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Abstract: Induction motors are preferred in industrial applications due to their simple and 

robust structure, cost-effectiveness, self-starting capability, high efficiency, and reliability. 

However, faults like broken rotor bars occasionally encountered in these motors can lead to 

reduced performance and increased operating costs. Deep learning models are increasingly 

being used for the early detection of such faults. These models can recognize complex 

patterns in motor data to identify potential faults in advance, allowing for timely intervention, 

extending motor life, and ensuring production continuity. In this study, the diagnosis of 

broken rotor bars in induction motors was performed using four different deep learning 

models. Binary classification was conducted based on images obtained from current signals 

using a pre-existing dataset. The study achieved over 90% accuracy, thereby proving the 

effectiveness of deep learning models on induction motors. 
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Öz: Asenkron motorlar, endüstriyel uygulamalarda sağladıkları basit ve sağlam yapı, maliyet 

etkinliği, kendiliğinden başlama kabiliyeti, yüksek verimlilik ve güvenilirlik gibi avantajlarla 

tercih edilir. Ancak, bu motorlarda zaman zaman karşılaşılan kırık rotor çubuğu gibi arızalar, 

performans düşüklüğüne ve işletme maliyetlerinin artmasına neden olabilir. Bu tür arızaların 

erken teşhisi için derin öğrenme modelleri giderek daha fazla kullanılmaktadır. Bu modeller, 

motor verilerinden karmaşık desenleri tanıyarak potansiyel arızaları önceden belirleyebilir, 

böylece zamanında müdahale ile motor ömrü uzatılabilir ve üretim sürekliliği sağlanabilir. Bu 

çalışma dört farklı derin öğrenme modeli kullanılarak asenkron motorlardaki kırık rotor 

çubuğu teşhisi gerçekleştirilmiştir. Hazır veri seti kullanılan çalışmada akım sinyalleri ile elde 

edilen görüntüler üzerinden ikili sınıflandırma yapılmıştır. Yapılan çalışma sonucunda %90 

üzerinde başarım sağlanmıştır. Böylece derin öğrenme modellerinin asenkron motorlar 

üzerinde etkinliği kanıtlanmıştır. 

 

 

1. INTRODUCTION 

 

Induction motors are efficient and economical devices 

that are particularly preferred in industrial applications 

among electric motors. These motors primarily consist of 

two main components: the stator and the rotor. The 

stator, located on the outer part of the motor, comprises 

windings powered by alternating current (AC). When 

AC is applied, the stator generates a variable magnetic 

field. This magnetic field induces electric currents in the 

inner component known as the rotor, and these currents 

produce the torque that causes the rotor to start rotating. 

However, the rotor cannot fully synchronize with the 

speed of the stator's magnetic field, a phenomenon 

known as "slip." This characteristic of the motor gives it 

the name "asynchronous." 

 

The simple structure, low cost, and minimal maintenance 

requirements of induction motors make them ideal for a 

wide range of applications. They are particularly widely 
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used in equipment such as pumps, fans, air compressors, 

and conveyor belts, where high reliability and resistance 

to overload conditions are required. These motors are 

indispensable elements of industrial automation systems 

and reduce operational costs by providing energy 

efficiency [1-4]. 

 

Fault types encountered in induction motors generally 

develop due to mechanical, electrical, or environmental 

factors. Mechanical issues include bearing damage, shaft 

bending, and coupling faults; these damages typically 

result from insufficient lubrication, incorrect installation, 

or overloading. Electrical faults directly affect the 

motor's performance due to problems in the electrical 

supply, such as phase imbalances, voltage drops, and 

high harmonic content. Moreover, situations like short 

circuits in the stator windings and overheating caused by 

environmental factors can also shorten the motor's 

lifespan and lead to insulation degradation. Broken rotor 

bars, in particular, are one of the most severe mechanical 

faults in induction motors. The breaking of rotor bars 

causes the motor to vibrate abnormally, overheat, and 

reduce energy efficiency. This type of damage usually 

results from overloading, material fatigue, or installation 

errors and can lead to significant performance reductions 

in the motor. Preventing these issues through regular 

maintenance and proper usage ensures that the motor 

operates efficiently and has a long service life [4-6]. To 

detect and classify the faults described, studies have 

been conducted using vibration signals [7-20], current 

signals [21-24], and frequency-based analyses [25]. 

