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Inverted Modified Lindley Dağılımı için Parametre Tahmin Yöntemlerinin Karşılaştırılması 
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ÖZET:  

Inverted Modified Lindley (IML) dağılımının, üstel ve Lindley dağılımlarına kıyasla daha iyi 

uyum sağlama yetenekleri gösterdiği önceki çalışmalarala gösterilmiştir. Bu çalışma, En Küçük 

Kareler (LS), Cramer von Misses (CvM) ve Maksimum Olabilirlik (ML) yöntemlerini kullanarak 
Inverted Modified Lindley (IML) dağılımının parametre tahminini incelemektedir. IML 

dağılımına ait parametrenin tahmin edilmesinde ML, LS ve CvM yöntemlerinin etkinliğini 

karşılaştırmak amacıyla bir Monte Carlo simülasyon çalışması yapılmıştır. Ayrıca ilgili tahmin 

yöntemleri kullanılarak çeşitli alanlardan gerçek veri uygulamaları sağlanmıştır. Bu yöntemlerin 

uyum performansı, ortalama karekök hata, belirleme katsayısı ve Kolmogorov-Smirnov testi 

kullanılarak değerlendirilmiştir. Uygulama sonuçlarına göre CvM metodu, IML dağılımı için 

dikkate alınan verileri daha bir iyi şekilde tanımlarken, simülasyon çalışması için ise, ML tahmin 

yöntemi öne çıkmaktadır. 
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ABSTRACT:  

The Inverted Modified Lindley (IML) distribution has been shown to exhibit superior fitting 

capabilities compared to the exponential and Lindley distributions. This study investigates the 

parameter estimation of the IML distribution using the Least Squares (LS), Cramer von Misses 

(CvM), and Maximum Likelihood (ML) methods. A Monte Carlo simulation study is conducted 

to compare the efficiency of the ML, LS, and CvM methods in estimating the parameters of the 

IML distribution. Moreover, real data applications from various fields are provided using related 

estimation methods. The fitting performance of these methods is evaluated using root mean 

squared error, coefficient of determination, and the Kolmogorov-Smirnov test. According to the 

application results, the CvM estimates describe the considered data for the IML distribution best, 

while the simulation study favors ML estimation among the considered methods. 
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INTRODUCTION 

 One-parameter distributions have proven highly effective in statistical analysis, primarily due to 

their analytical simplicity. Inverted modified Lindley (IML) distribution is a one-parameter distribution 

introduced by Chesneau, Tomy, Gillariose, & Jamal (2020) that demonstrated improved fitting 

capabilities over traditional distributions such as exponential and Lindley distributions. In addition to its 

simpler derivation, as demonstrated in Figure 1 it exhibits versatile in shapes of hazard rate and 

probability density functions. Thus, the IML distribution finds application across various areas, 

including reliability engineering, biology, and so on (see in Chesneau et al., 2020; Kumar, Nassar, Dey, 

Elshahhat, & Diyali, 2022; Kumar, Yadav, & Kumar, 2023).  

 In statistical modeling, many distributions have only one parameter, such as exponential, 

Rayleigh, Lindley. These models are useful for modeling data in various fields due to their desirable 

properties and simpler interpretations. There are also many inverse and modified versions of these 

distributions given in studies such as, Abouammoh & Alshingiti, 2009; Dey, Singh, Tripathi, & 

Asgharzadeh, 2016; Khan, 2014; Rasekhi et al., 2017 and more. The inverse transformation of random 

variables and assessing their usefulness in distribution modeling are widely applied. For example, 

Sharma, Singh, Singh, & Agiwal, (2015) introduced the inverse Lindley distribution which has one 

parameter, and explored its application in the survival times of head and neck cancer patients 

successfully, compared to the inverse Rayleigh distribution. Similarly, Abd Al-Fattah, El-Helbawy, & 

Al-Dayian (2017) presented the Inverted Kumaraswamy distribution by applying inverse transformation 

to the Kumaraswamy distribution, which has found applications in various fields by outperforming some 

other well-known distributions.  For example, Bagci, Arslan, & Celik (2021) showed the Inverted 

Kumaraswamy distributions is better than the Weibull distribution modeling a wind speed data set. 

