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ABSTRACT

In this paper, we consider simple rotational surfaces in the Euclidean 4-space E4 with the profile
curve contained in a 2-plane. In terms of having generalized 1-type Gauss map, we obtain some
classification results of minimal surfaces, flat simple rotational surfaces and simple rotational
surfaces with constant Gaussian curvature.
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1. Introduction

The first study on rotational surfaces in the Euclidean 4-space E4 was studied by F.N. Cole in [10]. The
obvious generalization of a surface of rotation in ordinary space is a surface left invariant by a rotation in four
dimensions, a rotation being defined as a linear transformation of positive determinant preserving distance
and leaving one point fixed [15]. Then, in the most general form in E4, a rotational surface is defined as

F (s, t) = (X1(s, t), X2(s, t), X3(s, t), X4(s, t)) (1.1)

where β(s) = (x(s), y(s), z(s), w(s)) is the profile curve and

X1(s, t) = x(s) cos at− y(s) sin at,

X2(s, t) = x(s) sin at+ y(s) cos at,

X3(s, t) = z(s) cos bt− w(s) sin bt,

X4(s, t) = z(s) sin bt+ w(s) cos bt

is the position vector of the rotational surface. Specifically, if a = 0, b = 1 and w(s) = 0, the equation (1.1) is
reduced to

F (s, t) = (x(s), y(s), z(s) cos t, z(s) sin t) (1.2)

and (1.2) is defined as a simple rotational surface in the space E4.
On the other hand, the definition of finite type submanifold in Euclidean spaces was given for the first time

by B.Y. Chen, while the subject of submanifolds in Euclidean space was studied, in order to define the total
mean curvature of compact submanifolds in Euclidean spaces and the concept of degree, and the studies on
this subject were published in his book [5]. By the definition, a map ϕ : M → En into a Euclidean space is said
to be finite type if it can be expressed as

ϕ = ϕ0 + ϕ1 + ϕ2 + . . .+ ϕk

for some eigenvectors ϕ0, ϕ1, ϕ2, . . . , ϕk of the Laplace operator ∆ of M , where ϕ0 ∈ En is a constant vector.
More precisely, if these eigenvectors are corresponding from k distinct eigenvalues of , then ϕ is said to be of
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k-type. Then, the definition of finite type map is given by using differentiable maps in the definition of finite
type submanifold and firstly studied in [7]. Specifically, by considering the Gauss map, definition of 1-type
Gauss map is defined as

∆ν = λ(ν + C)

After that, many studies on finite type Gauss map were studied in articles [3, 14, 19, 21, 23, 24]. Moreover, it
has been seen that this equation is provided not only for the constant λ, but also for a differentiable function f
in some cases, and therefore, in [18] Kim and Yoon definition of pointwise 1-type Gauss map is defined as

∆ν = f(ν + C).

Also, in this definition, it is defined as the first kind if C = 0 and as the second kind otherwise. Submanifolds
in Euclidean spaces with pointwise 1-type Gauss map were studied in [2, 8, 9, 11, 13, 25]. In the articles
[4, 6, 16, 17, 19], rotational surfaces were studied with pointwise 1-type Gauss map in Minkowski space. For
example, in the paper [22], simple rotational surfaces in E4 were examined. Then, a complete classification of
simple rotational surfaces with pointwise 1-type Gauss map of the first kind is made, and a classification
of simple rotational surfaces with pointwise 1-type Gauss map of the second kind provided that one of
the coordinate functions satisfies a third-order ordinary differential equation. In addition, in the article [12],
the classification of space-like rotational surfaces in E4

1 Minkowski space was given, and in the article [2],
necessary and sufficient conditions were determined for the flat Ganchev-Milousheva rotational surface to be
of pointwise 1-type Gauss map.

Recent studies have shown that some surfaces in E3 satisfying

∆ν = f1ν + f2C. (1.3)

This situation is understood to be neither 1-type nor pointwise 1-type Gauss map, and the equation (1.3) is
given to defined as a generalized 1-type Gauss map in [20, 26], where surfaces in E3 were studied. Note that
generalized 1-type Gauss map includes considering that it includes both 1-type and pointwise 1-type Gauss
map.