 

The early detection of faults in induction motors is vital 

for improving the motor's reliability and operational 

efficiency. Various methods used for this purpose help 

identify any potential issues by monitoring the motor's 

condition. Vibration analysis reveals mechanical 

problems by measuring the motor's abnormal vibrations, 

while the thermography method detects overheating and 

insulation problems by analyzing the temperature 

distribution on the motor surface. Ultrasonic inspection 

identifies cracks or structural degradation inside the 

motor using ultrasonic waves, and oil analysis shows the 

motor's internal wear condition by examining the metal 

particles and chemical components in the motor oil. 

Motor Current Signature Analysis (MCSA), in 

particular, stands out in detecting electrical faults. By 

evaluating abnormalities in the motor current, it 

identifies critical issues such as stator winding damage 

and broken rotor bars. The use of MCSA provides a 

deeper analysis of electrical problems, offering more 

detailed information compared to other methods and 

playing a central role in motor maintenance strategies. 

The effective use of these techniques not only reduces 

repair and maintenance costs by identifying motor faults 

at an early stage but also extends the motor's lifespan and 

improves the overall system performance [26-27]. 

 

The use of MCSA method for fault diagnosis in 

induction motors is quite common. For instance, Akkurt 

and Arabacı (2019) utilized current signal analysis and 

artificial neural networks to detect bearing faults in 

induction motors. In their experiments, current signals 

obtained from artificially damaged bearings were 

examined and compared with signals from healthy 

bearings. Statistical and spectral features were 

determined, and the artificial neural network was trained, 

enabling the classification of bearing faults with an 

accuracy of 95.3% [28]. In their study, Kaya and Ünsal 

(2022) used artificial neural network models to detect 

and classify various faults in a 3 kW wound-rotor 

induction motor. The motor was tested with different 

fault combinations and operated under full load. As a 

result of the tests, the detection and classification of 

multiple faults were achieved with an 87% success rate. 

These results demonstrate that the proposed method can 

be applied effectively [29]. These studies have shown 

that MCSA is an effective tool for fault detection in 

induction motors. Additionally, by combining it with 

advanced techniques such as machine and deep learning, 

the efficiency of this method can be further enhanced. 

 

In this study, it has been shown that different deep 

learning methods (Vision Transformer, gMLP, MLP 

Mixer, FNet) can be successfully applied to current 

signals for fault diagnosis in induction motors. Among 

the methods used, the highest accuracy rate achieved 

was between 100%. 

 

2. METHODOLOGY 

 

2.1. Data Collection 

 

Our study was conducted using the publicly available 

broken rotor bar dataset. This dataset contains electrical 

and mechanical signals collected from three-phase 

induction motors. The data was obtained through tests 

conducted with varying degrees of broken bar faults in 

the motor's rotor under different mechanical loads; the 

dataset also includes data from a faultless rotor. The 

induction motor used operates at 3-phase, 1 horsepower 

(hp), 220/380V voltage, 4 poles, and a nominal speed of 

1785 rpm. The experimental dataset contains four 

different fault classes and one healthy condition class. 

The data is organized according to load conditions at 

torque values ranging from 0.5 to 4.0 Nm. A total of ten 

experiments were conducted to create each data group. 

In this paper, the phase current signal (Ia) was used for 

analysis. The sampling frequency of the electrical signals 

was set at 50 kHz, and that of the mechanical vibration 

signals at 7600 Hz [30]. 

 

2.2. Classification Algorithms (Deep Learning 

Models) 

 

2.2.1. Vision Transformer 

 

Vision Transformer (ViT) is a deep learning model that 

effectively works in visual tasks by dividing images into 

fixed-size patches and processing these patches through 

the attention mechanism of the Transformer. ViT, an 

adaptation of the Transformer model originally 

developed for natural language processing, performs at a 

level comparable to the best available CNN models, 

especially when trained on large-scale datasets. The 

model creates visual representations by considering the 
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global context, providing comprehensive learning 

processes [31-32]. 

