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Abstract 

 

In this paper, an optimization method is proposed to design a fractional order system with PID controller by taking 

Bode’s ideal transfer function as reference model. In the study, PID controllers are preferred because of their simplicity, 

reliability and robustness. PID controller parameters can be obtained by optimization method. In order to obtain the 

desired time response, it is sufficient to set two parameters in the Bode’s ideal transfer function. The Bode's ideal 

transfer function was considered as the reference model and compared with the generated model. The error in the output 

signal is minimized by the integral performance criteria, and the PID controller parameters are optimized. Integral 

performance criteria are frequently used in evaluating the performance of control systems. In Simulink model, 

Matsuda's 4th order integer approximation model is used for fractional order control system. Finally, the success of the 

optimization method is seen in the given numerical example. 
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1. INTRODUCTION 

Fractional calculus is a branch of mathematics and it is possible to see many applications in the different areas. Control 

engineering is one of these application areas. In the control system design, the system to be controlled may be fractional order, or 

the controller may be fractional order (Monje et al.,2010). In this study, a fractional order system is controlled by an integer 

order controller. Fractional order systems can better model physical systems than integer order systems. Due to this advantage, 

interest in fractional order systems is increasing in today's world. There are many approaches model that are used to obtain 

integer order models of fractional order systems. The most well-known approach models are Matsuda, Oustaloup, Carlson, 

Krishna, Chareff approaches method [2-6]. In the study, Matsuda's 4th-order integer approximation model was used while 

modeling a fractional order system. 

Controller design is one of the most fundamental issues in control engineering. In this study, an optimization method is 

presented about design a controller for a fractional order system. An ideal control system is required to meet expectation. In 

monitoring the performance of the control system, the transient behavior is often used. Percent overshoot value and time 

parameters of the control system in unit step response are very important for performance appraisal. In the study, Bode’s ideal 

transfer function is accepted as the reference model. It is aimed to obtain the controller parameters by making sure that the 

system output to be controlled has the same characteristics as the reference model. The controller parameters are obtained by 

optimization method. The ITSE (integral time squared error) performance criterion is used to minimize the error in the 

optimization method [7]. 

In the study, the preferred PID (proportional integral derivative) controller structure was used because of its many advantages. 

PID controllers are still the most commonly used controller structure [8]. There are many tuning methods used in the literature 

for calculating PID controller parameters. Ziegler-Nichols, Aström-Hagglund are the most known PID tuning methods [8, 9]. In 

parallel with improvements in computers, the use of optimization methods is steadily increasing. Some of the optimization 

methods used in the literature are genetic algorithm, particle swarm optimization, ant colony algorithm. The optimization 

method used in the study was created in Matlab / Simulink environment. 

The remainder of the paper is organized as follows. Section 2 briefly introduces Bode's ideal transfer function. Section 3 

contains the PID controller design. In this section, the structure of the PID controller, the optimization approach and the 

application of the method are given. Finally, conclusions are drawn in Section 4. 

2. BODE’S IDEAL TRANSFER FUNCTION 

In 1945, H. W. Bode defined the open-loop transfer function of a feedback control system as given in Equation 1 [10]. Where ωc 

is the gain crossover frequency and γ is the slope of the amplitude curve that can be expressed in fractional or integers on a 

logarithmic scale. 
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The block diagram of the fractional order control system with Bode's ideal transfer function is given in Figure 1. The closed loop 

transfer function of the block diagram in Figure 1 is given in Equation 2 [11]. 

 

Figure 1: Fractional order transfer function with Bode’s ideal transfer function 
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Frequency and time domain characteristics for Bode's ideal transfer function can be obtained. The Maximum overshoot value is 

expressed as in Equation 3. 

0.8( 1)( 0.75),
p

M      1 2                                        (3) 

When the ωc is taken as 1 rad/s, the maximum overshoot according to the γ parameter change are given in Table 1. When Table 1 

is examined, it is seen that as the γ parameter increases, the maximum overshoot increases. 