In this paper, the classification of simple rotational surfaces in space E4 is investigated in terms of having
a generalized 1-type Gauss map. First, the necessary conditions for simple rotational surfaces to have a
generalized 1-type Gauss map in space E4 are obtained. Then, it is shown that minimal surfaces do not have
a generalized 1-type Gauss map, but a second kind of pointwise 1-type Gauss map. It is also shown that
flat simple rotational surfaces whose profile curve is non-planar do not have a generalized 1-type Gauss map.
Finally, by obtaining the necessary and sufficient conditions for simple rotational surfaces of constant Gaussian
curvature for KG = 1, it is shown that surfaces of constant Gaussian curvature have a generalized 1-type Gauss
map.

2. Preliminaries

Let M be an oriented n-dimensional submanifold in En+2. We choose an oriented local orthonormal frame
{e1, e2, . . . , en+2} on M such that e1, e2, . . . , en are tangent to M and en+1, en+2 are normal to M . We use the
following convention on the range of indices, 1 ≤ i, j, k, . . . ≤ n, n+ 1 ≤ r, s, t, . . . ≤ n+ 2. Let ∇̃ be the Levi-
Civita connection of En+2 and ∇ the induced connection on M . Also, let ωAB be the connection forms defined
as ωAB(X) =

〈
∇̃XeA, eB

〉
and hr

ij denote the components of the second principal form h of the M submanifold,
i.e., we put

hr
ij = ⟨h(ei, ej), es⟩.

The Gauss and Weingarten formulas for the M submanifold can be given as

∇̃ekei =

n∑
j=1

ωij(ek)ej +

n+2∑
r=n+1

hr
iker

and

∇̃ekes = −
n∑

j=1

hs
jkej +

n+2∑
r=n+1

ωsr(ek)er.
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Similarly, the normal connection ∇⊥ of M is given by

∇⊥
ek
es =

n+2∑
r=n+1

ωsr(ek)er.

The mean curvature vector H and the squared length ∥h∥2 of the second fundamental form h are defined as
follows, respectively

H =
1

n

∑
i,r

hr
iier and ∥h∥2 =

∑
i,j,r

hr
ijh

r
ji.

The Codazzi equation of M in En+2 is given by

hr
ij,k = hr

jk,i,

hr
jk,i = ei(h

r
jk) +

n+2∑
s=n+1

hs
jkωsr(ei)−

n∑
γ=1

(
ωjγ(ei)h

r
γk + ωkγ(ei)h

r
jγ

)
.

The normal curvature tensor RD of M in En+2 is given by

RD (ej , ek; er, es) = ⟨[Aer , Aes ] (ej) , ek⟩ =
n∑

i=1

(
hr
ikh

s
ij − hr

ijh
s
ik

)
.

2.1. Simple Rotational Surfaces

In E4, the parameterization of a general rotational surface and a simple rotational surface is defined by (1.1)
and (1.2), respectively. Now, let M be a rotational surface given by (1.2) and we also consider the profile curve
β = (x, y, z, 0) of M and denote its curvature by κ. Without loss of generality, we assume that β is parametrized
by its arc-length; that is, the equation

(x′)2 + (y′)2 + (z′)2 = 1 (2.1)

is satisfied.
In this case, an orthonormal moving frame {e1, e2, e3, e4} on M is defined as

e1 =
∂

∂s
, e2 =

1

z

∂

∂t
, (2.2a)

e3 =
1

κ
(x′′, y′′, z′′ cos t, z′′ sin t), (2.2b)

e4 =
1

κ
(ρ1, ρ2, ρ3 cos t, ρ3 sin t) (2.2c)

where e1, e2 are tangent and e3, e4 are normal to M. Here, ρ1, ρ2 and ρ3 are differentiable functions which are
defined as,

(ρ1, ρ2, ρ3) = (y′z′′ − y′′z′, x′′z′ − x′z′′, x′y′′ − x′′y′) .

