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Zaman Kesirli Klein Gordon Denkleminin Crank-Nicolson Sonlu Farklar Yontemi ile Sayisal Coziimleri

Berat KARAAGAC!*, Alaattin ESEN2, Muhammed Huzeyfe UZUNYOL?
One Cikanlar: OZET:

¢ Kesirli Tiirev

* Niimerik ¢dziimler

¢ Von Neumann
Kararlilik analizi

Sonlu fark yontemleri fen ve miihendislik gibi birgok alanda goézlemlenen kismi diferansiyel
denklemlerin ¢éziimiinde yaygin olarak kullanilan sayisal bir yontemdir. Bu aragtirma, kuantum
alanlarindaki anormal difiizyonu ve dalga yayilimim tanimlayan ve Caputo anlaminda zamana
gore kesirli tiireve sahip Klein Gordon denkleminin niimerik ¢oziimleri hakkinda bir inceleme
sunmaktadir. Aragtirmanin iceriginde sonlu fark yontemlerinin temel karakteristiklerini géz
Oniine alinarak ilk olarak problemin calisildig1 bdlge ayriklastirilir. Daha sonra, zamana gore
tirev L2 algoritmasi ve diger terimler ise Crank-Nicolson sonlu fark yaklagimi yardimiyla
ayriklastirilarak bir cebirsel denklem sistemi elde edilir. Elde edilen Cebirsel denklem sisteminin
¢Oziilmesi ise niimerik ¢oziimlerin iiretilmesi ile sonuglanir. Niimerik sonuglar, denkleme ait
parametrelerin ve kesirli mertebeden tiirevin a(1<a<2) ¢esitli degerleri i¢in hesaplanarak hata
normlar1 hesaplanir. Grafiksel bulgular ise kesirli mertebenin gesitli degerleri igin yaklasik
¢Oziimlerin fiziksel davranigini sergilemektedir. Ayrica, niimerik semanin kararlilik analizi von-
Neumann kararlilik analizi ile arastirtlir. Bu ¢alismanin sonuglar1 bu ¢alismada sunulan yontemi
bu alanda c¢alisan diger arastirmacilarin dogadaki olaylart modelleyen diger problemlere
uygulamalarina yardim edecektir.
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Numerical Solutions of Time fractional Klein Gordon Equation using Crank-Nicolson Finite Difference Method

Highlights: ABSTRACT:
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Finite difference methods are widely used numerical techniques used to solve partial differential
equations observed in many fields, such as science and engineering. This research presents a
study on the numerical solutions of the Klein-Gordon equation, which describes anomalous
diffusion and wave propagation in quantum fields and possesses a fractional derivative in the
Caputo sense. The content of the paper begins by discretizing the region of the problem while
taking into account the fundamental characteristics of finite difference methods. Subsequently,
the time derivative L2 algorithm, and the other terms, are discretized using the Crank-Nicolson
finite difference approach, resulting in a system of algebraic equations. Solving this algebraic
equation system yields numerical solutions. The numerical results are calculated for various
values of the parameters associated with the equation and fractional order derivatives a(1<a<2),
leading to the computation of error norms. Graphical findings illustrate the physical behavior of
approximation solutions for a variety of fraction order values. Additionally, the stability analysis
of the numerical scheme is investigated using von-Neumann stability analysis. The results of this
paper will help other researchers studying in the field to apply the presented method to other
problems modelling the natural phenomena.
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INTRODUCTION