Likewise, the inverted Topp-Leone model has been proposed as an attractive model in reliability studies 

(Hassan, Elgarhy, & Ragab, 2020).  

 The IML distribution is obtained using 𝑦 =  1/𝑥 inverse transformation applied to the modified 

Lindley (ML) distribution by Chesneau et al., (2020). The probability density function (pdf) and the 

cumulative distribution function (cdf) for the IML distribution are 

𝑓(𝑥) =
𝜃

1+𝜃

1

𝑥2
𝑒−

2𝜃

𝑥 ((1 + 𝜃)𝑒
𝜃

𝑥 +
2𝜃

𝑥
− 1), 𝑥 > 0, 𝜃 > 0       (1) 

and 

𝐹(𝑥) = (1 +
𝜃

1+𝜃

1

𝑥
𝑒−

𝜃

𝑥)𝑒−
𝜃

𝑥 , 𝑥 > 0, 𝜃 > 0         (2) 

respectively (Chesneau et al., 2020).  

 The hazard rate function (hrf) and the pdf for selected values of the parameter for the IML 

distribution are given in Figure 1. Figure 1 demonstrates that the IML distribution displays both 

unimodal characteristics and the potential for right skewness. It can exhibit increasing, decreasing, 

constant upside-down bathtub failure rate functions. 
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Figure 1. The hrf and pdf plots of the IML distribution for certain values of the parameter 

 Recently, different studies have been carried out on parameter estimation of the IML distribution. 

Maximum likelihood (ML) and Bayes estimation methods were adopted previously based on lower 

record values and censoring schemes. For example, Kumar et al., (2022) derived explicit single and 

product moments of order statistics from the IML distribution also utilized Best Linear Unbiased 

Estimators (BLUEs) in parameter estimation. In addition, Kumar et al., (2023) analyzed the IML 

distribution employing dual generalized order statistics. Hasaballah, Tashkandy, Bakr, Balogun, & 

Ramadan (2024) explored statistical inferences for product lifetimes with the IML distribution and Type-

II censored data. They employed the maximum likelihood estimation (MLE), approximate confidence 

intervals, and Bayesian estimation with Gibbs sampling in the analysis of real data and Monte Carlo 

simulations to validate the accuracy and compare estimation methods.  

 As noted previously, the IML distribution exhibits appealing properties (see also Chesneau et al., 

2020) Nonetheless, there are limited studies examining various methods for estimating the parameter of 

the IML distribution. It is acknowledged that minimum distance estimators tend to be less affected by 

unusual observations (Donoho & Liu, 1988). The minimum distance estimators can serve as alternatives 

to the MLE in some cases in the literature (see Arslan, Acitas, & Senoglu, 2022; Bagci, Erdogan, Arslan, 

& Celik, 2022). To the best of the author's knowledge, the LS and CvM estimations for the IML 

distribution have not been implemented previously. Motivated by these reasons, in this study, a classical 

method namely, the Least Squares (LS) and Cramer von Misses (CvM) estimation methods are utilized, 

and the MLE method is included in the analysis as well. A Monte Carlo simulation study is considered 

for varying parameter values and sample sizes in addition to real data applications. 

MATERIALS AND METHODS  

 In this section, the data and MLE, CvM, and LS methods are described.  

Data 

 In this study, three different data from various fields are included in the analysis. The first dataset 

is sourced from The Open University (1993), detailing the prices of 31 children's wooden toys available 

at a Suffolk craft shop in April 1991 obtained from Chesneau et al. (2020). The second dataset comprises 

the time intervals between failures for a repairable item, obtained from Murthy, Xie, & Jiang, (2004). 

The third application involves the utilization of data on vinyl chloride concentrations (mg/L) from 

monitoring wells designated for clean upgrading, which is obtained by Bhaumik & Gibbons (2006). 