 

2.2.2. gMLP 

 

gMLP (Gated Multi-Layer Perceptron)  is an artificial 

neural network structure developed as an alternative to 

Transformer models, incorporating gated units and not 

relying on attention mechanisms. This model aims to 

effectively capture interactions between data points by 

adding gates that control information flow between 

traditional multilayer perceptrons. gMLP is particularly 

notable because it is more computationally efficient and 

requires fewer parameters [33-34].  

 

2.2.3. MLP-Mixer 

 

MLP-Mixer is an innovative deep learning architecture 

introduced by Google Brain that learns visual 

representations solely using multilayer perceptrons 

(MLPs) without resorting to attention mechanisms or 

convolutional layers. The model first divides the image 

into patches and then processes these patches using two 

types of MLPs: one designed to capture interactions 

across patches (along channels) and another within 

patches (across patches). This approach allows the MLP-

Mixer to handle spatial and feature-based information 

separately, and it can achieve high performance when 

trained on large datasets [35-37]. 

  

2.2.4. F-Net 

 

F-Net is a deep learning model that does not use an 

attention mechanism but instead relies on Fourier 

transformations. It replaces the computationally 

expensive self-attention layers of the original 

Transformer model with simple Fourier transformation 

operations, performing frequency analysis on the data. 

This allows F-Net to offer a more computationally 

efficient alternative for natural language processing and 

other sequential modeling tasks. F-Net's performance 

can approach that of models trained using attention 

mechanisms in some tasks while operating much faster 

and using fewer resources. The model's benefit is 

particularly notable in large datasets and situations 

requiring the processing of long sequences [38].  

 

2.3. Performance Metrics 

 

Deep learning performance metrics are used to 

determine how models perform in classification or 

regression tasks. Among these metrics: Accuracy shows 

the percentage of correct predictions among all 

predictions. Precision indicates how much of a predicted 

class actually belongs to that class. Recall shows the 

proportion of actual positives that were correctly 

predicted. F1 Score is calculated as the harmonic mean 

of precision and recall and represents the balanced 

performance of the model. ROC Curve and AUC Value 

evaluate a classifier's performance from a broader 

perspective. In this study, metrics such as accuracy, 

precision, recall, F1 score, and ROC AUC value were 

used to measure the classification capabilities of deep 

learning models. These metrics reveal the model's 

overall accuracy, reliability, and efficiency in detail. 

Accuracy, precision, recall formulas are given in 

equations 1-3.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TP + TN

TP + TN + FP + FN
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
TP

TP + FP
  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
TP

TP + FN
 (3) 

 

3. EXPERIMANTAL STUDIES 

 

During the studies, powerful hardware resources were 

used for data processing and model training. 

Specifically, a computer with an Intel Xeon E5-2630 v3 

processor and 64 GB RAM was chosen. For running 

deep learning algorithms, the NVIDIA RTX A5000 GPU 

with 45 GB RAM was utilized. The stages of reading 

data from the dataset and processing images were carried 

out using MATLAB, while the deep learning models 

were implemented through the Python programming 

language and its specialized libraries. This hardware and 

software infrastructure ensured that the study was 

conducted efficiently and effectively. 

  

In this study, images were generated from the Ia current 

signals in the dataset. The duration of each signal was set 

to 18 seconds, and analysis was conducted using non-

overlapping windows of 1 second each, between 11 and 

15 seconds. With this method, 400 time-frequency 

representations were obtained for each class of Ia signals 

under a 0.5 Nm load, resulting in a total of 2000 

representations. These representations are presented in 

Table 1 under five different groups. The image creation 

process followed the procedural steps taken from the 

experimental studies conducted by Dişli and colleagues 

in 2023 [39]. This method provided a detailed 

framework for signal analysis and interpretation, 

forming the basis of experimental studies. 

 
Table 1.  Time-Frequency Representations Obtained from Ia Data 
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In the following sections of our study, we will evaluate 

the performance of different deep learning models. In 

this process, binary classification analysis was 

performed using four different deep learning models. 