With a direct calculation, we obtain the connection forms of M and components of the second fundamental
form of M as

h3
11 = κ, h3

22 = − z′′

κz
, h3

12 = 0, (2.3)

h4
11 = 0, h4

12 = 0, h4
22 = − ρ3

κz
,

ω12(e1) = 0, ω12(e2) =
z′

z
,

ω34(e1) = τ, ω34(e2) = 0. (2.4)

Consequently, the shape operators of M has the matrix representation

A3 =

(
κ 0

0 − z′′

κz

)
and A4 =

(
0 0
0 − ρ3

κz

)
.
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From these matrices, the mean curvature vector H and the Gaussian curvature K of M are calculated as,
respectively

H =
(h3

11 + h3
22)

2
e3 +

h4
22

2
e4,

K = −z′′

z
.

The Codazzi and Gauss equations of a simple surface M are as follows [22]

e1(h
3
22) = ω21(e2)(h

3
22 − κ) + τh4

22,

e1(h
4
22) = h4

22ω21(e2)− τh3
22,

(ω21(e2))
′ = (ω21(e2))

2 + κh3
22.

3. Generalized 1-type Gauss map in Euclidean space Em

Let M be an n-dimensional submanifold of the Euclidean space Em. Consider the orthonormal frame field
{e1, e2, . . . , en} of the tangent bundle of M . Let us denote the space spanned by n vectors in the Euclidean space
Em by Λn(Em). Note that the dimension of the space Λn(Em) is

N =

(
m
n

)
.

Now, for any p ∈ M the n-vector given by (e1 ∧ e2 ∧ · · · ∧ en)p represents the n-plane in the space Em spanned
by the vectors {e1, e2, · · · , en}. The Gauss map ν of M is defined as the mapping that assigns to each point of
M the tangent plane at that point. In expression, we have

ν : M → EN

p → ν(p) = (e1 ∧ e2 ∧ · · · ∧ en)p .

Laplacian with respect to the reduced metric on the M submanifold is defined

∆ =

n∑
i=1

(∇eiei − eiei)

According to this definition, pointwise 1-type Gauss map and generalized 1-type Gauss map are defined as
follows.

Definition 3.1. Let M be an n-dimensional submanifold of the Euclidean space Em, and ν be the Gauss map of
this submanifold. M is said to have a pointwise 1-type Gauss map if the Gauss map, on M satisfies the equation

∆ν = f (ν + C) (3.1)

for a smooth function f and has a constant vector, C ∈ EN . Additionally, if the equation (3.1) satisfies for C = 0,
it has pointwise 1-type Gauss map of the first kind, if not, it has pointwise 1-type Gauss map of the second
kind.

Definition 3.2. Let M be an n-dimensional submanifold of the Em Euclidean space, and ν be the Gauss map
of this submanifold. M is said to have a generalized 1-type Gauss map if the Gauss map, on M satisfies the
equation

∆ν = f1ν + f2C (3.2)

for some smooth functions (f1, f2) and has a constant vector, C ∈ EN .

Now, we are going to consider the case when M is a surface in the Euclidean 4-space E4. Note that in this
Definition 3.2, the constant vector C ∈ Λ(4, 2) ≡ E6, we define cij by

cij = ⟨C, ei ∧ ej⟩. (3.3)
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Consequently, we have

C =
∑

1≤i<j≤4

cijei ∧ ej ,

Also, the calculation of the Laplacian of the Gauss map used in this definition is explained by the lemma
given below [7, Lemma 3.1].

Lemma 3.1. The Gauss map ν = e1 ∧ e2 of an oriented surface M in E4 satisfies the equation

∆ν = ∥h∥2 ν + 2RD(e1, e2; e3, e4)e3 ∧ e4 − 2(De1H ∧ e2 + e1 ∧De2H), (3.4)

where {e1, e2, e3, e4} is an orthonormal moving frame.