Fractional calculus has a history old and deep-rooted as classical calculus. It is a branch of
mathematics that carries the traditional order of derivatives and integrals into an arbitrarily complex
order. The history of fractional calculations are based on the work of mathematicians and scientists over
several centuries, beginning with a question first raised by L’Hopital on September 30, 1695, about
Leibniz’s notation what the result would be if N =1/2 at D"x/Dx" (Paredes, 2020). However, the
interest in this topic has begun to grow around 1890, leading to the definition of various operators as a
result of the in-depth investigation of fractional calculus. Initially, the Riemann-Liouville derivative was
introduced. Later, in 1967, Caputo fractional derivatives were introduced, which offer advantages in
physical problems (Korichi et al., 2024). The Caputo fractional operator played a significant role in
fractional calculus due to its ability to handle initial value problems and provide a more suitable
framework for modeling real-world dynamical systems. Over time, numerous definitions, operators,
models, and rules for evaluating fractional calculus operators emerged, driven by various considerations.
The motivation behind of this topic is the need for applied scientists to develop models that accurately
describe a wide range of systems and extend the field of fractional calculus. Building on this motivation,
this paper aims to obtain numerical solutions of the Klein-Gordon equation defined with the Caputo
sense fractional derivative with respect to time.

The equation is described along with its initial-boundary conditions as follows (Nagy, 2017):

DU = Uy + au + bu? + cud + g(x, t) (1)

ulxp, t) =uy(t), ulxg,t) =ugr(t), x, <x<xg

u(x,0) = (), w60 = fG), 0<t<T. 2)

To achieve our aim, we will use finite difference methods. In more detail, the L2 algorithm will
be used to discretize the time fractional-order derivative. The spatial derivatives will first be discretized
using the Crank-Nicolson approximation to contribute to the time progression and obtain more accurate
results. Then, the difference approximations will be written in place of the terms containing derivatives
using central difference approximations. For the purposes of this paper, we will investigate the dynamics
of the fractional order Klein-Gordon equation applying the finite difference technique, the Crank-
Nicolson approximation, the Rubin-Graves linearization, and the L2 algorithm. Furthermore, the
techniques' application and how the error rate is impacted by space and time step size changes in as well
as the stability analysis structure for fractional order equation classes, will be discussed. In addition, it
is aimed to contribute to the literature by combining these three techniques and analyzing their effect on
the solutions of a nonlinear partial differential equation. In addition, the examination of the fractional
order Klein-Gordon equation with two sample problems will enable the evaluation of the method's
accuracy. The last but not least, the numerical results will contribute to the phsical examination of the
phenomena lying behind the handled equation.

The content of the present paper is as follows: In the next section, the aforementioned equation
and notations used in the method will be introduced. In the following section, the application of the
method to the time-fractional Klein-Gordon equation will be discussed, and then the stability analysis
of the numerical scheme obtained in the previous section will be considered using the von Neumann
method. In the final section, the numerical outcomes and error norms will be presented in tables and
graphs, showcasing a visual representation of the equation's structure.
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MATERIALS AND METHODS

Fractional Klein Gordon Equation and Finite Difference Method

The time fractional Klein-Gordon (TFKG) equation is an extended version of the traditional Klein-
Gordon equation as replacing the constant order fractional time derivative by fractional order time
derivative. The time-fractional Klein-Gordon equation has a range of applications in theoretical physics,
particularly in the paper of relativistic quantum mechanics, quantum field theory, and the behavior of
quantum particles in non-local and non-integer order systems. Using this equation, researchers provide
a more thorough framework for evaluating the dynamics of relativistic quantum fields, especially in

cases where non-integer order behavior and long-range interactions are common. In Eq. (1) a,b, and
¢ are real constants, , stands for an unknown function in the variables x and t. D" () denotes fractional
order derivative in Caputo sense and ., is 1<a<2. g(x,t) indicates the source term and uo(x),