Observations for these data are provided as follows.  

First Dataset : 4.2, 1.12, 1.39, 2, 3.99, 2.15, 1.74, 5.81, 1.7, 0.5, 0.99, 11.5, 5.12, 0.9, 1.99, 6.24, 2.6, 3, 

12.2, 7.36, 4.75, 11.59, 8.69, 9.8, 1.85, 1.99, 1.35, 10, 0.65, 1.45.  

Second Dataset: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 

4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17. 
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Third Dataset: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 

2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2. 

Estimation Methods 

 Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample following the IML distribution and 𝑋(1), 𝑋(2), … , 𝑋(𝑛) are 

the order statistics for this sample. 

ML estimation 

 The ML estimations are obtained by maximizing the following loglikelihood function ℓ(𝜃) for 

the parameter 𝜃. Since the ML estimation is provided in Chesneau et al. (2020) previously, more details 

on MLE for the IML distribution can be found in Chesneau et al. (2020). To estimate the parameter, 

iterative techniques are used. 

ℓ(𝜃) = log[𝐿(𝜃)] = nlog(𝜃) − nlog(1 + 𝜃) − 2𝜃∑
1

𝑥𝑖

𝑛

𝑖=1

                  +∑ log [(1 + 𝜃)e𝜃/𝑥𝑖 +
2𝜃

𝑥𝑖
− 1]

𝑛

𝑖=1
− 2∑ log(𝑥𝑖) .

𝑛
𝑖=1

              (3)  

CvM estimation 

 The parameter estimation can be derived by minimizing the subsequent objective function. Here, 

(⋅) is the cdf of the IML distribution provided in Equation (2) 

𝐶𝑣𝑀 =∑ [𝐹(𝑥(𝑖); 𝜃) −
2𝑖−1

2𝑛
]2

𝑛

𝑖=1
+

1

12𝑛
                  (4) 

 The nonlinear equation in Equation (5) yields a CvM estimate for the parameter 𝜃. Here, iterative 

techniques are used to obtain an estimation of the parameter 𝜃. 
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LS estimation 

The LS estimation of the parameter 𝜃 is obtained by minimizing the following function with 

respect to the parameter. 

𝐿𝑆 =∑ (
𝑖
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− (1 + 𝜃

1

1+𝜃
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𝑦
𝑒
−
𝜃

𝑦)𝑒
−
𝜃

𝑦)2
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              (6) 

 The nonlinear equation below yields an LS estimate for the parameter 𝜃. Here iterative 

techniques are used to obtain estimation of the parameter 𝜃. 

𝜕𝐿𝑆
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Simulation Study 

In this subsection, a Monte-Carlo simulation study is conducted to compare the estimation 

methods' efficiencies and examine if the estimations are applicable in different conditions. The 

simulations are run 1000 times considering sample sizes n=25, 50, 100, and 500. The selected parameter 

values are 𝜃 = 0.3, 0.5, 2, and 3. These values are chosen by looking up the related literature to ensure 

the simulation accurately reflects the real-world scenario. Estimates are calculated by using the 

"fminsearch" function in the Matlab R2021a optimization toolbox. The performances are compared 

using mean, variance, and Mean Squared Error (MSE) criteria for the ML, LS, and CvM estimation 

methods. The MSE is formulated as follows. 

𝑀𝑆𝐸(𝜃) = 𝐸(𝜃 − 𝜃)2                    (8) 