Theorem 3.1. A non-planar minimal oriented surface M in the Euclidean space E4 has pointwise 1-type Gauss map
of the second kind if and only if, with respect to some suitable local orthonormal frame {e1, e2, e3, e4} on M , the shape
operators of M are given by A3 = diag (ρ,−ρ) and A4 = adiag (±ρ,±ρ), where ρ is a smooth non-zero function on M
and adiag (a, b) means a 2× 2 anti-diagonal matrix [11].

Now that we will classify minimal surfaces in E4 with generalized 1-type Gauss map by using the above
theorem.

Theorem 3.2. Let M be a minimal surface in E4. If M has a generalized 1-type Gauss map, then it is pointwise 1-type.

Proof. Let’s assume that M is the minimal surface in E4. In this case, trA3 = 0 and trA4 = 0, where the shape
operators A3 and A4 are defined as follows

A3 =

(
h3
11 0
0 h3

22

)
and A4 =

(
h4
11 h4

12

h4
12 h4

22

)
In this case, for ν = e1 ∧ e2, equation (3.4) is reduced to

∆ν = ∥h∥2 ν + 2RD(e1, e2; e3, e4)e3 ∧ e4

Suppose, M has a generalized 1-type Gauss map. Since the M will provide the equation (1.3), with f1, f2
differentiable functions and C being a constant vector, the following expressions can be written

f1 + f2c12 = ∥h∥2 ,
f2c34 = 2h4

12

(
h3
22 − h3

11

)
and

C = c12e1 ∧ e2 + c34e3 ∧ e4. (3.5)

With the help of equation (3.5), it is understood that c13 = c14 = c23 = c24 = 0. In addition, the equations and
equalities obtained with the help of the conditions that the C vector must meet to be constant are given as,

ei(c12) = 0, ei(c34) = 0 (3.6)

h4
11c12 = 0, h4

22c12 = 0

h3
11c34 = h4

12c12 (3.7)

h4
12c34 = h3

11c12 (3.8)

Since the coefficients c12 and c34 must be nonzero constants from equations (3.6), it is understood that
h4
11 = h4

22 = 0. Also, since h3
11 = ϵh4

12 from equations (3.7) and (3.8), the shape operators of surface M are as
follows

A3 =

(
h3
11 0
0 −h3

11

)
and A4 =

(
0 ϵh3

11

ϵh3
11 0

)
From this, it is understood that the surface M has a pointwise-type 1-type Gauss map.
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4. Simple rotational surfaces with Generalized 1-type Gauss map

In this section, it will be investigated whether the Gauss map ν = e1 ∧ e2 of simple rotational surfaces satisfies
the condition (1.3). For this, assume that M is a rotational surface in E4 parametrized by (1.2) and that it has
the orthonormal moving frame {e1, e2, e3, e4} given in (2.2).

Lemma 4.1. Let M be an oriented simple rotational surface given by parametrization (4.0.1) with Gauss map ν = e1 ∧ e2
at E4. In this case, the surface M satisfies the equation

△ν = ∥h∥2 ν + (e1(h
3
11) + h3

11ω12(e2)− h3
22ω12(e2))e2 ∧ e3

+(h3
11ω34(e1)− h4

22ω12(e2))e2 ∧ e4
(4.1)

Here, the vector fields e1, e2, e3 and e4 are the orthormal moving frame of the surface M.

Proof. In the equation (3.4), (4.1) is obtained by direct calculation using the parametric values (2.3)-(2.4).

Remark 4.1. From lemma (4.1), the normal curvatures of simple rotational surfaces in E4 are always equal
to zero. Therefore, if a surface M is a minimal surface or a surface whose mean curvature vector is parallel,
△ν = ∥h∥2 ν, and since the surface M has a pointwise 1-type Gauss map, these cases will not be studied in this
paper.