U (t), ug(t) are given functions and f,(X) is initial velocity of the wave which is produced via the

equation. In the literature, there have been a lot of valuable studies on time fractional Klein Gordon
equation. Among others, some of these are; (Habjia et al.,2024) investigated space-time fractional Klein-
Gordon equations and used the sine approach to generate accurate solutions. (Mirzaei & Shokri, 2024)
have proposed a numerical approach to solve the nonlinear time fractional Klein-Gordon equation. They
used a pseudo-spectral approach based on Lagrange polynomials at Chebyshev points to approximate
spatial derivatives. (Odibat,2024) has developed a numerical method using finite difference methods and
predictor-corrector methods to obtain numerical solutions to the investigated problems. (Vivas-Cortez
et al., 2024) have used Extended cubic B-spline (ECBS) functions for obtaining the numerical solutions
of the generalized nonlinear time-fractional Klein-Gordon equation (TFKGE). In (Sahu & Jena, 2024),
a hybridized Newton-Raphson approach is used with a modified Laplace Adomian decomposition
technique (LADT) to investigate an approximate solution to the Time Fractional Klein Gordon Equation
(TFKGE). (Ganiji et al., 2021) have described a novel approach that uses the clique polynomial as the
basis function for the operational matrices to generate a time-FKGE solution. (Mohebbi et al., 2014)
have used a high-order difference approach to solve some time-fractional PDEs including Cattaneo
equation, linear time fractional and dissipative Klein-Gordon equations. (Nagy, 2017) has used an
accurate numerical approach, which depends on the Sinc function and second-order shifted Chebyshev
polynomials, to solve the time fractional nonlinear Klein—Gordon equation. (Amin et al., 2020) have
developed an extended cubic B-spline functions approach to investigate the approximate solution of the
time-fractional Klein-Gordon problem. In (Akram et al., 2020), authors have used a new extended cubic
B-spline (ECBS) approximation to numerically solve the equation. (Mulimani & Kumbinarasaiah, 2024)
have constructed a numerical technique using Fibonacci wavelets in order to solve fractional Klein-
Gordan equations (FKGESs). Biswas (Biswas, 2024) has investigated the behavior of the Poschl-Teller
potential in the D-dimensional Klein-Gordon equation, employing the Green-Aldrich technique. For
more information, researchers can check the references given in (Odibat & Momani, 2009; Dehghan et
al., 2015; Hashemizadeh & Ebrahimzadeh, 2018; Bansu & Kumar, 2021; Yaseen et al., 2021).

In order to explain finite difference notations, the spatial domain and time domain are choosen as

[Xu XR] and [O,T], respectively. Now, we are going to begin by establishing N nodes of computational

domain and M nodes of time domain such as {xj} "R where AX = Xja — X (j =01,.., N), {tn}|; where

XL
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At=t ., —t (n=0,l,2,..,M). Then, as procedure of finite difference method, the derivatives of

function u (x,t) will be replaced by finite difference approximations obtained via Taylor series at those

discrete points. The aforementioned technique generates a large algebraic system of equations that needs
to be solved, rather than the differential equation, which can be solved numerically on a computer.

Application of Finite Difference Method to TFKG Equation

The aim of this section is to develop a numerical scheme for the time fractional Klein-Gordon
equation by applying the finite difference method. Before tackling the problem, we will employ the
Crank-Nicolson finite difference approach to achieve more accurate results and to provide an implicit
treatment of time, which yields:

n+1 n
Dfu = Qi)™ 74 ()™ 2+(”xx) + %(unﬂ +um) + 2((u2)n+1 + @W)M)

+E (A + () + L) 0 (otn)

(3)

Then, it is required to discretize the present problem in given computational and time domain. For
this purpose, first of all we are going to use L2 algorithm to discretize time fractional derivative by using
formula given as (Oldham & Spanier, 1974):

In order to discretize the problem in the given spatial and discrete time domain, we will first use
the L2 algorithm. Specifically, we will employ the formula given by (Oldham & Spanier, 1974) for
discretizing time fractional derivatives:

(At)~* - - —k— —k—
Dffu = 157 Xiemp wie[u™ ™ — 2unTk T 4 un ] (4)

2—-a

where o =(k+1)"“ —k**“. It is evident from (4) that the L2 algorithm has an implicit treatment of

time. For the spatial derivative the term U,,, a centered approximation for the second-order derivative is
given as

U1 —2UjtUj g
uxx - (Ax)z (5)

As it seen from the equation given in (3), (uz)n+l and (u3)n+1 are nonlinear terms, so it is needed to

linearize these terms by using Rubin Graves type linearization technique (Rubin & Graves, 1975):

(uZ)n+1 = 2yt — (uZ)n
(u3)n+1 — 3(un)2un+1 _ 2(u3)n.

