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Abstract: Induction motors are preferred in industrial applications due to their simple and
robust structure, cost-effectiveness, self-starting capability, high efficiency, and reliability.
However, faults like broken rotor bars occasionally encountered in these motors can lead to
reduced performance and increased operating costs. Deep learning models are increasingly
being used for the early detection of such faults. These models can recognize complex
patterns in motor data to identify potential faults in advance, allowing for timely intervention,
extending motor life, and ensuring production continuity. In this study, the diagnosis of
broken rotor bars in induction motors was performed using four different deep learning
models. Binary classification was conducted based on images obtained from current signals
using a pre-existing dataset. The study achieved over 90% accuracy, thereby proving the
effectiveness of deep learning models on induction motors.

Kirik Rotor Cubugu Arizalarinin Belirlenmesinde Derin Ogrenme Yaklasimlar: ve Motor

AKkim imza Analizi

Anahtar Kelimeler
Asenkron Motor,
Ariza Teghisi,

Kirik Rotor
Cubugu,

Vision Transformer
Model,

Goriintii Isleme

Oz: Asenkron motorlar, endiistriyel uygulamalarda sagladiklar1 basit ve saglam yapi, maliyet
etkinligi, kendiliginden baslama kabiliyeti, yiiksek verimlilik ve giivenilirlik gibi avantajlarla
tercih edilir. Ancak, bu motorlarda zaman zaman karsilagilan kirik rotor ¢ubugu gibi arizalar,
performans diisiikliigiine ve isletme maliyetlerinin artmasina neden olabilir. Bu tiir arizalarin
erken teshisi i¢in derin 6grenme modelleri giderek daha fazla kullanilmaktadir. Bu modeller,
motor verilerinden karmasik desenleri tantyarak potansiyel arizalart énceden belirleyebilir,
boylece zamaninda miidahale ile motor 6mrii uzatilabilir ve liretim siirekliligi saglanabilir. Bu
calisma dort farkli derin 6grenme modeli kullanilarak asenkron motorlardaki kirik rotor
gubugu teshisi gerceklestirilmistir. Hazir veri seti kullanilan ¢aligsmada akim sinyalleri ile elde
edilen goriintiiler tizerinden ikili siniflandirma yapilmistir. Yapilan galisma sonucunda %90
tizerinde bagsarim saglanmistir. Boylece derin 6grenme modellerinin asenkron motorlar
tizerinde etkinligi kanitlanmistir.

1. INTRODUCTION

inner component known as the rotor, and these currents
produce the torque that causes the rotor to start rotating.

Induction motors are efficient and economical devices
that are particularly preferred in industrial applications
among electric motors. These motors primarily consist of
two main components: the stator and the rotor. The
stator, located on the outer part of the motor, comprises
windings powered by alternating current (AC). When
AC is applied, the stator generates a variable magnetic
field. This magnetic field induces electric currents in the

However, the rotor cannot fully synchronize with the
speed of the stator's magnetic field, a phenomenon
known as "slip." This characteristic of the motor gives it
the name "asynchronous."

The simple structure, low cost, and minimal maintenance
requirements of induction motors make them ideal for a
wide range of applications. They are particularly widely
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used in equipment such as pumps, fans, air compressors,
and conveyor belts, where high reliability and resistance
to overload conditions are required. These motors are
indispensable elements of industrial automation systems
and reduce operational costs by providing energy
efficiency [1-4].

Fault types encountered in induction motors generally
develop due to mechanical, electrical, or environmental
factors. Mechanical issues include bearing damage, shaft
bending, and coupling faults; these damages typically
result from insufficient lubrication, incorrect installation,
or overloading. Electrical faults directly affect the
motor's performance due to problems in the electrical
supply, such as phase imbalances, voltage drops, and
high harmonic content. Moreover, situations like short
circuits in the stator windings and overheating caused by
environmental factors can also shorten the motor's
lifespan and lead to insulation degradation. Broken rotor
bars, in particular, are one of the most severe mechanical
faults in induction motors. The breaking of rotor bars
causes the motor to vibrate abnormally, overheat, and
reduce energy efficiency. This type of damage usually
results from overloading, material fatigue, or installation
errors and can lead to significant performance reductions
in the motor. Preventing these issues through regular
maintenance and proper usage ensures that the motor
operates efficiently and has a long service life [4-6]. To
detect and classify the faults described, studies have
been conducted using vibration signals [7-20], current
signals [21-24], and frequency-based analyses [25].