 

Table 1: Overshoot value for reference model (ωc=1 rad/s) 
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  Overshoot  

(%) 
   Overshoot 

(%) 

1.0 0  1.5 30 

1.1 2.8  1.6 40.8 

1.2 7.2  1.7 53.2 

1.3 13.2  1.8 67.2 

1.4 20.8  1.9 82.8 

 

The time parameters such as peak time, rise time and settling time can be calculated by the following equations, depending on 

the γ and ωc parameters [12]. 
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( 0.921)p
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            (4) 

Table 2 and Table 3 show the change in peak time and rise time, respectively, depending on the γ and ωc parameters. 

Table 2: Peak time for reference model (ωc=1 rad/s) 

  Peak time (tp)    Peak time (tp) 

1.0 7.7704  1.5 2.9608 

1.1 4.4118  1.6 2.9467 

1.2 3.5401  1.7 2.9645 

1.3 3.1868  1.8 3.0035 

1.4 3.0271  1.9 3.0571 

20.131( 1.157)

( 0.724)r

c

t


 





                             (5) 

Table 3: Rise time for reference model (ωc=1 rad/s) 

  Rise time (tr)    Rise time (tr) 

1.0 2.2083  1.5 1.1918 

1.1 1.7748  1.6 1.1367 

1.2 1.5289  1.7 1.0956 

1.3 1.3730  1.8 1.0645 

1.4 1.2670  1.9 1.0410 

When Table 2 is examined, it is noteworthy that the peak time changes slightly with respect to the γ parameter. When Table 3 is 

examined, it is seen that the rise time is shortened as the γ parameter grows. 

Tolerance values allowed for settling time are usually values exceeding 2% and 5%. The equations for these two tolerance 

values are as follows. Table 4 was prepared for the 5% value of settling time. 

4
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Table 4: Settling time for reference model (ωc=1 rad/s) 

  Settling time 

(ts) 
   Settling time 

(ts) 

1.0 3  1.5 6.0000 

1.1 3.12  1.6 7.8394 

1.2 3.4641  1.7 10.9624 

1.3 4.0080  1.8 17.2763 

1.4 4.8116  1.9 36.3287 
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Figure 2 shows the unit step response curves of Bode's ideal transfer function according to the change of γ parameter (1<γ<2). 

While the ωc parameter remains constant, the maximum overshoot value increases as the γ parameter grows. It is seen that 

minimum the overshoot value is γ = 1.1, while the maximum overshoot value is at γ = 1.9 [13].  

 

Figure 2: Step responses of reference system for different γ parameters 

 

3. PID CONTROLLER DESIGN 

3.1. PID Controller Structure 

 

The purpose of the control system is to ensure that the signal applied to the input is followed in the shortest time and at the least 

error. At this point, PID controllers offer great ease of use in the best operating conditions of the system. The simplicity and 

durability of the structure, to be well-known controller, the low number of parameters to be calculated is the reason for the PID 

controller’s preference [8]. 

The transfer function of a conventional PID controller is given in Equation 8 [14]. Here, the proportional term is Kp, the 

coefficient of integral term is Ki, and the coefficient of the derivative term is Kd. 

(s) .i
p d

K
C K K s

s
                     (8) 

 

The PID controller compares the feedback signal to the input signal. According to the error between the two signals, the PID 

controller makes an effect to reduce the error and sends it to the output. In this way, feedback signal is performed until the error 

is reduced to the minimum. The block diagram of the close-loop control system with PID controller is given in Figure 3. 

 

 
 

Figure 3: Block diagram of close-loop control system with PID controller 

 

3.2. Optimization Approach 

The block diagram of the model used to set the PID controller parameters is given in Figure 4. 
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Figure 4: Block diagram of the model created 

In the model, it is aimed to calculate the controller parameters by minimizing the error between output of the Bode's ideal 

transfer function and output of the controlled system. Integral performance criteria are often used to minimize the error. The 

ITSE performance criterion is chosen for this study. The ITSE criterion is given in Equation 9 [7]. 

