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Abstract 

Preventive maintenance is performed to sustain the safe and reliable operation of industrial equipments. In order 

to plan preventive maintenance or evaluate the existing maintenance plan, the failure behavior of the system must 

be modeled. The failure behavior of a repairable system is modeled utilizing counting processes. In this study 

failure behavior of propellers belonging to a small aircraft fleet is modeled. First non-parametric estimate of 

population mean cumulative function (MCF) is obtained. MCF helps discovering the special features of the 

maintenance data. The parametric model selection depends on the result of the trend analysis of the time between 

failures. In the second part of the study trend analysis is performed on propeller maintenance data. Based on the 

trend analysis two prospect parametric models are selected. Reliability measures are estimated using both models 

and results are compared to evaluate the existing preventive maintenance plan. 

Keywords: repairable system reliability, MCF, counting process, reliability metrics 

1. Introduction and Background 

Increasingly complex systems are being produced to meet today's technological needs. For these systems 

to fulfill their functions, all the parts, devices, and components that make up the system must work 

properly. The loss of function of even a small part of the system can have a negative impact on the 

operation of the entire system. However, as systems are used, the components that make up the systems 

wear out over time. This reduces the efficiency of the systems and leads to their failure after a certain 

period. 

Maintenance is an important element in ensuring the reliable working of systems throughout their life 

cycle. Maintenance schedules and types are determined by the system's needs, equipment's nature and 

condition, and other factors. Insufficient, excessive, or incorrect maintenance can cause malfunctions, 

which affects the usability of the systems and causes the system to lose performance. System repair 

costs may increase significantly due to possible secondary failures. An effective maintenance plan must 

be developed and implemented to keep a system in good working condition. In addition, existing 

maintenance data should be analyzed over time and the existing maintenance plan should be updated to 

meet the system's needs. Maintenance data are classified as recurring event data.  These data are 

analyzed using counting processes from stochastic models. Counting processes are models of the 

occurrence of events over time and are used in systems with recurring events [1, 2].  

In the literature, Ye, et al. [3] developed the reliability evaluation framework for hard disk drive (HDD) 

based on the non-homogeneous Poisson process (NHPP) and illustrated the framework on real data from 

the HDD tests. Traditional methods for accelerated life test (ALT) data analysis cannot fit the time-to-

failure data well. A multi-country production system operational status can be characterized using a task 

reliability model based on product quality status, as proposed by Yang, et al. [4]. Majumdar [5] proposed 

a failure model for a repairable hydraulic excavator system, which is modeled by a NHPP with a time-

dependent log-linear hazard rate function, and the failure modes of the system, which are at very high 

risk, are identified by failure mode and effect analysis (FMEA) and appropriate corrective measures are 
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discussed. Huang, et al. [6] proposed the NHPP to model the degradation in the system. The proposed 

model considers the virtual age concept and uses the production yield rate as a condition variable for 

the optimal preventive maintenance (PM) framework, then three different case-based PM strategies are 

proposed for the system. Ali [7] developed intuitive, practically interpreted, and adapted process 

monitoring strategies to monitor time-between-events (TBE) online and used a power-law NHPP model 

to develop TBE schedules. Cahoon, et al. [8] discussed the background of reliability growth models. 

They presented two models based on the Poisson process and competing risks. They discussed how 

these models can be extended to a Bayesian framework. Li, et al. [9] developed an improved four-

parameter NHPP model and presented a meta-action reliability model for machine tools. Said and 

Taghipour [10] developed the likelihood function corresponding to the failures and preventive 

maintenance of a fleet of trucks in the mining industry and optimized the parameters of the failure 

process with some meta-heuristics. The Kijima virtual age models [11] discussed by Jack [12] and the 

failure density adjustment model for NC machine tools were used by Guo, et al. [13]  as part of their 

imperfect PM model. Van and Bérenguer [14] assumed that deterioration behavior is a Gamma 

stochastic process and proposed a state-based maintenance policy for deteriorating production systems. 

Kahle [15] discussed the Kijima models [11] applied to system virtual age and deterioration. 

Preventive maintenance is performed to sustain the safe and reliable operation of industrial equipment. 

To plan preventive maintenance or evaluate the existing maintenance plan, the failure behavior of the 

system must be modeled. The failure behavior of a repairable system is modeled utilizing counting 

processes. In this paper, the failure behavior of propellers belonging to a small aircraft fleet is modeled. 