(6)

When we collect all finite difference approaches with L2 algorithm and Rubin Graves type linearization
technique in (3) we obtain the following algebraic equation

—_ n+1 n+1 n+1 n n n
A~ $n-1 @ [ur* — 2unk1 4 ynk=2] = s 2 ey Stes o WD £ S g o
[(3—q) <k=0 Tk 1¥j 7 J 2(Ax)2 2(Ax)?2

(7)

a +1 b n, n+l 4 n\2. n+1 3 g tne1)+9(x,tn)
+5 @W" +u")+5(2ujuj )+E(3(uj)un - (u )")+—" > =

After some arrangements, we get an algebraic equation system in the following form
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iy (_ z(ASx)Z) + <1 + (A 2 g (a + Zb(u}l) + 3C(uf)z)> +u (_ Z(Asx)z)

— s () + (2 e+ 3= e))) + s (i)
—2u

9 tne)+g(xty) n—k n-k-1
B E— u T T,

(8)

n+1-k

—ul ™t + —Xroy wf[y]

where S =(At)"T'(3—«). It can be seen from the (8), for j=1,2,..,N, ug™ and U] are boundaries,
this values are known from boundary conditions u(X_,t) and u(X,t) because of spatial domain
discretization as X, =X, and X = Xy. For n=0,1,2,..,M, the u?‘l function is out of time domain,
when we use initial condition given in (2) with central difference approximation for first order
derivative, we get u}”l = 24t u,(x) + u}*‘l. At the end of this section, one has an algebraic equation
system in the form of (8) Solving the system iteratively results in obtaining the values of unknown
function u(x,t) at time nodes (n+1) the using the known values of function u(x,t) at the time level

nodes (n) for every computational nodes. With a view to get an initial vector to begin iteration, the

initial condition u(X,0)=u,(x) given in (2) for all values of computational domain nodes as

u(x.,0) =y (X, ), U(%,0)=Uy (%), U(Xy1,0) = Uy (Xyy ), U(Xgs0) = Uy (X5 )-

Stability Analysis

In this section, we are going to investigate the stability analysis of the Crank-Nicolson scheme
obtained for the time-dependent Klein-Gordon equation for the force-free case using von Neumann
stability analysis. For this reason, we are going to look for the solutions in the following form:

ul' = Anelihd (9)

where 1= \/—_1, ¢ is grid wave number and / is growth factor. The goal is to obtain a condition for

stability for |ﬂ| <1. In order to achive our aim, let us consider linearized scheme for time fractional

Klein Gordon equation as follows;

(ae)~“ - —k—
- klwk[un+1k 2}Lk+u}1k1]
ultt—2ul vt T —2ulul m 1 (10)
J J J J J— = n+ ny —
( 20822 2822 ) ;W ut) =0
when we use (9) in (10), ityields
§a,t Z;clzl w}a{.’eijhd) (An+1—k — Ak 4 An—l—k) Z(Ax)z ——__n+lgijhe (2COS(h¢) _ 2)
(11)
2(A ) —— 1" (2cos(h¢) — 2) — —e”h‘l’(ln+1 +AM) =0
where U is linearized term, SAaYt =1/S . For n =0 and after some arrangments, we get
3(é 2 (he) _ 5 2(_¢ 2-a _ 1)¢é 2 (hd) _ 5
A {Sa,t + 2sin ( 5 ) u} + A { Set+ (2 1)Sq ¢ + 2sin ( > ) u} (12)

+{Spr — 27 - 1S, }+ 227 %=1)S,, =0
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if we express (12) more simply in polynomial form, it yields
ar+bA2+édl+d=0
Therefore, the roots of (13) can be obtained as

A =p1 — P2+ ps3
1 1

1 1

and

211 = \/(P1 — P2 +p3)?