The early detection of faults in induction motors is vital
for improving the motor's reliability and operational
efficiency. Various methods used for this purpose help
identify any potential issues by monitoring the motor's
condition. Vibration analysis reveals mechanical
problems by measuring the motor's abnormal vibrations,
while the thermography method detects overheating and
insulation problems by analyzing the temperature
distribution on the motor surface. Ultrasonic inspection
identifies cracks or structural degradation inside the
motor using ultrasonic waves, and oil analysis shows the
motor's internal wear condition by examining the metal
particles and chemical components in the motor oil.
Motor Current Signature Analysis (MCSA), in
particular, stands out in detecting electrical faults. By
evaluating abnormalities in the motor current, it
identifies critical issues such as stator winding damage
and broken rotor bars. The use of MCSA provides a
deeper analysis of electrical problems, offering more
detailed information compared to other methods and
playing a central role in motor maintenance strategies.
The effective use of these techniques not only reduces
repair and maintenance costs by identifying motor faults
at an early stage but also extends the motor's lifespan and
improves the overall system performance [26-27].

The use of MCSA method for fault diagnosis in
induction motors is quite common. For instance, Akkurt
and Arabaci (2019) utilized current signal analysis and
artificial neural networks to detect bearing faults in
induction motors. In their experiments, current signals

obtained from artificially damaged bearings were
examined and compared with signals from healthy
bearings. Statistical and spectral features were
determined, and the artificial neural network was trained,
enabling the classification of bearing faults with an
accuracy of 95.3% [28]. In their study, Kaya and Unsal
(2022) used artificial neural network models to detect
and classify various faults in a 3 kW wound-rotor
induction motor. The motor was tested with different
fault combinations and operated under full load. As a
result of the tests, the detection and classification of
multiple faults were achieved with an 87% success rate.
These results demonstrate that the proposed method can
be applied effectively [29]. These studies have shown
that MCSA is an effective tool for fault detection in
induction motors. Additionally, by combining it with
advanced techniques such as machine and deep learning,
the efficiency of this method can be further enhanced.

In this study, it has been shown that different deep
learning methods (Vision Transformer, gMLP, MLP
Mixer, FNet) can be successfully applied to current
signals for fault diagnosis in induction motors. Among
the methods used, the highest accuracy rate achieved
was between 100%.

2. METHODOLOGY
2.1. Data Collection

Our study was conducted using the publicly available
broken rotor bar dataset. This dataset contains electrical
and mechanical signals collected from three-phase
induction motors. The data was obtained through tests
conducted with varying degrees of broken bar faults in
the motor's rotor under different mechanical loads; the
dataset also includes data from a faultless rotor. The
induction motor used operates at 3-phase, 1 horsepower
(hp), 220/380V voltage, 4 poles, and a nominal speed of
1785 rpm. The experimental dataset contains four
different fault classes and one healthy condition class.
The data is organized according to load conditions at
torque values ranging from 0.5 to 4.0 Nm. A total of ten
experiments were conducted to create each data group.
In this paper, the phase current signal (la) was used for
analysis. The sampling frequency of the electrical signals
was set at 50 kHz, and that of the mechanical vibration
signals at 7600 Hz [30].