First, the non-parametric estimate of population mean cumulative function (MCF) is obtained. MCF 

helps to discover the special features of the maintenance data. The parametric model selection depends 

on the result of the trend analysis of the time between failures. In the second part of the study trend 

analysis is performed on propeller maintenance data. Based on the trend analysis NHPP and Kijima II 

models are selected as prospect models. Reliability measures are estimated using both models and results 

are compared to evaluate the existing preventive maintenance plan. 

The remainder of this paper is structured as follows: Section 2 reviews NHPP and Kijima II models.  

The problem and data definitions are given in Section 3. Reliability analysis of propellers is performed 

in Section 4. In section 5, results of the proposed models are presented. Finally, the conclusion is given 

in Section 6. 

2. Methodology 

Counting processes are stochastic models, defined as the occurrence of events over time.  These events 

are thought of as points on the time axis, usually the time between events is neither independent nor 

identically distributed [16, 17]. When events are failures of a system, counting processes can be 

categorized based on the quality of repairs as homogeneous Poisson processes (HPP), renewal processes 

(RP), non-homogeneous Poisson processes (NHPP), and imperfect repair processes (IRP). The 

classification of the counting processes according to repair type is shown in Figure 1.  
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Figure 1: The classification of the counting process [18]. 

In this study, NHPP and IRP models are used. The NHPP is also called a non-stationary Poisson process 

[19]. The basic assumption of the NHPP model is that in the event of a failure, the system is repaired to 

the state it was in immediately before the failure, i.e. the minimal repair or as-bad-as-olds [18, 20].  This 

assumption is justifiable for repairable systems, such as an engine, since typically only a few 

components of the system is repaired at a time, restoring it to its pre-failure state [21]. 

Some applications of the NHPP model in reliability; trend analysis based on failure occurrence, optimal 

replacement analysis, statistical warranty claim prediction. As an example of these studies; in the study 

conducted by Rausand and Hoyland [18], Asfaw and Lindqvist [22], Nelson [23], Tang, et al. [24], the 

NHPP model was used in the problem of trend analysis based on fault occurrences. Sheu, et al. [25], 

Srivastava and Mondal [26] discussed the NHPP model optimal replacement problems. Kaminskiy and 

Krivtsov [27], Majeske [28] used the model to analyze the statistical warranty claim prediction. 

For the counting process 𝑁𝑖( 𝑡 ), 𝑡 ≥  0 to be NHPP with the rate function 𝑤𝑖(𝑡), must satisfy the 

following conditions; 𝑁𝑖(0) = 0, 𝑁𝑖( 𝑡 ), 𝑡 ≥  0 is an independent increment and it is not possible for 

more than 1 failure to occur in at the same time. For the NHPP, the probability mass function of the 

number of events occurring at time (0, 𝑡] for subpopulation 𝑖 is according to a Poisson distribution. 

𝑃(𝑁𝑖(𝑡) = 𝑛) =
𝑊𝑖(𝑡)𝑛𝑒−𝑊𝑖(𝑡)

𝑛!
 (1) 

In Equation 1, 𝑁𝑖(𝑡) is the random variable representing the number of events at time (0, 𝑡] for 

subpopulation 𝑖. 𝑊𝑖(𝑡); is the expected value known as the mean cumulative function (MCF) for 

subpopulation 𝑖 at time (0, 𝑡] expressed in Equation 2.  

𝐸[𝑁𝑖(𝑡)] = 𝑊𝑖(𝑇) = ∫ 𝑤𝑖(𝑡)
𝑇

0

𝑑𝑡, (2) 

where 𝑤𝑖(𝑡) is rate of occurrence of failures (ROCOF) at time 𝑡 for unit 𝑖. 

In order to calculate the ROCOF for the NHPP model, a parametric model is needed. The power-law 

was first discussed by Duane [29], and later broadened by Crow [30].The power–law NHPP is used to 

model failure times that occur at an increasing, decreasing and constant rate. When the rate constant 

NHPP becomes HPP. It is often used for the reliability of repairable systems or complex systems. 

𝑊𝑖(𝑇) = ∫ (
1

𝜆𝑖
)

𝛽𝑖

𝑡𝛽𝑖−1𝑑𝑡 = (
𝑇

𝜆𝑖
)

𝛽𝑖

,
𝑇

0

 (3) 
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where 𝛽𝑖 is the shape parameter and 𝜆𝑖 is scale parameter.  The power-law NHPP model is highly 

sensitive to 𝛽𝑖. Accurate calculation of 𝛽𝑖 is crucial. This calculation is challenging for noisy data sets 

and/or subpopulations with few data points. Therefore, in such cases, a power law NHPP model with a 

common shape parameter is proposed [20]. According to the value of 𝛽𝑖, the following situations are 

observed; if 0 < 𝛽𝑖 < 1, the time between failures increases, if 𝛽𝑖 = 1, the NHPP model is reduced to 

the HPP model, and if 𝛽𝑖 > 1, the time between failures decreases. 