7
|2, = \[(P1 +%(P2 - P3)2) + 73(172 + p3)?

7
13| = \[(P1 +%(P2 - P3)2) + 73(172 + p3)?

where
b
b1 = —ﬁ
V2(3a¢ — b?)
b2 =

(13)

(14)

3
3&\/\/(—27&202 +9ab¢ — 2b%)° + 4(3a¢ - b?)” - 27a2d + 9ab¢

—2h3

3
\/\/(—27&%2 +9abé — 25%)° + 4(3aé — b2)” — 27a2d + 9abé —

2h3

Ps = 33/2a

in order to obtain the values of roots, we are going to use the maximum values of variables and compute

(14) , The following table can be given,

Table 1. The values of the eigenvalues

AX At o ¢ V’l‘ |27| — |/13|
0.5 0.5 2 T 555112107 0.565685
0.75 0.75 2 T 5.55112x10°Y7 0.552052
1 1 2 T 11102210716 0.541928

RESULTS AND DISCUSSION

In this section, we present numerical solutions to the time fractional Klein-Gordon equation for
various temporal and spatial steps, as well as different values of the fractional order. We consider the
equation given in (1), along with the specified initial and boundary conditions.

u(xg, t) =u , (t), u(xg,t) =u (), t=0
u(x,0) = f1(x), u(x,0) = f2(x), a<x<b.

The error norms L, and L, are calculated using following formulae
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N
L2 = Z \/((u(xiJ t)) - unum(xi; t))z ’ (‘xl t) € xLl xR] X 0, T]
i=0

Lo, = [mnax luxy, £) = Upym (xg, O

Example 1:

For first example, we are going to consider time fractional Klein Gordon equation with the coohing
the coefficients related with equation as a=0, b=-1, and ¢=0. And the domain of the mentioned
problem is x€[0,1], te[0,1]. Thus equation and related boundary and initial conditions can be
expressed as (Mulimani & Kumbinarasaiah, 2024)

Dfu = uy —u? + g(x, t)

u(0,t) =0, u(1,t) =t (15)
u(x,0) =0, us(x,0) =0

The exact solution of the problem is U(x,t)=xt> and forced term is g(x,t) = —6xt3 + x5¢6 +
6x3t3_“
r4—a)
1.5,1.75. For table 2, the partition of computational domain is N = 40, and time domain is M =1000.

. First of all, we present the change of error norms for different times while a changingto « =1.2,

It is clear from Table 2, for all selected values of fractional order, error norms remain relatively small.
Additionally, for  =1.2, the error norms is L, =1.6699362x10° and L, =2.8115151x10® while L,
=6.6920342x10° and L, =9.8143084x10° at=0.1. The behavior of numerical solutions is an expected
outcome when considering rounding errors.

Table 2. The error norms for different values of fractional order ., for Example 1

a=12

a=15

a=175

L,

L

0

L,

L

0

L,

L

0

01 16609362x107° 28115151 x10™°  2.2764702x107"  4.3462997 x10~" 1.1511139 x10°° 2.4407432x107°
02 59506141 x107° 44056871 x10°  4.8768308x107"  8.1901650x10~" 3.0962677 x107° 5.8108280 x107°
03 37841647x107°  55218544x10°  7.0328424x107"  1.0811117x107" 5.0829910x107° 8.6537974x107°
04 42506202x107° 61342199 x10°  86862120x107"  1.2602275x107° 6.8879808 x107° 1.0825202 x107°
05 45334150x107° 65025259 x10°  97677852x107"  1.3793153x107° 8.4412827x107° 1.2410636 x107°
06 47303309x107°  6.8002836x10°  1.0269751x107°  1.4406220x107° 9.6722860x107° 1.3543809 X107
07 490821272x107°  7.1655979x10°  1.0288348x107°  1.4456171x107° 1.0465453 x107° 1.4293328 x107°
08 53435812x107° 77226694 x10° 997740661077  1.4071806 x107° 1.0736118 x107° 1.4630022 x107°
0.9