Our dataset consists of images of healthy and unhealthy 

rotor currents. In total, there are 400 healthy images 

versus 1600 unhealthy images. This significant 

imbalance could potentially lead to problems during 

model training. To address this imbalance, the dataset 

was restructured. First, 400 images of healthy rotor 

currents were selected directly. From the unhealthy 

group, 100 images were randomly selected from each of 

the four different subgroups, all containing broken rotor 

bars. With this selection, each unhealthy subgroup was 

equally represented, resulting in a total of 400 unhealthy 

images. Consequently, for binary classification analysis, 

a balanced dataset containing an equal number of images 

(400 each) from both healthy and unhealthy groups was 

created. This approach allows the model to generalize 

training data better and minimize biases that could arise 

from imbalanced data distribution. 

 

In our study, the deep learning models gMLP, MLP 

Mixer, and FNet were used alongside ViT. Figure 2 

shows the architecture of the ViT deep learning model. 

In this model, images of 224x224 pixels are divided into 

patches of 32x32 pixels. Each image contains a total of 

49 patches, meaning that patches are repeated seven 

times along each dimension of the image. Each patch 

contains a total of 3,072 data points, indicating that each 

pixel has three color channels, and thus each patch 

contains 32x32x3 = 3,072 elements. These structural 

details provide a fundamental framework for 

understanding how the model processes images. 

 

 
Figure 1. Fault Detection Using the ViT Model 
 

The other deep learning models we used in our study are 

structurally similar deep learning models. Therefore, the 

gMLP deep learning model, which achieved the highest 

performance in our study, is shown in Figure 3. This 

deep learning model resizes the input images to 512x512 

pixels. The model extracts patches from these images 

with a size of 32x32 pixels and works on each patch. 

This patch size allows the image to be divided into 

smaller, manageable parts, enabling the model to learn 

more detailed and local features on these patches. In 

total, (512 / 32)², which is 256 patches are obtained from 

each image, allowing the model to process a wider image 

in more detail. Each patch is then transformed into a 

256-dimensional embedding vector. 

 

 
Figure 2. Representation of the gMLP model for fault diagnosis 

 

The training process for all models lasted a total of 400 

epochs. Additionally, a dropout rate of 20% was applied 

to prevent overfitting of the model. These parameters 

play a significant role in both the configuration and 

training process of the model. 

 
Table 2.  The Loss and Accuracy graphs 

 

The Loss and Accuracy graphs of the models examined 

are presented in Table 2. The Vision Transformer (ViT) 

model accurately performed all classifications, as 

documented by the Confusion Matrix. Additionally, this 

model began to exhibit stable performance after 

approximately the 100th epoch. When examining the 

gMLP model, three healthy samples were mistakenly 

classified as unhealthy. This model began to make stable 

predictions from the 100th epoch but experienced 

performance declines after the 250th epoch. The MLP 

model, on the other hand, generally showed successful 

performance, making accurate predictions after the 50th 

epoch, but inconsistencies and performance declines 

occurred after the 150th epoch. This situation was 

confirmed by the Confusion Matrix, where four 

unhealthy samples were classified as healthy, and three 

healthy samples were classified as unhealthy. The FNeT 

model stands out as the only model that did not show 
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stable performance throughout the study. Due to the 

fluctuations in both the accuracy and loss graphs of this 

model, it was concluded that it did not demonstrate 

sufficient performance in this study. 

 
Table 3.  Confusion Matrix Results of Deep Learning Models 

Vision Transformer 
 

gMLP 

MLP 
 

FNet 

 

The confusion matrix results of the study are presented 

in Table 3. In Table 4, the performance metrics for each 

model have been calculated and interpreted according to 

the following formulas. The Vision Transformer has 

demonstrated excellent performance with 100% 

accuracy, precision and recall. 

 

Accuracy : 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=  

35+45

 35+45+0+0
= 1.00 (%100%) 

Precision : 
𝑇𝑃

𝑇𝑃+𝐹𝑃
=  

35

 35+0
= 1.00 (%100%) 

Recall : 
𝑇𝑃

𝑇𝑃+𝐹𝑁
=  

35

 35+0
= 1.00 (%100%) 

 
gMLP has demonstrated quite good performance with 

an accuracy rate of 96.25%. The precision value is 

92.1% and the recall value is 100%. 