2.2. Classification
Models)

Algorithms (Deep Learning

2.2.1. Vision Transformer

Vision Transformer (ViT) is a deep learning model that
effectively works in visual tasks by dividing images into
fixed-size patches and processing these patches through
the attention mechanism of the Transformer. ViT, an
adaptation of the Transformer model originally
developed for natural language processing, performs at a
level comparable to the best available CNN models,
especially when trained on large-scale datasets. The
model creates visual representations by considering the
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global context,
processes [31-32].

providing comprehensive learning

2.2.2. gMLP

gMLP (Gated Multi-Layer Perceptron) is an artificial
neural network structure developed as an alternative to
Transformer models, incorporating gated units and not
relying on attention mechanisms. This model aims to
effectively capture interactions between data points by
adding gates that control information flow between
traditional multilayer perceptrons. gMLP is particularly
notable because it is more computationally efficient and
requires fewer parameters [33-34].

2.2.3. MLP-Mixer

MLP-Mixer is an innovative deep learning architecture
introduced by Google Brain that learns visual
representations solely wusing multilayer perceptrons
(MLPs) without resorting to attention mechanisms or
convolutional layers. The model first divides the image
into patches and then processes these patches using two
types of MLPs: one designed to capture interactions
across patches (along channels) and another within
patches (across patches). This approach allows the MLP-
Mixer to handle spatial and feature-based information
separately, and it can achieve high performance when
trained on large datasets [35-37].

2.2.4. F-Net

F-Net is a deep learning model that does not use an
attention mechanism but instead relies on Fourier
transformations. It replaces the computationally
expensive  self-attention layers of the original
Transformer model with simple Fourier transformation
operations, performing frequency analysis on the data.
This allows F-Net to offer a more computationally
efficient alternative for natural language processing and
other sequential modeling tasks. F-Net's performance
can approach that of models trained using attention
mechanisms in some tasks while operating much faster
and using fewer resources. The model's benefit is
particularly notable in large datasets and situations
requiring the processing of long sequences [38].

2.3. Performance Metrics

Deep learning performance metrics are used to
determine how models perform in classification or
regression tasks. Among these metrics: Accuracy shows
the percentage of correct predictions among all
predictions. Precision indicates how much of a predicted
class actually belongs to that class. Recall shows the
proportion of actual positives that were correctly
predicted. F1 Score is calculated as the harmonic mean
of precision and recall and represents the balanced
performance of the model. ROC Curve and AUC Value
evaluate a classifier's performance from a broader
perspective. In this study, metrics such as accuracy,
precision, recall, F1 score, and ROC AUC value were
used to measure the classification capabilities of deep

learning models. These metrics reveal the model's
overall accuracy, reliability, and efficiency in detail.
Accuracy, precision, recall formulas are given in
equations 1-3.

TP + TN

- 1

Accuracy =I5 TN ¥ FP 4 PN @
TP

isi = 2

Precision TP T FP 2)

TP
- 3
Recall TP T FN 3)

3. EXPERIMANTAL STUDIES

During the studies, powerful hardware resources were
used for data processing and model training.
Specifically, a computer with an Intel Xeon E5-2630 v3
processor and 64 GB RAM was chosen. For running
deep learning algorithms, the NVIDIA RTX A5000 GPU
with 45 GB RAM was utilized. The stages of reading
data from the dataset and processing images were carried
out using MATLAB, while the deep learning models
were implemented through the Python programming
language and its specialized libraries. This hardware and
software infrastructure ensured that the study was
conducted efficiently and effectively.

In this study, images were generated from the la current
signals in the dataset. The duration of each signal was set
to 18 seconds, and analysis was conducted using non-
overlapping windows of 1 second each, between 11 and
15 seconds. With this method, 400 time-frequency
representations were obtained for each class of la signals
under a 0.5 Nm load, resulting in a total of 2000
representations. These representations are presented in
Table 1 under five different groups. The image creation
process followed the procedural steps taken from the
experimental studies conducted by Disli and colleagues
in 2023 [39]. This method provided a detailed
framework for signal analysis and interpretation,
forming the basis of experimental studies.