The general renewal process (GRP) is an IRP model. In particular, GRP models model the failure 

behavior of a given system and enable an understanding of the effects of repairs on the age of the system. 

The GRP is an appropriate model when the state of the system after repair is between “as good as new” 

and “as bad as new”. In the study by Crocker [31], the failures were analyzed by special forms of GRP 

Kijima model I and Kijima model II. It was revealed that the system would not be as good as new after 

repair. The models developed in Kijima [11] study proposed these two models, which deal with a general 

assumption regarding the repair situation of the GRP [32].  

Kijima model I assumes that the repair after system failure is based only on the removal of the last 

damage, while Kijima model II assumes that the repair after failure removes the damage accumulated 

up to the present time and all wear and tear. 

𝑅(𝑥) = 𝑃(𝑋 > 𝑥), (4) 

where 𝑅(𝑥) is the reliability or survivor function, distribution function 𝐹(𝑥) = 1 − 𝑅(𝑥), densitiy 

function 𝑓(𝑥) = −𝑑𝑅(𝑥) 𝑑𝑥⁄ . 

 

𝑟(𝑥) = 𝑓(𝑥) 𝑅(𝑥)⁄ , (5) 

where r(x) is the hazard rate and 𝐻(𝑥) = ∫ 𝑟(𝑢)𝑑𝑢
𝑥

0
 is the cumulative hazard function. In the event of 

a system failure, a repair is performed, and the time between the (𝑖 − 1)th failure and the (𝑖)th failure 

is the system uptime, expressed as 𝑋𝑖 , and the distribution of 𝑋𝑖  depends on the value of 𝑉𝑖−1, which is 

the virtual age of the system after the (𝑖 − 1)th repair [33]. 

𝑃(𝑋𝑖 ≥ 𝑥 ∖ 𝑉𝑖−1 = 𝑣) =
𝑅(𝑥 + 𝑣)

𝑅(𝑥)
, (5) 

𝑉𝑖 = 𝛾(𝑉𝑖−1, 𝑋𝑖), 𝑖 ≥ 0, 𝑉0 = 0 (6) 

where 𝛾 is the repair function. Situations by virtual age can be summarized as follows: if 𝑉𝑖 = 0, 𝑖 ≥ 0, 

replacement (“as good as new”) for The RP or HPP, if 𝑉𝑖 = 𝑉𝑖−1 + 𝑋𝑖 , 𝑖 ≥ 0, minimal repair (“as bad 

as old”) for The NHPP, if 𝑉𝑖 = 𝑉𝑖−1 + 𝛼𝑖𝑋𝑖 , 𝑖 ≥ 0 where 𝛼𝑖  is a random variable and 0 ≤ 𝛼𝑖 ≤ 1, 

Kijima model I, and  𝑉𝑖 = 𝛼𝑖(𝑉𝑖−1 + 𝑋𝑖), 𝑖 ≥ 0 and 0 ≤ 𝛼𝑖 ≤ 1, Kijima model II. Maintenance models 

are constrained by the fact that repairs are either “good as new” or “minimum repair”, so the general 

repair models Kijima model 1 and Kijima model 2 are more suitable as they provide flexibility in 

modeling the degree of repair between the two extremes of repair [33]. When the virtual age 𝑉𝑖 is 

increased considerably, it will have an infinite failure rate and the uptimes will stochastically decrease 

towards a boundary value of zero. For this reason, Kijima model I cannot be used in a repair strategy 

that aims to maintain a constant long-term expected time between failures in the system, instead Kijima 

model II is a more appropriate approach.  

3. Description of the Problem 

Propellers are the parts that use the energy generated by the engines to accelerate the air mass so that 

the aircraft can move through the air. Propeller maintenance data for a fleet of aircraft is analyzed using 

counting processes and suitable reliability measures are estimated to evaluate the existing maintenance 

plan. The fleet consists of 34 aircraft and the failed propeller is removed from the aircraft and replaced 

with another propeller from the stock. The repaired propeller is sent to stock room. The propellers are 

regularly checked and overhauled as part of preventive maintenance. The propeller is tracked in the 



Ankara Science University, Researcher 

 

Şaşmaztürk  et al., 2024 

98 

system using the serial number. We have maintenance data for a total of 72 propellers. The maintenance 

data used in the study was compiled from various sources. An example of the data can be found in Table 

1. The table shows the accumulated flight hours between removals of the propeller P01. From this data 

the accumulated flight hours between failures are calculated for the reliability analysis. 