 

Accuracy : 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=  

35+42

 35+42+3+0
=

77

80
=  0.9625  

Precision : 
𝑇𝑃

𝑇𝑃+𝐹𝑃
=  

35

 35+3
=

35

38
= 0.921  

Recall : 
𝑇𝑃

𝑇𝑃+𝐹𝑁
=  

35

 35+0
= 1.00 (%100%) 

 
MLP is performing with an accuracy rate of 93.75%. 

The precision value is 94.1% and the recall value is 

91.4%. 

 

Accuracy : 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=  

32+43

 35+43+2+3
=

75

80
=  0.9375 

Precision : 
𝑇𝑃

𝑇𝑃+𝐹𝑃
=  

32

 32+2
=

32

34
= 0.941  

Recall : 
𝑇𝑃

𝑇𝑃+𝐹𝑁
=  

32

 32+3
=

32

35
= 0.914 

 
FNet is performing with an accuracy rate of 91.25%. 

The precision value is 91.2% and the recall value is 

88.6%. 

 

Accuracy : 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=  

31+42

 31+42+3+4
=

7735

80
=  0.9125 

Precision : 
𝑇𝑃

𝑇𝑃+𝐹𝑃
=  

31

 31+3
=

31

34
= 0.912  

Recall : 
𝑇𝑃

𝑇𝑃+𝐹𝑁
=  

31

 31+4
=

31

35
= 0.886 

 
Other metrics and all results are provided in Table 4. 
 

Table 4. Performance Metrics of Deep Learning Models 
Model Accuracy precision recall F1 

score 

Cohens 

Kappa 

ROC 

AUC 

Vision 

Transformer 

%100 1.00 1.00 1.00 1.00 1.00 

gMLP %96,25 0.921 1.00 0.959 0.925 0.967 

MLP mixer %93,75 0.941 0.914 0.927 0.875 0.933 

FNet %91,25 0.912 0.886 0.899 0.825 0.909 

 

In Table 4, the performance metrics of four different 

deep learning models—Vision Transformer, gMLP, 

MLP and FNet are examined comparatively. The Vision 

Transformer model achieved perfect values (1.00) in 

accuracy, precision, and recall, with an accuracy rate of 

100%. This indicates that the model classified all 

examples in the test set flawlessly. The gMLP model 

demonstrated very high performance with an accuracy 

rate of 96.25%, achieving precision and recall values of 

0.921 and 1.00, respectively. Additionally, it has a high 

F1 score of 0.959 and a ROC AUC value of 0.967, 

indicating the model's balance in classification and 

overall success as a classifier. The MLP model, with an 

accuracy of 93.75%, precision of 0.941, and recall of 

0.914, showed slightly lower performance compared to 

the gMLP model. Nevertheless, the F1 score of 0.927 

and the ROC AUC value of 0.933 indicate that the 

model is still a strong classifier. The FNet model, which 

performed lower than the other three models, has an 

accuracy rate of 91.25%. However, its precision value of 

0.912 shows a high level of correct positive predictions. 

The recall value of 0.886 indicates a weakness in 

detecting positive class examples, while the F1 score of 

0.899 and the ROC AUC value of 0.909 demonstrate 

that the model can still deliver acceptable performance 

under limited conditions. 

 

4. RESULTS 

 

Bu In this study, deep learning models that have recently 

gained prominence such as ViT, gMLP, MLP Mixer, and 

FNet were used to perform fault diagnosis on a 

preprocessed dataset based on current information from 

electrical motors. These data were analyzed to classify 

motor conditions as "healthy" and "unhealthy". 

Experimental results indicated that the Vision 

Transformer model outperformed the other models; this 

observation is supported by the stability of the model 

and its remarkable accuracy rate of 100%. These 

findings suggest that Vision Transformer is a promising 

candidate for real-time fault diagnosis applications in 

electric motors. Particularly, the role this technology 

could play in the development of real-time fault 

detection and preventive maintenance strategies could 

enhance efficiency in industrial processes, thus reducing 

operational costs. Further studies aim to explore in more 

detail how effective this model can be under real-world 

conditions using current and vibration data obtained 

from asynchronous motors. This could provide valuable 

insights not only for fault diagnosis but also for process 

optimization and resource management. 
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