Table 1. Time-Frequency Representations Obtained from la Data
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In the following sections of our study, we will evaluate
the performance of different deep learning models. In
this process, binary classification analysis was
performed using four different deep learning models.
Our dataset consists of images of healthy and unhealthy
rotor currents. In total, there are 400 healthy images
versus 1600 unhealthy images. This significant
imbalance could potentially lead to problems during
model training. To address this imbalance, the dataset
was restructured. First, 400 images of healthy rotor
currents were selected directly. From the unhealthy
group, 100 images were randomly selected from each of
the four different subgroups, all containing broken rotor
bars. With this selection, each unhealthy subgroup was
equally represented, resulting in a total of 400 unhealthy
images. Consequently, for binary classification analysis,
a balanced dataset containing an equal number of images
(400 each) from both healthy and unhealthy groups was
created. This approach allows the model to generalize
training data better and minimize biases that could arise
from imbalanced data distribution.

In our study, the deep learning models gMLP, MLP
Mixer, and FNet were used alongside ViT. Figure 2
shows the architecture of the ViT deep learning model.
In this model, images of 224x224 pixels are divided into
patches of 32x32 pixels. Each image contains a total of
49 patches, meaning that patches are repeated seven
times along each dimension of the image. Each patch
contains a total of 3,072 data points, indicating that each
pixel has three color channels, and thus each patch
contains 32x32x3 = 3,072 elements. These structural
details provide a fundamental framework for
understanding how the model processes images.
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Figure 1. Fault Detection Using the ViT Model

The other deep learning models we used in our study are
structurally similar deep learning models. Therefore, the
gMLP deep learning model, which achieved the highest
performance in our study, is shown in Figure 3. This
deep learning model resizes the input images to 512x512
pixels. The model extracts patches from these images
with a size of 32x32 pixels and works on each patch.
This patch size allows the image to be divided into
smaller, manageable parts, enabling the model to learn
more detailed and local features on these patches. In
total, (512 / 32)?, which is 256 patches are obtained from
each image, allowing the model to process a wider image
in more detail. Each patch is then transformed into a
256-dimensional embedding vector.

Patches Patch Embeddings

MLP & Classification
Block

Y
Blending Layers

Figure 2. Repreééntation of the gMLP model for fault diagnosis

The training process for all models lasted a total of 400
epochs. Additionally, a dropout rate of 20% was applied
to prevent overfitting of the model. These parameters
play a significant role in both the configuration and
training process of the model.

Table 2. The Loss and Accuracy graphs

hvwhm

Vision Transformer

gMLP

MLP

FNet

The Loss and Accuracy graphs of the models examined
are presented in Table 2. The Vision Transformer (ViT)
model accurately performed all classifications, as
documented by the Confusion Matrix. Additionally, this
model began to exhibit stable performance after
approximately the 100th epoch. When examining the
gMLP model, three healthy samples were mistakenly
classified as unhealthy. This model began to make stable
predictions from the 100th epoch but experienced
performance declines after the 250th epoch. The MLP
model, on the other hand, generally showed successful
performance, making accurate predictions after the 50th
epoch, but inconsistencies and performance declines
occurred after the 150th epoch. This situation was
confirmed by the Confusion Matrix, where four
unhealthy samples were classified as healthy, and three
healthy samples were classified as unhealthy. The FNeT
model stands out as the only model that did not show
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stable performance throughout the study. Due to the
fluctuations in both the accuracy and loss graphs of this
model, it was concluded that it did not demonstrate
sufficient performance in this study.

Table 3. Confusion Matrix Results of Deep Learning Models

Vision Transformer

MLP FNet

The confusion matrix results of the study are presented
in Table 3. In Table 4, the performance metrics for each
model have been calculated and interpreted according to
the following formulas. The Vision Transformer has
demonstrated excellent performance with 100%
accuracy, precision and recall.