Table 1. The Simulation Results 

Method Mean Variance MSE  Mean Variance MSE 

n=25, 𝜃 =0.5 n=25 𝜃 =2 

MLE 0.509471 0.006735 0.006824 MLE 2.04229 0.130672 0.13246 

LS 0.504842 0.007537 0.00756 LS 2.038945 0.166597 0.168114 

CvM 0.506528 0.007555 0.007597 CvM 2.047908 0.167586 0.169881 

n=50, 𝜃 =0.5 n=50, 𝜃 =2 

MLE 0.502339 0.003358 0.003364 MLE 2.038514 0.063793 0.065276 

LS 0.502048 0.003953 0.003957 LS 2.034189 0.07326 0.074429 

CvM 0.502904 0.003959 0.003967 CvM 2.038987 0.073562 0.075082 

n=100, 𝜃 =0.5 n=100, 𝜃 =2 

MLE 0.501921 0.001504 0.001507 MLE 2.009743 0.032157 0.032252 

LS 0.500729 0.001712 0.001713 LS 2.01138 0.042017 0.042147 

CvM 0.501164 0.001714 0.001715 CvM 2.013732 0.042087 0.042276 

n=500, 𝜃 =0.5 n=500, 𝜃 =2 

MLE 0.500585 0.000335 0.000336 MLE 2.002023 0.00587 0.005874 

LS 0.500463 0.000377 0.000378 LS 2.001421 0.007079 0.007081 

CvM 0.500551 0.000378 0.000378 CvM 2.001898 0.007082 0.007085 

n=25, 𝜃 =3 n=25, 𝜃 =0.3 

MLE 3.100257 0.339193 0.349245 MLE 0.307 0.002437 0.002486 

LS 3.071424 0.412546 0.417647 LS 0.304749 0.002812 0.002834 

CvM 3.08666 0.415672 0.423182 CvM 0.305747 0.00282 0.002853 

n=50, 𝜃 =3 n=50 𝜃 =0.3 

MLE 3.028521 0.160343 0.161156 MLE 0.304569 0.001168 0.001188 

LS 3.019026 0.184984 0.185346 LS 0.304358 0.001351 0.00137 

CvM 3.02664 0.185835 0.186544 CvM 0.30484 0.001352 0.001376 

n=100, 𝜃 =3 n=100, 𝜃 =0.3 

MLE 3.014135 0.075792 0.075992 MLE 0.3015 0.000616 0.000618 

LS 3.007577 0.089665 0.089723 LS 0.300825 0.000687 0.000688 

CvM 3.011494 0.089879 0.090011 CvM 0.301069 0.000688 0.000689 

n=500, 𝜃 =3 n=500, 𝜃 =0.3 

MLE 3.001633 0.014596 0.014598 MLE 0.300655 0.000103 0.000103 

LS 3.000802 0.017865 0.017865 LS 0.30068 0.000118 0.000119 

CvM 3.001597 0.017875 0.017877 CvM 0.300729 0.000118 0.000119 

Upon reviewing the simulation results, it can be seen that the MSEs of all estimates decrease as 

the sample size increases. These observation suggest that the considered estimation methods may be 

well-suited for data fitting purposes. Moreover, the MSE of the MLE seems to approach zero more 
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quickly than those of the LS and CvM methods. It can be also inferred, for the lower values of the 

parameter, the MSE’s are much smaller.  

The simulation results evaluated for each parameter as follows. According to Table 1 when 𝜃 =

0.5, the ML estimation provided lower MSE values for all sample sizes and the LS and CvM methods 

performed similarly.  

Similarly, when 𝜃 = 3, the ML estimation method performs better than the CvM and LS 

methods, and the LS estimates also provided smaller MSEs than the CvM.   

When 𝜃 = 2 for all sample sizes considered the MLE method is slightly better than the other two 

rivals. Similarly when 𝜃 = 0.3 the MLE method is slightly better considering MSE values for all sample 

sizes considered. 

 Overall, it can be observed that the LS method generally exhibits lower values of MSE than the 

CvM method, and the results of the simulation study favor the MLE method. However, since the LS and 

CvM methods performed very well, their modeling performances are worth examining with real data 

applications. 

RESULTS AND DISCUSSION  

In this section, the data used in the application are presented. Then various data are modeled 

using IML distribution considering the ML, CvM, and LS methods. The results are compared using 

several criteria including root mean squared error (RMSE), coefficient of determination (𝑅2), and the 

Kolmogorov-Smirnov goodness of fit test statistic (KS). Lower values of RMSE and KS test statistic 

and higher values of R2, and KS p-values demonstrate better fitting performance. 