  2

0

. ( )
ITSE
J t e t dt



                                (9) 

Where, t denotes the time and e(t) denotes the error occurring in the control system. The error is defined as the difference 

between the input signal and the output signal in a system with unit feedback and is expressed by Equation 10 [7]. 

( ) ( ) ( )e t r t y t                               (10) 

Optimization algorithm begins by entering initial values in parameters Kp, Ki and Kd. In the reference model, If appropriate values 

of γ and ωc are entered, the most suitable PID controller parameters are obtained by applying Equation 9. 

 

3.3. Implementation of the Method 

Consider the control system of Figure 4 with transfer function 

0.1

3
( )

( 0.6)
G s

s s



                             (11) 

 

PID controller parameters are obtained for different γ and ωc values in Bode’s ideal transfer function. When the controller 

parameters are obtained, the error is minimized according to the ITSE performance criterion, and the system is optimized 

according to the reference model. The PID controller parameters obtained for different γ and ωc values are given in Table 5. PID 

controller parameters applying to the fractional order system, the unit step responses are obtained and presented graphically [13]. 

 

 Table 5: PID controller parameters for different γ 

γ Kp Ki Kd 

 ωc=0,5 rad/s 

1.1 0,159 0,094 0,006 

1.3 0,472 0,173 0,741 

1.5 0,233 0,215 0,549 

1.7 0,073 0,255 0,603 

 ωc=1 rad/s 

1.1 0,334 0,2 0,0001 

1.3 0,325 0,313 0,077 

1.5 0,27 0,475 0,173 

1.7 0,229 0,796 0,456 

 ωc=2 rad/s 

1.1 0,717 0,429 0,001 

1.3 2,51 1,664 0,774 

1.5 2,759 4,836 1,417 

1.7 1,54 5,948 1,332 

 ωc=3 rad/s 

1.1 1,12 0,67 0,001 

1.3 3,618 3,499 0,696 

1.5 2,959 6,802 0,81 

1.7 1,702 8,654 0,735 
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Figure 5: Unit-Step response with controller (ωc=0.5 rad/s) 

Figure 5 shows the unit step response for ωc= 0.5 rad/s according to various γ parameter. When the figure is examined, it is clear 

that the maximum overshoot value of the system increases as the γ parameter grows. Moreover, as the γ parameter increases, the 

rise and peak time become shorter and the settling time becomes longer. 

 

  

Figure 6: Unit-Step response with controller (ωc=1 rad/s) 

 

 

 

Figure 7: Unit-Step response with controller (ωc=2 rad/s) 
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Figure 8: Unit-Step response with controller (ωc=3 rad/s) 

Similarly, Figures 6, 7 and 8 show the unit step response curves of the controlled system for ωc= 1 rad/s, ωc= 2 rad/s and ωc= 3 

rad/s, respectively. When the figures are examined, it is noticed that the maximum overshoot values do not change with ωc 

parameter but vary with γ parameter. The maximum overshoot values and time parameters for the figures are given in Table 6 in 

detail. 

Table 6: Time response parameters and overshoot value 

 γ=1.

1 

γ=1.

3 

γ=1.

5 

γ=1.