. TP+TN  _  35+45 o o
Accuracy : TP+TN+FP+FN ~ 35+45+0+0 1.00 (%100%)
Precision : TPirP = e10 " 1.00 (%100%)

TP 35

Recall : =
TP+FN 3540

= 1.00 (%100%)

gMLP has demonstrated quite good performance with
an accuracy rate of 96.25%. The precision value is
92.1% and the recall value is 100%.

TP+TN 35+42 77
Accuracy : = =—= 09625
TP+TN+FP+FN §g+42+3+0 80
Precision : = =—==0921
T}T)P+FP 3535+3 38
e = 0, 0,
Recall : TN = 3e10 1.00 (%100%)

MLP is performing with an accuracy rate of 93.75%.
The precision value is 94.1% and the recall value is
91.4%.

TP+TN 32+43 75
Accuracy : = =—= 09375
TP+TN+FP+§"2N §>ZS+43+2+3 80
Precision : —— = ===10.941
T£P+FP 3232+2 32 34
Recall : = ===0914

TP+FN ~ 32+3 35

FNet is performing with an accuracy rate of 91.25%.
The precision value is 91.2% and the recall value is
88.6%.

TP+TN 31+42 _ 7735

Accuracy : = =—= 09125
TP+TN+FP+FN 5,11+4-2+3+4- 80
Precision : = ===0.912
T£P+FP 31+3 31 34
Recall : ===10.886

TP+FN ~ 31+4 35

Other metrics and all results are provided in Table 4.

Table 4. Performance Metrics of Deep Learning Models

Model Accuracy | precision | recall F1 Cohens | ROC
score | Kappa | AUC

Vision %100 1.00 1.00 1.00 1.00 1.00

Transformer

gMLP %096,25 0.921 1.00 0.959 0.925 0.967

MLP mixer %93,75 0.941 0.914 | 0.927 | 0.875 | 0.933

FNet %091,25 0.912 0.886 | 0.899 0.825 0.909

In Table 4, the performance metrics of four different
deep learning models—Vision Transformer, gMLP,
MLP and FNet are examined comparatively. The Vision
Transformer model achieved perfect values (1.00) in
accuracy, precision, and recall, with an accuracy rate of
100%. This indicates that the model classified all
examples in the test set flawlessly. The gMLP model
demonstrated very high performance with an accuracy
rate of 96.25%, achieving precision and recall values of
0.921 and 1.00, respectively. Additionally, it has a high
F1 score of 0.959 and a ROC AUC value of 0.967,
indicating the model's balance in classification and
overall success as a classifier. The MLP model, with an
accuracy of 93.75%, precision of 0.941, and recall of
0.914, showed slightly lower performance compared to
the gMLP model. Nevertheless, the F1 score of 0.927
and the ROC AUC value of 0.933 indicate that the
model is still a strong classifier. The FNet model, which
performed lower than the other three models, has an
accuracy rate of 91.25%. However, its precision value of
0.912 shows a high level of correct positive predictions.
The recall value of 0.886 indicates a weakness in
detecting positive class examples, while the F1 score of
0.899 and the ROC AUC value of 0.909 demonstrate
that the model can still deliver acceptable performance
under limited conditions.

4. RESULTS

Bu In this study, deep learning models that have recently
gained prominence such as ViT, gMLP, MLP Mixer, and
FNet were used to perform fault diagnosis on a
preprocessed dataset based on current information from
electrical motors. These data were analyzed to classify
motor conditions as "healthy” and "unhealthy".
Experimental results indicated that the Vision
Transformer model outperformed the other models; this
observation is supported by the stability of the model
and its remarkable accuracy rate of 100%. These
findings suggest that Vision Transformer is a promising
candidate for real-time fault diagnosis applications in
electric motors. Particularly, the role this technology
could play in the development of real-time fault
detection and preventive maintenance strategies could
enhance efficiency in industrial processes, thus reducing
operational costs. Further studies aim to explore in more
detail how effective this model can be under real-world
conditions using current and vibration data obtained
from asynchronous motors. This could provide valuable
insights not only for fault diagnosis but also for process
optimization and resource management.
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