Table 1: Maintenance data 

Serial Number Reason 
Flight Time Between 

Disassemblies 

P01 Overhaul 1118.0 

P01 Failure 1909.7 

P01 Failure 2422.2 

P01 Failure 2481.3 

 

Propellers suffered different numbers of failures. This information is summarized in Table 2. For 

example, 22 propellers had no failures and 25 had only one failure. The total number of failures for the 

whole population of propellers is 96 failures. 

Table 2: The Number of Propellers that have Suffered a Given Number of Failures 

 

Number of Failures Propeller Units 

0 22 

1 25 

2 13 

3 

4 

7 

1 

 

All propellers are from the same manufacturer, and their ages and operating conditions are the same, 

forming a homogeneous population. Therefore, maintenance data of all propellers are polled. Reliability 

analysis is performed on the pooled data and reliability metrics are calculated for the fleet. 

4. Methodology and Case Study 

Two modeling approaches are proposed to analyze the propeller unit data and the systems are modeled 

separately for each modeling approach. The propeller units are not considered as good as new after 

overhauls so the cumulative flight hours between failures are taken as a basis. Figure 2 below presents 

the event plot of propeller units. Cross marks indicate the accumulated flight hours that failures took 

place. 
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Figure 2: Event Plot for Cumulative Time 

4.1. Trend Test 

The general trend of the data was first determined using a non-parametric model. In the non-parametric 

model, the MCF is estimated over time from the data without assuming a model.   MCF is a plot of the 

average cumulative number of failures per unit, over time. The MCF is estimated for each time point at 

which a failure occurs and averaged over the number of units observed at that time point (number of 

units at risk) [23].  

The shape of the MCF gives information on the shape of the ROCOF. If MCF is linear, ROCOF is 

constant in time and there is no trend in the time between failures. If MCF is convex, ROCOF is an 

increasing function in time and the time between failures decreases with time. If MCF is concave, 

ROCOF is a decreasing function in time and the time between failures increases over time. In these two 

cases, ROCOF has a monotonic increase or decrease. When the MCF changes shape, the ROCOF is 

also not monotonic. The MCF plot for propeller units is given in Figure 3 below. The slight convex 

nature of the figure shows that the propeller deteriorates more often as it ages. This is an expected result 

as the propeller is a mechanical system [34]. 
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Figure 3: Mean Cumulative Function for Propeller Units 

MCF values for some flight hours are given in Table 3. As an example, the third row of the table can be 

explained as follows. It is estimated that an average of 2.032 failures per unit will occur in 2133.2 flight 

hours. The standard error of this prediction is 0.225 and the 95% confidence interval (CI) is calculated 

as 1.635-2.525. 

Table 3: Estimation of MCF 

 Time  MCF  Std. Error 

95% Normal CI limit 

Serial Number 

Upper Lower 

32 0.014 0.014 0.099 0.002 P59 

1190.5 1.008 0.135 0.312 0.775 P11 

2133.2 2.032 0.225 2.525 1.635 P35 

 

After determining the general trend of the data with the nonparametric model, a trend test was applied 

to the time between failures of the propeller units to determine the appropriate parametric model and the 

trend test results are given in the Table 4. 

 

Table 4: Trend Test Results for Propeller Units 

  MIL-Hdbk-189 Laplace’s   

  TTT-based Pooled TTT-based Pooled 
Anderson-

Darling 

Test Statistic 190.83 157.27 1.96 1.59 3.01 

P-value 0.036 0.100 0.050 0.112 0.027 
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DF 234 188       

Since the units are homogeneous, the test results based on the total-time-on-test statistic are analyzed. 

The test results are evaluated for 0,05 significance level. Since the P-values are less than or equal to 

0.05, there is a trend. Based on the trend test results and the nonparametric model results a nonstationary 

counting process model is suitable for modeling the reliability of the propellers. Power law model and 

Kjima model II are chosen as prospect models. 

4.2. Proposed Modeling Approach 1 

Parameters of the power law model are estimated by maximum likelihood method. The parameter 

estimates of the power law model are given in the Table 5. From the table, the shape parameter (𝜷) is 

estimated as 1.11 and the scale (𝜽) parameter is estimated as 1447.51. Although the 95% confidence 

interval contains values less than 1, the trend test results, and the non-parametric MCF model results 

support the trend in the time between failures as the propeller unit ages. 

