SVM 64,52% 70,97% 70,97% 70,97% 54,84% 80,65% 83,87% 58,06% 58,06% 

Quadratic SVM 70,97% 70,97% 67,74% 74,19% 51,61% 83,87% 83,87% 61,29% 61,29% 
Cubic SVM 70,97% 74,19% 74,19% 70,97% 51,61% 87,10% 83,87% 51,61% 67,74% 

Fine Gaussian SVM 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 
Medium Gaussian SVM 80,65% 80,65% 83,87% 83,87% 77,42% 83,87% 87,10% 67,74% 83,87% 

Coarse Gaussian SVM 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 

 
Table 8. k-NN Accuracies for DST 

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Fine k-NN 83,87% 80,65% 80,65% 74,19% 70,975 80,65% 80,65% 67,74% 74,19% 
Medium k-NN 61,29% 74,19% 67,74% 67,74% 58,06% 80,65% 77,42% 48,39% 67,74% 

Coarse k-NN 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 
Cosine k-NN 70,97% 80,65% 74,19% 67,74% 64,52% 83,87% 83,87% 51,61% 67,74% 

Cubic k-NN 70,97% 74,19% 64,52% 64,52% 61,29% 74,19% 77,42% 41,94% 64,52% 

Weighted k-NN 74,19% 80,65% 80,65% 70,97% 64,52% 77,42% 80,65% 48,39% 70,97% 
Subspace k-NN 80,65% 74,19% 77,42% 80,65% 77,42% 80,65% 80,65% 77,42% 77,42% 

 
In the last experiments, SST and DST data were combined and the same training regime was applied to the classifiers. 
Tables 9, 10, 11, and 12 summarize the results of the last experiments. Once more, the best result was obtained by 
Kernel Naïve Bayes. The best accuracy, 90,32%, was the same as the DST trials. In this experiment, the redundant 
feature was the Z parameter again. These tables further illustrate the substantial importance of the Pressure feature 
in PD detection. Without the inclusion of Pressure, the performance drops to as low as 50%. 
 

Table 9. Decision Trees Accuracies for SST + DST 
 w/ all 

Features 
w/o X w/o Y w/o Z 

w/o 
Pressure 

w/o Grip 
Angle 

w/o Z-
Grip 

w/o Z-
Pressure 

w/o XYZ 

Fine Tree 88,71% 80,65% 88,71% 88,71% 50,00% 87,10% 87,10% 50,00% 79,03% 
Medium Tree 88,71% 80,65% 88,71% 88,71% 50,00% 87,10% 87,10% 50,00% 79,03% 

Coarse Tree 88,71% 80,65% 88,71% 88,71% 51,61% 87,10% 87,10% 51,61% 80,64% 
Boosted Trees 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 

Bagged Trees 87,10% 87,10% 82,25% 87,10% 88,71% 83,87% 83,87% 85,48% 83,87% 
RUSBoosted Trees 82,26% 74,19% 70,97% 82,26% 75,81% 83,87% 83,87% 69,35% 72,58% 
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Table 10. Discriminant & Regression and Bayesian Accuracies for SST + DST 
 w/ all 

Features 
w/o X w/o Y w/o Z 

w/o 
Pressure 

w/o Grip 
Angle 

w/o Z-
Grip 

w/o Z-
Pressure 

w/o XYZ 

Linear Discriminant 67,74% 72,58% 66,13% 59,67% 59,67% 82,26% 79,03% 59,67% 56,45% 

Logistic Regression 54,84% 67,74% 64,52% 61,29% 48,39% 72,58% 70,97% 90,32% 56,45% 
Gaussian Naive Bayes 72,58% 70,97% 82,26% 66,13% 79,03% 80,65% 62,90% 67,74% 37,09% 

Kernel Naive Bayes 85,48% 80,65% 80,65% 90,32% 83,87% 87,10% 88,71% 83,87% 67,74% 
Subspace Discriminant 75,81% 77,42% 75,81% 75,80% 67,74% 83,87% 83,87% 61,29% 75,81% 

 
Table 11. SVM Accuracies for SST + DST 

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Linear SVM 75,81% 75,81% 74,19% 74,19% 56,45% 85,48% 83,87% 51,61% 70,97% 

Quadratic SVM 77,42% 75,81% 74,19% 74,19% 69,35% 85,48% 82,26% 46,77% 75,81% 
Cubic SVM 77,42% 75,81% 75,81% 72,58% 61,29% 83,87% 82,26% 56,45% 79,03% 

Fine Gaussian SVM 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 
Medium Gaussian SVM 83,87% 83,87% 83,87% 82,26% 83,87% 85,48% 82,26% 64,51% 82,26% 