5.8925206 x107®
6.6920342 1078

85720178 x107®
9.8143084 1078

95013279 107’
9.0021308 X107’

1.3457568 x107°
1.2798797 x107°

1.0501671 x107°
9.8520061 x107°

1.4483051 x107°
1.3800674 x107°

The comparison results with (Mulimani & Kumbinarasaiah, 2024) is presented in Table 3 for the
values of t =0.01 and 0.001 at different nodes of computation domain. In (Mulimani & Kumbinarasaiah,
2024), the authors used Fibonacci wavelets for solving the equation and they constructed the operational
matrices of integration. To be able to match the nodal points of the compared studies, the partition of the
space and time domains are selected as N =10,M =1000, thus, in Table 3, a comparison table is
obtained and presented for o =2. It is obvious from the table, for the point x =0.1, the absolute error
is 3.6386x10° for (Mulimani & Kumbinarasaiah, 2024) and 1.4079950x10* for present method,
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however, for the point x=0.5, the absolute error is 1.6168 <10 for (Mulimani & Kumbinarasaiah,
2024) and 1.7503997x10"° for present method for t=0.01. For t=0.001, It can be say the results
obtained from Crank-Nicolson finite difference method gives more accurate results than those in
(Mulimani & Kumbinarasaiah, 2024) . In general, the results obtained using the Crank-Nicolson finite
difference method has an aggrement with those of (Mulimani & Kumbinarasaiah, 2024) and have
yielded more accurate in most of the selected points.

Table 3. A comparison between absolute errors at different points for Example 1

t=0.01 t=0.001
X (Mulimani & present (Mulimani & present
Kumbinarasaiah, 2024) Kumbinarasaiah, 2024)
0.1 36386 x107° 1.4079950x107*° 3.6386x107" 5.0007500x107"
0.2 7.1872x107° 1.1215990 X107 7.1872x107% 400015001072
03 1.0546 x1078 3.7823985 x10~° 1.0546x107%° 1.3500225x 107
04 1.3504x1078 8.9631980 x10° 1.3594x107° 3.2000300x107"
05 16168x107° 17503997 x1078 1.6168x107% 6.2500375x107*
06 1.8035x107° 3.0244797x107° 1.8035x107% 1.0800045x107%°
0.7 1.8830x107° 4.8025596 x107° 1.8830x107° 1.7150052x 107
08 1.7929x107 7.1686334x10°° 1.7929x107° 2.5600060 x107*°
0.9 1.4131x1077 1.01934065 1077 1.4131x10°° 36448817 x107%°

Lastly, the numerical behaviour of the problem is displayed in Figures 1-3. Figure 1 shows the
change of the graph with the change of the fractional order derivative values ., for N =100 and
M =20. Figure 2 includes the numerical behaviour of solutions at different time levels. and Figure 3
provides a three-dimensional view of the numerical solutions.

1 T T T T T T T o
The zoomed part of Figure -
ool o4 &
0449 ‘,
08| o448 o b
0447 ‘t
07| 0448 o o
o W
0.6 — 0444 K ‘t _
N rical 0443 t‘
umerical | L i
Solutions  *° 0442 ‘t'
0441 t’
04 04 “," -
¥
03 0.758 0.7585 0.756 0.7565 0.76 0.7605 0.761 0.7615 0.762 0.7625 0.783 “*“g _
02 t*‘*t —
" ° aml2
e * a=1§
01| sut? a=175
UL *_a=19
: T I 1 I 1 I 1

[ 01 0.2 03 04 05 0.6 0.7 08 09 1

Figure 1. The numerical behaviour of time fractional Klein Gordon equation for different values of ., for example 1