Table 5: Estimation of Power Law Model Parameters 

Parameter 
Estimate 

Std. Error 

95% Normal CI Limit 

Lower Upper 

Shape (𝜷) 1.11 0.089 0.952 1.303 

Scale (𝜽) 1447.51 143.707 1191.56 1758.44 

The average cumulative number of failures predicted from the model is given in Figure 4. The blue dots 

in the figure represent the data and the solid line represents the values predicted from the model, thus 

the figure shows that the model predictions are close to the actual data. 

 

Figure 4: MCF for Cumulative Time 



Ankara Science University, Researcher 

 

Şaşmaztürk  et al., 2024 

102 

The values of the ROCOF for the power law model at some time points are given in the Table 6. For 

example, a propeller that has completed 1000 hours of flight time will fail on average 𝟕. 𝟑𝟖 × 𝟏𝟎−𝟒 

times in an hour flight. This is a very low failure density. As can be seen from the values in the table, 

ROCOF increases slowly over time. 

Table 6: Proposed Model 1 Density Function Values 

Time (𝒕) (flight hour) Density function, 𝝀 (𝒕) (failure/flight hour) 

1000 0.000738 

2000 0.000798 

3000 0.000835 

4000 0.000863 

 

Estimates of the values of the mean time between failures at some time points and the 95% confidence 

intervals of the estimates are given in the Table 7. For example, for a small-time interval 𝑑𝑡 starting 

with 1000 flight hours, the mean time between failures (MTBF) is approximately 1356 hours. As the 

ROCOF increases over time, MTBF decreases over time as shown in the table. 

Table 7: Proposed Model 1 MTBF Values 

Time MTBF (flight hour) 95% Normal CI 

1000 1355.93 1109-1657 

2000 1253.62 970-1619 

3000 1197.40 874.84-1638.90 

4.3. Proposed Modeling Approach 2 

When the Kijima II model is applied for all data, the model parameters are estimated by maximum 

likelihood method and given in the Table 8. The value of the parameter 𝒒, which indicates the repair 

quality, is approximately zero. This indicates that the repair quality is very good. After repair, the 

systems are almost as good as new. This also supports the fact that the confidence interval for 𝜷 

parameter of NHPP includes also 1. Therefore, Kijima model is more appropriate for modelling 

propellers failure behavior. 

Table 8: Kijima II Model Parameters 

Parameter Estimate 

𝛽 0.900173 

𝜆 0.001473 

𝑞 0.000015 
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For the Kijima II model, the values of ROCOF at some time points are given in the Table 9. For example, 

a propeller that has completed 1000 flight hours will fail an average of 𝟔. 𝟖𝟕 × 𝟏𝟎−𝟒 times in a hour 

flight. This is a very low failure density. 

Table 9: Proposed Model 2 Density Function Values 

Time (𝒕) (flight hour) Density function, 𝝀 (𝒕) (failure/flight hour) 

1000 0.000687 

2000 0.000659 

3000 0.000844 

 

The values of the mean time between failures at some time points are given in the Table 10. The mean 

time between failures in 1000 flight hours is 1456.43 hours. A propeller unit with 1000 flight hours 

(which may have failed and been repaired) has a 0.41 probability of flying for another 1000 hours 

without failure. 

Table 10: Proposed Model 2 MTBF Values 

Time (flight hour) MTBF (flight hour) 95% Normal CI Limit 

1000 1456.43 1156.15-1888.38 

2000 1517.47 1177.55-2025.30 

 

The values of the average number of failures per propeller and the average number of propeller unit 

failures for the fleet at some time points are given in the Table 11. For example, the mean number of 

failures per propeller unit between 1500-2000 flight hours is 0.315. Since there are 34 aircraft in the 

fleet and each aircraft has one propeller unit, the average number of propeller unit failures for the fleet 

between 1500-2000 flight hours is 𝟑𝟒 × 𝟎. 𝟑𝟏𝟓 =  𝟏𝟎. 𝟕𝟏. 

Table 11: Mean Number of Failures for the Kijima II Model 

Time (flight hour) Mean Failure (𝑬[𝑵(𝒕)]) 
Mean Number of Failures for 

the Fleet 

0-1000 0.396 13.464 

1000-2000 0.343 11.662 

1000-1500 0.326 11.084 

1500-2000 0.315 10.71 

2000-2500 0.307 10.438 
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5. Conclusions 

In this paper, the maintenance data of propellers are analyzed using parametric and non-parametric 

models. Analysis results showed that the Kjima II model more appropriate to model the failure behavior 

of propellers. 

The Kjima II model used in the proposed modeling approach 2 suggests that the repair quality is almost 

as good as new. This shows that the current preventive maintenance plan is effective and the quality of 

the corrective maintenance is satisfactory. 
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