Coarse Gaussian SVM 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 

 
 Table 12. K-NN Accuracies for SST + DST  

 w/ all 
Features 

w/o X w/o Y w/o Z 
w/o 

Pressure 
w/o Grip 

Angle 
w/o Z-

Grip 
w/o Z-

Pressure 
w/o XYZ 

Fine k-NN 82,26% 80,65% 83,87% 74,19% 75,81% 80,65% 80,65% 59,67% 72,58% 
Medium k-NN 80,65% 82,26% 80,65% 74,19% 62,90% 79,03% 82,26% 51,62% 72,58% 

Coarse k-NN 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 83,87% 
Cosine k-NN 83,87% 83,87% 82,26% 79,03% 72,58% 82,26% 85,48% 58,06% 77,42% 

Cubic k-NN 79,03% 83,87% 77,42% 69,35% 54,84% 82,26% 82,26% 48,39% 70,97% 
Weighted k-NN 83,87% 83,87% 79,03% 74,19% 75,81% 80,65% 85,48% 58,06% 77,42% 

Subspace k-NN 80,65% 77,42% 79,03% 74,19% 77,42% 82,26% 83,87% 75,01% 79,03% 

 

To provide a comparison to future works on this subject, different performance metrics were calculated for the best 
results for each classifier (see Table 13). The metrics evaluated in this work are as follows.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
𝑥100    (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
𝑥100     (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
𝑥100     (5) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2𝑥 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)    (6) 

 
where, TP, TN, FP, FN correspond to the True Positive, True Negative, False Positive and False Negative respectively. 
  

Table 13. Performance Metrics for Static Spiral Test and Dynamic Spiral Test without Z  
 

Performance Metrics for Dynamic Spiral Test 
Performance Metrics for Static and Dynamic Spiral 

Test 
 

Fine Tree 
Medium 

Tree 
Coarse 

Tree 

Kernel 
Naïve 
Bayes 

Fine Tree 
Medium 

Tree 
Coarse Tree 

Kernel Naïve 
Bayes 

Accuracy 87,10% 87,10% 87,10% 90,32% 88,71% 88,71% 88,71% 90,32% 
Recall 92,31% 92,31% 92,31% 100,00% 98,08% 98,08% 98,08% 96,15% 
Precision 92,31% 92,31% 92,31% 89,66 89,47% 89,47% 89,47% 92,59% 
F1-Score 92,31% 92,31% 92,31% 94,55% 93,58% 93,58% 93,58% 94,34% 

 

Figure 3 summarizes the comparison of relevant studies and the proposed method for PD diagnosis, which is the 
Kernel Naïve Bayes algorithm that yields the highest results. 
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Figure 3. Performance Comparison of the Proposed Method with Related Works 

 
Table 14. Hyperparameter of the Algorithms 

Method Max # 
of 

splits 

Split 
Criterion 

Ensemble 
Method 

Learner 
Type 

# of 
learners 

Learning 
Rate 

Subspace 
Dimension 

Covariance 
Structure 

Fine Tree 100 Gini’s 
diversity 

index 

- - - - - - 

Medium Tree 20 Gini’s 
diversity 

index 

- - - - - - 

Coarse Tree 4 Gini’s 
diversity 

index 

- - - - - - 

Boosted Trees 20 - AdaBoost - 30 0,1 - - 
Bagged Trees 40 - Bag - 30 0,1 - - 
RUSBoosted Trees 20 - RusBoost - 30 0,1 - - 

Linear 
Discriminant 

- - - - - - - Full 

Logistic Regression - - - - - - - - 
Gaussian Naive 
Bayes 

- - - - - - - - 

Subspace 
Discriminant 

20  Subspace Discriminant 30 0,1 10 - 

Subspace k-NN 20  Subspace Nearest 
Neighbors 

30 0,1 10 - 

 
For all experiments, hyperparameters of the algorithms were presented in Tables 14 and 15. The Box Constraint Level 
parameter is crucial for SVM algorithms, and its variation can significantly impact performance. Therefore, in the 
context of this one-class classification problem, experiments were repeated using the SVM algorithm under conditions 
DST and SST + DST, specifically excluding the Z feature. It was observed that changes in this parameter did not have 
a positive effect on performance, as presented in Tables 16 and 17. 
 

While examining the results, one can claim that SVM and k-NN algorithms gave lower results for SST and DST 
regardless of the kernel used. The proposed method, Kernel Naïve Bayes, showed the highest results for both DST and 
combined data.  Therefore, one can conclude that a DST and a merged version of the tests were better for detecting 
Parkinson’s rather than a SST.  
 

When the features are considered, it is clearly seen that the Z and Z-Grip Angle parameters are the least 
important features. In most cases removing the Z parameter increased the accuracy of the SST data set. In 
some cases, removing the Z-Grip Angle gave a better result than removing the Z, but in general, removing 
the Z was better. For the DST data, it is seen that Z-Grip Angle is the most redundant feature. However, the 
same results were achieved by removing Z data for DST and combined data also. Therefore, these results 
concluded that the variations on z-axis are less significant for the diagnosis of Parkinson’s. Unlike the Z 
parameter, performance was negatively affected when Pressure was not used, which emphasizes the 
importance of the Pressure parameter in the diagnosis of Parkinson's disease.