1 =1
0.9 -
0.8 -
0.7
0.8
Numerical 0.5 - 08
solutions
0.4 -
0.3
0.2

01

x

Figure 2. The numerical behaviour of time fractional Klein Gordon equation at different time levels for example 1
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Figure 3. The 3 dimensional graph of time fractional Klein Gordon equation for example 1
Example 2:
As the second example, consider time fractional Klein Gordon equation in (l) with related coefficients

a=-1, b=0, and ¢ =-3/2. Thus, the equation can be rewritten as follows (Nagy, 2017)
DfU= Uy —Uu —%cu3 + g(x,t) (16)

ulxp, t) =u (t), ulxg,t) =ug(t), x, <x<xp

u(x,0) = £,(0), w(x0) =fG), 0<t<T. (17)

where u; (t) = ug(t) = 0 and f;(x) = f,(x) = 0. The exact solution and forced term of the problem given
in (16)—-(17) are :

u(x, t) = sin(mx)t?*+¢

glx,t) = %F(S + a)sin(mx)t? + (1 + 7?)t?+%sin(mx) (18)

+ % (sin(mx)t?+9)3,

The initial and boundary conditions of the problem are taken from the exact solution u(x, t) given
in Eq. (18). As in the first example, the domain of the problem is chosen to be (X,t)=[0,1]x[0,1] and

the Table 3 presents values of error norms for different values of the fractional order ., . Thus, when
the Table 4 is analysed, it is found that the error norms were quite small. The finite difference method's
characteristic structure allows it to be applied directly to the problem, and it uses Taylor series
expansions of derivatives. The method's focus on nodal points highlights their critical role in determining
the accuracy of the solution. While the method can be applied directly to many problems, its application
can be challenging in complex geometries or irregular areas, where irregular boundaries and curved
shapes can lead to inaccurate results. The method relies on finite difference approximations, which
reveals truncation errors due to its nature. These errors can impact the accuracy of the solution, which
depends on two key factors: grid spacing and the order of the finite difference scheme used. A finer grid
spacing or higher-order scheme can improve accuracy, but also increases computational cost.

For the second problem, Table 4-9 are prepared. In Table 4, N=40 and M=1000 are chosen, and
the error norms for different values of the fractional order derivative are presented. Similar to the
previous example, it is observed that the error norms for the selected values of the fractional order
derivative were quite small. In Table 5, a comparison of absolute errors with (Nagy, 2017) at some
selected nodal points x at t=1 is presented for fractional order derivatives values ., = 1.5, 1.7, and 1.9.
Again, to enable the matching of nodal points, N=100 and M=1000 are selected. It is clearly evident
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from the table that the numerical results obtained using the Crank-Nicolson finite difference method
have shown more accurate results than those generated by the shifted Chebyshev polynomial method
employed in Nagy’s study.

Table 4. The error norms for different values of fractional order ., for example 2

a=12 a=15 a=175

t

L,

L

0

L,

L

0

L,

L

0

01 83037230x10°° 11870516 x1077  2.8787501x107  4.0711801x10~" 6.8841173x107" 9.7356121 X107’
02 56331068 <107  7.9664162x107  1.1337769x10°°  16034026x10°°  37582122x107° 53149146 x10°°
03 4805541x10™°  35207545x10°  27828012x10°  3.9354728x10°° 9.9136782x10°° 1.4020055x107°
04 75546060x107°  1.0683754x107°  6.0025817x107°  8.6161554 x107° 1.9515590 107 2.7599139 x10°
05 17851000x107°  25242882x107°  12674943x10°°  1.7924372x10°° 33060012 x107° 4.6753009x107°
06 35662684x107°  50417743x10°°  24887627x107°  35100542x10°  51558013x107°  7.2007074x107°
0.7 63102839x10°°  89282224x10°°  45688768x10°  6.4577551x10°° 7.6804861x107° 1.0857963x107*
08 10200026 x107*  1.4392132x107*  7.8277835x10™*  1.1052745x107* 1.1143611x107* 15742114x107*
0.9