Proposition 4.1. Let M be a rotational surface in E4 given by (1.2) with generalized 1-type Gauss map. Then, the
functions f1, f2 and the constant vector C in (1.3) satisfy

f1 + f2c12 = ∥h∥2 , (4.2)

f2c23 = −e1(h
3
11) + h3

11ω12(e2) + h3
22ω12(e2), (4.3)

f2c24 = −h3
11ω34(e1) + h4

22ω12(e2), (4.4)

e1(c12) = −h3
11c23, (4.5)

e1(c23) = h3
11c12 + ω34(e1)c24, (4.6)

e1(c24) = −ω34(e1)c23, (4.7)

and
−h3

22c12 + ω12(e2)c23 = 0, (4.8)

−h4
22c12 + ω12(e2)c24 = 0, (4.9)

h4
22c23 − h3

22c24 = 0 (4.10)

where the functions cij , 1 ≤ i < j ≤ 4 are defined by (3.3).

Proof. Assume that the Gauss map ν = e1 ∧ e2 of M is generalized 1-type, i.e., the equation (1.3) is satisfied
for some differentiable functions f1, f2 and a constant vector C. Then, by combining (1.3) and (3.4) and inner
product both sides of this equation with e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4 and e3 ∧ e4 at the same time
considering that the functions h3

11, h3
22 depend only on s and RD = 0, we get (4.2)-(4.4). Also, by applying the

e1 derivative to equation (3.3), the equations (4.5)-(4.7) are obtained and by applying the e2 derivative, we get

ω12(e2)c23 = h3
22c12

ω12(e2)c24 = h4
22c12

and
h4
22c23 = h3

22c24

Thus, equations (4.8) and (4.9) are obtained.

Remark 4.2. It was shown by theorem (3.2) that in Euclid space E4, minimal surfaces do not have a generalized
1-type Gauss map, but a second kind of pointwise 1-type Gauss map. Therefore, since minimal general general
rotational surfaces in Euclid space E4 will not have a generalized 1-type Gauss map, the minimality will not be
studied.

53 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Simple Rotational Surfaces in Euclidean 4-Space with Generalized 1-type Gauss Map

Now, it will be shown that the conditions (4.5)-(4.10) that must be satisfied for the vector C in the proposition
(4.1) to be constant are equivalent to the lemma given below. The proof of the lemma given below will be given
in a similar way to the proof given in N. C. Turgay’s doctoral thesis [22].

"The surface M remain completely in E4" means that M is not a surface of E3, that is, any component of the
position vector of M is not constant.

Lemma 4.2. Let M be a simple rotational surface with a generalized 1-type Gauss map given by the parameterization
(1.2) which the surface M remain completely in E4. In this case, for the vector C in (1.3) to be constant

h4
22c23 − h3

22c24 = 0, (4.11)

−h4
22c12 + ω12(e2)c24 = 0, (4.12)

e1(c24) = −ω34(e1)c23 (4.13)

equations must be satisfied.

Proof. Since the surface M remain completely in E4, we have h4
22 ̸= 0. Moreover, since the surface M has a

generalized 1-type Gauss map, the differentiable functions f1 and f2 and the constant vector C satisfy the
conditions (4.2)-(4.10). Here, if the equations (4.9) and (4.10) are multiplied by h3

22 and ω12(e2), respectively and
the resulting equations are subtracted side by side

h4
22(h

3
22c12 − ω12(e2)c23) = 0 (4.14)

equation is found. Since h4
22 ̸= 0, from (4.14) we have

h3
22c12 − ω12(e2)c23 = 0. (4.15)

Thus, from (4.11) and (4.12) we obtain (4.8).
If we take the derivative of (4.11) with respect to s we get

e1(h
4
22)c23 + h4

22e1(c23) = e1(h
3
22)c24 + h3

22e1(c24).

If the Codazzi equations and (4.13) are used in the above equation, we have the following equation

(−h4
22ω12(e2)− h3

22ω34(e1))c23 + h4
22e1(c23) = (ω12(e2)(h

3
11 − h3

22) + h4
22ω34(e1))c24 − h3

22ω34(e1)c23

is obtained. If we use equations (4.12) and (4.13) and make the necessary simplifications

h4
22(e1(c23)− h3

11c12 − ω34(e1)c24) = 0

is obtained. Hence, since h4
22 ̸= 0, the equation (4.6) is obtained.