90,32% 95,32% 92,38%
80%

95,29%

Related WorksA
cc

u
ra

cy

Proposed Method (Kernel Naive Bayes)

Boltzman Machine Classifier (Thakur et al., 2023)

k-NN (Ayaz et al., 2023)

AdaBoost, Random Forest (Tandon and Verma, 2022)

Deep Transfer Learning (Abdullah et al., 2023)
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Table 15. Hyperparameter of the Algorithms 
Method Kernel Type Box 

Constraint 
Level 

Manual 
Kernel Scale 

Num of 
neighbors 

Distance Metric Distance Weight 

Kernel Naive 
Bayes 

Gaussian      

Linear SVM Linear 1     
Quadratic SVM Quadratic 1     
Cubic SVM Cubic 1     
Fine Gaussian 
SVM 

Gaussian 1 1,1    

Medium 
Gaussian SVM 

Gaussian 1 4,5    

Coarse 
Gaussian SVM 

Gaussian 1 18    

Fine k-NN    1 Euclidian Equal 
Medium k-NN    10 Euclidian Equal 
Coarse k-NN    100 Euclidian Equal 
Cosine k-NN    10 Cosine Equal 
Cubic k-NN    10 Minkowski Equal 
Weighted k-NN    10 Euclidian Squared Inverse 

 
Table 16. SVM Hyperparameters Comparison for DST Trials 

 Box Constraint Level=1 Box Constraint Level=2 Box Constraint Level=5 Box Constraint Level=10 

Linear SVM 70,97% 70,97% 70,97% 64,52% 
Quadratic SVM 74,19% 67,74% 70,97% 70,97% 
Cubic SVM 70,97% 70,97% 70,97% 70,97% 
Fine Gaussian SVM 83,87% 83,87% 83,87% 83,87% 
Medium Gaussian SVM 83,87% 83,87% 80,65% 80,65% 
Coarse Gaussian SVM 83,87% 83,87% 77,42% 67,74% 

 
Table 17. SVM Hyperparameters Comparison for SST + DST Trials 

 Box Constraint Level=1 Box Constraint Level=2 Box Constraint Level=5 Box Constraint Level=10 

Linear SVM 74,19% 74,19% 75,81% 75,81% 
Quadratic SVM 74,19% 70,97% 67,74% 67,74% 

Cubic SVM 72,58% 70,97% 66,13% 64,52% 
Fine Gaussian SVM 83,87% 83,87% 83,87% 83,87% 

Medium Gaussian SVM 82,26% 82,26% 80,65% 79,03% 

Coarse Gaussian SVM 83,87% 80,65% 75,81% 75,81% 

 

5. Conclusions and Discussions 
 
Parkinson's disease is one of the neurodegenerative diseases which affects people's quality of life negatively. Early 
detection of PD affects positively patients’ quality of life.  In this work, a PD diagnosis method based on motor abilities 
was presented. The data was obtained from a digital graphic tablet. Each patient performed two drawing tasks which 
are named as static spiral test and the dynamic spiral test. The drawings were recorded as X, Y and Z components of 
pen movement, Grip Angle, and Pressure. The PD patients' tremors can be seen on the shapes by eye on the drawings. 
Since the differences in the drawings will also be reflected in the data obtained from the tablet, the classification of 
this data may be a guiding factor in detecting PD.  
 
The aim of this study is to detect PD in a very simple way without the need for heuristic approaches and by using 
simple ML algorithms. In recent years, deep learning algorithms-based approaches to PD diagnosis have gained 
popularity. To our knowledge, deep networks usually produce better results than traditional ML methods. However, 
deep learning algorithms require a mass amount of data, greater processing power, and computation time, hence 
consuming more energy. Therefore, to be more energy-efficient, if possible, traditional methods should be preferred. 
 
In this work, PD diagnosis was made by using SST and DST data covering a total of 15 healthy and 57 people with PD. 
Regarding the results, the Kernel Naïve Bayes network outperformed other methods, with a performance of 90,32% 
with DST and merged data. The results can compete with the state of the art.  
 
By analyzing the results deeper, one can claim that the Z parameter is the least important feature. In most cases, 
removing the Z parameter increased the accuracy of the SST data set. The best results were obtained by removing Z 
data for DST and merging data. These results led us to conclude that variations in the z-axis are less significant for the 
diagnosis of Parkinson's. As a result, it is thought that it may be more appropriate to increase DST-like tests in the 
diagnosis of Parkinson's disease and to use these tests as an auxiliary tool in the diagnosis of the disease. While 
performing these tests, simpler hardware that does not measure the Z axis, such as a mobile phone or a personal 
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tablet, may be preferred for the diagnosis of PD.  
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