7 

ωc=0,5 rad/s 

Rise time 3,59 2,93 2,58 2,38 

Settling time 5,30 13,3

9 

15,7

8 

28,2

8 

Peak time 9,09 6,83 5,94 5,95 

Overshoot 

(%) 

1,95 11,2

0 

25,5

1 

45,5

1 

ωc=1 rad/s 

Rise time 1,78 1,46 1,29 1,18 

Settling time 5,33 5,95 8,15 16,7

1 

Peak time 4,18 3,27 3,00 2,98 

Overshoot 

(%) 

2,49 13,0

6 

28,3

8 

49,2

0 

ωc=2 rad/s 

Rise time 0,90 0,71 0,59 0,57 

Settling time 3,11 4,41 4,55 7,28 

Peak time 2,19 1,84 1,50 1,47 

Overshoot 

(%) 

2,98 10,2

0 

29,0

9 

48,4

4 

ωc=3 rad/s 

Rise time 0,59 0,43 0,39 0,38 

Settling time 2,21 2,82 3,04 4,74 

Peak time 1,52 1,14 1,00 0,97 

Overshoot 

(%) 

2,92 12,3

2 

26,4

9 

45,4

9 

 

The PID controller parameters obtained for constant γ and variable ωc values are given in Table 7. The graphs obtained by 

applying the PID controller parameters to the fractional order system are given in Figures 9, 10 and 11. 
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Table 7: PID controller parameters for different ωc 

ωc
 Kp Ki Kd 

 γ=1.2 

0.5 0,457 0,133 0,624 

1 0,359 0,254 0,062 

2 2,273 0,952 0,585 

3 2,654 1,323 0,425 

 γ=1.5 

0.5 0,239 0,217 0,561 

1 0,27 0,475 0,173 

2 0,578 1,286 0,075 

3 1,384 3,241 0,199 

 γ=1.8 

0.5 0,136 0,459 1,431 

1 0,211 1,172 0,821 

2 1,011 6,505 1,361 

3 1,189 10,183 0,82 

 

Figure 9 shows the unit step response curves of the system controlled according to variable ωc values. When the figure is 

examined, it is seen that the maximum overshoot values do not changed by changing the ωc parameter. However, the change in 

time parameters is clearly visible. 

 

Figure 9: Unit-Step response with controller (γ=1.2) 

 

Similarly, Figure 10 and 11 are obtained according to γ =1.5 and γ =1.8, respectively. It is noticed that the maximum overshoot 

values do not change while the γ parameter remains constant. Time parameters are seen to be shortened as ωc values increase.  

 

Figure 10: Unit-Step response with controller (γ=1.5) 
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Figure 11: Unit-Step response with controller (γ=1.8) 

 

The maximum overshoot values and time parameters for the figures are detailed in Table 8. 

 

Table 8: Time response parameters and overshoot value 

 ωc=0,

5 

ωc=1  ωc=2 ωc=3 

γ=1.2 

Rise time 3,25 1,60 0,73 0,53 

Settling time 14,55 6,44 4,67 3,44 

Peak time 7,74 3,59 1,96 1,45 

Overshoot 

(%) 

6,29 7,21 5,88 5,44 

γ=1.5 

Rise time 2,57 1,29 0,64 0,40 

Settling time 15,75 8,15 4,42 2,98 

Peak time 5,93 3,00 1,54 1,00 

Overshoot 

(%) 

25,44 28,3

8 

27,3

5 

25,6

7 

γ=1.8 

Rise time 2,37 1,14 0,56 0,37 

Settling time 29,28 26,0

4 

11,7

1 

6,79 

Peak time 5,99 3,02 1,49 0,98 

Overshoot 

(%) 

51,13 62,4

7 

61,3

2 

59,3

7 

 

4. RESULTS 

In this paper, an optimization method is presented related to determine PID controller parameters using Bode's ideal transfer 

function. The Bode's ideal transfer function is considered as the reference model. In the reference model, the desired unit step 

response can be obtained by setting two parameters (γ ve ωc). The unit step response of the controlled system was obtained as 

having the same characteristic as the Bode's ideal transfer function. The controller parameters are obtained by minimizing the 

difference between the reference model and the system. A number of simulation studies have been carried out in the study and 

the results are presented in graphical and tabular form. 

It has been shown that the PID controller parameters can be obtained according to the desired unit step response output for a 

fractional order system. The method has been shown to be successful from the results obtained. 
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