Similarly, if we take the derivative of the equation (4.12) with respect to the parameter s

e1(h
4
22)c12 + h4

22e1(c12) = e1(ω12(e2))c24 + ω12(e2)e1(c24)

(−h4
22ω12(e2)− h3

22ω34(e1))c12 + h4
22e1(c12) = (−(ω12(e2))

2 − h3
11h

3
22)c24 + ω12(e2)(−ω34(e1)c23)

is obtained. In this last equation, if the necessary operations and simplifications are made using equations (4.12)
and (4.15), we have

h4
22(e1(c12) + h3

11c23) = 0

and since h4
22 ̸= 0, the equation (4.5) is obtained. Thus the proof is completed.

Theorem 4.1. Let M be a flat simple rotational surface which is the surface M remain completely in E4, parametrized
by (1.2) and with a profile curve that is not planar. In this case, the surface M can’t have a generalized 1-type Gauss map.

Proof. Since the simple rotational surface M is flat, KG = 0, so z′′ = 0 and can be expressed as z(s) = a1s+ a2.
Moreover, since z(s) = a1s+ a2, the β profile curve and its derivative are expressed as

β(s) = (x(s), y(s), a1s+ a2, 0)

and
β′(s) = (x′(s), y′(s), a1, 0) .

dergipark.org.tr/en/pub/iejg 54

https://dergipark.org.tr/en/pub/iejg


N. C. Turgay, M. Sağdiç & E. Kılıç

Since β curve is arc-length, we obtain that
x′2 + y′2 + a21 = 1 (4.16)

and since z ̸= 0 it must be 0 < |a1| < 1, the equation (4.16) can be expressed as

x′2 + y′2 = 1− a21. (4.17)

From the equation (4.17), with θ = θ(s) a differentiable function, x′ and y′ are written as

x′ =
√

1− a21 cos θ,

y′ =
√

1− a21 sin θ.

Thus, β′, β′′ and β′′′ are written as

β′ =

(√
1− a21 cos θ,

√
1− a21 sin θ, a1

)
,

β′′ =

(
−
√

1− a21θ
′ sin θ,

√
1− a21θ

′ cos θ, 0

)
and

β′′′ =

(
−
√

1− a21θ
′′ sin θ,

√
1− a21θ

′′ cos θ, 0

)
+

(
−
√

1− a21(θ
′)2 cos θ,−

√
1− a21(θ

′)2 sin θ, 0

)
The curvature and torsion of curve β are calculated as

κ = −
√

1− a21θ
′,

τ = a1θ
′.

So we have the following relation between τ and κ

τ =
a1√
1− a21

κ.

Thus, the second fundemantal form and the connection forms of M can be written as

h3
11 = c(a1s+ a2), h3

22 = 0, h4
22 = −

√
1− a21

a1s+ a2
, (4.18)

ω12(e2) =
a1

a1s+ a2
, ω34(e1) =

a1c(a1s+ a2)√
1− a21

. (4.19)

In this case, it is found as c23 = 0 from the equation (4.3). Then, the (4.5)-(4.10) equations are reduced to the
following equations

ei(c12) = 0, ei(c24) = 0,

ω12(e2)c24 − h4
22c12 = 0, (4.20)

h3
11c12 + ω34(e1)c24 = 0. (4.21)

Accordingly, it is sufficient to provide (4.20) and (4.21). This system of two equations can be expressed in matrix
form (

−h4
22 ω12(e2)

h3
11 ω34(e1)

)(
c12
c24

)
= 0.
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In this matrix, since both coefficient functions c12 and c24 can not be zero, −h4
22ω34(e1)− h3

11ω12(e2) = 0 must
be. In this case, if (4.18) and (4.19) are substituted in (4.20), we have

c24 = −
√

1− a21
a1

c12.