Applications 

In this subsection, the IML distribution is fitted to the given data, and comparisons for the 

estimation methods are provided in Tables 2, 3, and 4 for the first, second, and third data, respectively. 

In addition, fitted densities are visualized in Figures 2, 3, and 4 for the estimation methods. To implement 

the analysis, Matlab R2021 software and its functions are used.  

Table 2. Estimated parameter and fitting criteria results for the first data set  

Method KS(p-value) 𝑹𝟐 RMSE 𝜽̂ 

ML 0.122502(0.7134) 0.982059 0.037387 2.153682 

LS 0.115218(0.7787) 0.979678 0.039575 2.048729 

CvM 0.121582(0.7218) 0.982138 0.037277 2.140409 

 

Figure 2. Estimation methods fitting plot for the first data set 
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When Table 2 examined although the ML and CvM methods were performed very closely it can 

be seen that CvM estimates stand out in more criteria for dataset 1. In addition, according to Figure 2 

the CvM and ML method are fitted very similarly as well.  

Table 3. Estimated parameter and fitting criteria results for the second data set  

Method KS(p-value) 𝑹𝟐 RMSE 𝜽̂ 

ML 0.139395(0.557525) 0.937258 0.062812 0.922262 

LS 0.133713(0.609556) 0.943439 0.060104 0.934013 

CvM 0.133032(0.615863) 0.959702 0.050337 1.01983 

 

Figure 3. Estimation methods fitting plot for the second data set 

According to Table 3, the CvM method performed better for all of the criteria in modeling the 

second dataset. Also from Figure 3, it can be seen that ML and LS methods overfitted the data at the 

peak of the distribution. 

Table 4. Estimated parameter and fitting criteria results for the third data set  

Method KS(p-value) 𝑹𝟐 RMSE 𝜽̂ 

ML 0.193049(0.138677) 0.899053 0.099107 0.704007 

LS 0.196431(0.126391) 0.914371 0.093426 1.18378 

CvM 0.112336(0.742425) 0.969335 0.05534 0.923025 

 

Figure 4. Estimation methods fitting plot for the third data set 

According to Table 4, the CvM method performed better for all of the criteria in modeling the 

third dataset. Moreover, from Figure 4, it can be seen that the ML method overfitted the data at the peak 

of the distribution, and although the CvM estimation overfitted at the peak of the distribution, it described 

the data for the rest of the distribution better. 

 Accurate parameter estimation is crucial for effectively describing data. Different estimation 

methods can stand out depending on the data and its specific characteristics. For this study, it can be said 

that the LS and CvM estimations provided more accurate estimations for the parameter of the IML 
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distribution than the ML method for considered data. For the first data set, using the LS estimation 

resulted in a higher p-value compared to previous studies (Kumar et al., 2023), which used order 

statistics in the estimation the parameter of the IML distribution. For the second data set, the CvM 

estimation for the parameter fitted better than reported in Kumar et al., (2023) as well. Overall, while 

ML remains a powerful tool for parameter estimation, CvM offers significant benefits in practical 

scenarios involving skewed data. No additional studies have been included in the discussion, as the other 

studies in the literature (overviewed in the Introduction section) are based on estimation for record values 

or censoring schemes. 

CONCLUSION 

In this study, the LS, CvM, and ML methods are utilized for estimating the parameter of the IML 

distribution and the methods’ modeling performances compared through simulation study and real data 

applications. According to the Monte Carlo simulation study, it was observed that the MLE method 

generally outperformed the LS and CvM estimations with the slightest difference. In the case of real 

data applications, the CvM method demonstrated superior performance compared to its rivals. In 

conclusion, this study contributes to the literature by presenting the LS and CvM estimation methods for 

the IML distribution, alongside the conventional MLE method and applying these methods data from 

various fields successfully.  
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