So, it is understood that both the coefficient functions c12 and c24 are nonzero constants. In this case, the
differentiable functions f1 and f2 are found as

f1 = (1− 2a21)

[
c2(a1s+ a2)

2

1− a21
+

1

(a1s+ a2)2

]
,

f2 = a21

[
c2(a1s+ a2)

2

1− a21
+

1

(a1s+ a2)2

]
.

Since f2 = c0f1 is obtained from these equations, the surface M has not the generalized 1-type Gauss map.

Now, we will investigate the case where simple surfaces of revolution with constant Gaussian curvature have
a generalized type-1 Gaussian transformation. In [2] Arslan et al. showed that for a simple rotation surface
which is the surface M remain completely in E4 to have a second kind of pointwise 1-type Gauss map in E4, it
must be congruent to a helicoidal surface of revolution with the position vector

F (s, t) =

( √
1− z20

z0(1 + q20)
z(s) (q0 sin(q0 ln |z(s)|) + cos(q0 ln |z(s)|)) ,√

1− z20
z0(1 + q20)

z(s) (sin(q0 ln |z(s)|)− q0 cos(q0 ln |z(s)|)) s, (4.22)

z(s) cos t, z(s) sin t)

where z(s) = z0s+ z1 and q0 ̸= 0, z0, |z0| < 1 and z1 are real constants. We note that this surface is flat.

Lemma 4.3. Let M be a simple rotational surface of constant Gauss curvature, given by the position vector (1.2) which is
the surface M remain completely in E4. A necessary and sufficient condition for the surface M to have a pointwise 1-type
Gauss map of the second kind is that the rotational surface M is congruent to the surface given by the position vector
(4.22). Furthermore, for f =

q20z
2
0+1

(z(s))2 and C = −
√

1− z20z0e1 ∧ e3 − z20e3 ∧ e4, the helical rotational surface given by the
position vector (4.22) satisfies the equation ∆ν = f(ν + C) with ν = e3 ∧ e4 [22].

It will now be shown by the following theorem that for a value of KG ̸= 0, the simple rotational surface will
have a generalized 1-type Gauss map. For this, since the Gauss curvature of M surface is constant, we can take
KG = K0. Hence, it can be written as z′′ = K0z. Also, if necessary simplifications are made in equation (4.10)
by taking the parametric values of h3

22 and h4
22

ρ3c23 = z′′c24 (4.23)

is obtained. Both sides of this equation are multiplied by the function f2 and the obtained equation is used in
equations (4.3) and (4.4),

ρ3
(
e1(h

3
11) + h3

11ω12(e2)− h3
22ω12(e2)

)
= z′′

(
h3
11ω34(e1)− h4

22ω12(e2)
)

(4.24)

is obtained. In this obtained equation (4.24), if (2.3)-(2.4) values are replaced and necessary adjustments are
made,

τ =
(κz′ + κ′z)

κz

ρ3
z′′

(4.25)

is obtained. Also, using equation (4.23)

τ =
(κz′ + κ′z)

κz

c24
c23

(4.26)

is obtained. Thus, in equation (4.7), using equation (4.26), we have

e1(c24) = −ω34(e1)c23 = − (κz′ + κ′z)

κz

c24
c23

c23,
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or

e1(c24)

c24
= − (κz′ + κ′z)

κz
= −

(
z′

z
+

κ′

κ

)
(4.27)

and c24 is obtained by solving the differential equation (4.27). Also, using c24 in equation (4.23), we obtain c23
and using equation (4.9), we obtain c12 as follows

c12 = −c1z
′

ρ3z
, c23 =

c1z
′′

ρ3κz
, c24 =

c1
κz

(4.28)

is obtained and the functions f2 and f1 are obtained by using equations (4.4) and (4.2), respectively

f2 =
κ2z2τ + ρ3z

′

c1z
(4.29)

and

f1 = ∥h∥2 + (κ2z2τ + ρ3z
′)z′

ρ3z2
. (4.30)

In this case, when the torsion of the profile curve β(s) is equal to (4.25), the simple rotational surface of constant
Gaussian curvature has generalized 1-type Gauss map.

Now, with the help of the following theorem, it will be shown that since the torsion of the profile curve is
equal to (4.25), the simple rotational surface with constant Gaussian curvature obtained with this profile curve
has a generalized 1-type Gauss map.

Theorem 4.2. Let M be a simple rotational surface in space E4 with KG = 1 constant Gaussian curvature given by
parameterization (1.2). Also, the profile curve of the surface M is a arc-length curve β(s) = (x(s), y(s), cos s, 0) and the
coordinate functions x(s) and y(s) are

x′2 + y′2 = cos2 s

and with the differentiable function θ = θ(s) be defined as

x′ = cos s cos θ

y′ = cos s sin θ.

In this case, the necessary and sufficient condition for the surface M to have a generalized 1-type Gauss map is that the
function θ(s) satisfies the differential equation

(θ′2 cos2 s− 1)(θ′′ cos s− θ′ sin s) = 0.

Proof. By assumption, KG = 1. For this, we can take the profile curve of the surface M as β(s) =
(x(s), y(s), cos s, 0). In this case, β′(s) = (x′(s), y′(s),− sin s, 0) and since the curve β has unit speed

x′2 + y′2 + sin2 s = 1

x′2 + y′2 = cos2 s

is obtained. Hence, for θ = θ(s), x′ and y′ are expressed as

x′ = cos s cos θ

y′ = cos s sin θ.

In this case,

β′(s) = (cos s cos θ, cos s sin θ,− sin s, 0)

β′′(s) = (− sin s cos θ − θ′ cos s sin θ,− sin s sin θ + θ′ cos s cos θ,− cos s, 0)

β′′′(s) = (− cos s cos θ(1 + θ′2) + sin θ(2θ′ sin s− θ′′ cos s),

− cos s sin θ(1 + θ′2) + cos θ(−2θ′ sin θ + θ′′ cos θ), sin s, 0)

and
κ(s) =

√
1 + θ′2 cos2 s.
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Since the torsion of the β curve is calculated as follows

τ(s) = − (β′ ∧ β′′(s)) · β′′′(s)

|κ|2

torsion of the β curve is obtained as

τ(s) =
θ′ sin s(2 + θ′2 cos2 s)− θ′′ cos s

1 + θ′2 cos2 s
. (4.31)

Also, according to equation (4.25), the torsion is calculated as follows

τ(s) =
θ′(sin s+ θ′ cos2 s(2θ′ sin s− θ′′ cos s))

1 + θ′2 cos2 s
. (4.32)

By equating (4.31) and (4.32), the differential equation is obtained as follows

(θ′2 cos2 s− 1)(θ′′ cos s− θ′ sin s) = 0.

From the solution of this differential equation, θ(s) is found as follows

θ(s) = 2arc tanh
(
tan

s

2

)
. (4.33)

Thus, for the value of θ(s) in (4.33), the torsion of the profile curve is equal to (4.25), the surface M satisfies
the conditions (4.28)-(4.30), and for the vector C is a constant vector, the coefficient functions c12, c23, c24 are as
follows

c12 = c1 sec s tan s, c23 = −c1 sec s√
2

, c24 =
c1 sec s√

2
(4.34)

and also the vector C is expressed as follows,

C = c12e1 ∧ e2 + c23e2 ∧ e3 + c24e2 ∧ e4 (4.35)

Since for the vector C to be constant, the coefficient functions c12, c23 and c24 must satisfy the conditions
(4.11)-(4.13) according to lemma (4.2). It can be easily shown that these conditions are satisfied. Thus, for the
coefficients in (4.34), the constant vector C of the form (4.35) and

f1 = 4− (sec s)2

f2 =
sin s

c1

for differential functions f1 and f2 the simple rotational surface with Gaussian curvature KG = 1 has a
generalized 1-type Gauss map.
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