1

15188041 x107*
20881410 X107

21367426 x107*
29222268 x107*

1.2524567 x107*
1.8665723x107*

1.7643678 x107*
26169098 X107

15854430x107*
2.2035734x107*

22355972 x107*
3.0945840 X107

Table 5. A comparison between absolute errors at different points for example 2

a=15 a=17 a=19
t SCCM (Nagy, Present SCCM (Nagy, Present SCCM (Nagy, Present
2017) 2017) 2017)

01 16396x107° 15708654 x107° 15471107 3.2132612x107° 1.4380x107° 15410438 x107*
02 17808x107° 29647016 x107° 11272x107 6.0651171x10°  94914x10™* 2.0137763x107*
03 10869x107° 40412008 x107° 8.9663 %107 82687009 x10° 6791310 3.9780051 x107*
04 g4106x10™*  47137617x107° 6.3348x107* 9.6456226 x10° 3.9687x107* 4.6457012x107*
05 78252x10™ 49415292 x107° 5.6868x107* 1.0112079x107* 3.2651x107* 4.8724770x107*
06 g4106x10™*  47137617x107° 6.3348x107* 9.6456226 x107° 3.9687x107* 4.6457012x107*
07 10869x107° 40412008 x107° 8.9663x107* 8.2687099 x10° 6.7913x107* 3.9780051x107*
08 12808x107° 29647016 x107° 1.1272x107° 6.0651171x107° 9.4914x107* 2.9137763x107*
09 16396x107° 15708654 x107° 15471x107° 3.2132612x107° 1.4380x107° 1.54104387x107*
|_2 352187482 x107° 7.20621073x107° 3.46829249 X107
L 494152920 107 1.01120790x10~* 487247702107

Tables 6 and 7 contain a comparison of the fractional order derivatives at values 1.4 and 1.6 for
(Odibat & Momani, 2009), (Nagy, 2017), (Amin et al., 2020), and (Sahu & Jena, 2024). To ensure the
matching of the nodes, N=100, M=1000, and t=1 have been chosen. The presented tables serve as a
comparison of absolute error norms. It is observed from the tables that the results obtained with the
presented method are more accurate at the selected points compared to (Odibat & Momani, 2009),
(Nagy, 2017), (Amin et al., 2020), and show more accurate results than (Sahu & Jena, 2024 at the
majority of the selected points. Overall, it can be noted that the absolute errors are consistent. Finally, a
comparison of absolute error norms with (Yaseen et al., 2021) and (Vivas-Cortez et al., 2024) is
presented in Tables 8-9 for N=100 and M=1000. It can be observed that for the fractional derivative
a =15, the Crank-Nicolson finite difference method yields more accurate results. For a fractional
derivative o =1.7 , more accurate results are achieved compared to (Yaseen et al., 2021), and the results
have a closely agreement with those from (Vivas-Cortez et al., 2024).
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Table 6. A comparison between absolute errors at different points for example 2

a=14

X ?\/Almqggdlggég)‘ (2'3‘21(;)” etal, SCCM (Nagy, 2017) (Sahu & Jena, 2024) Present

(0.1,01) | 39211107 1.9749x107° 2.3809x10°° 5.84378x107° 8.1986800x107°
0202) | 61713x10™ 1.7326x107° 5.2644x107° 2.15662x107° 4.9378183x107
(0.303) | 21089x1072 5.2839%x10°° 6.0187x10°° 6.47028x107° 1.3377750x10°°
(0.404) | 25545x1072 9.9062x107° 6.6640x107° 6.77903x107* 2.7391374x107°
(0505) | 53405%x107° 1.3396x10°° 4.0011x10°° 3.89735x10°° 4.9096307x107°
(0.606) | 31409x1072 1.3557x10°° 1.5837x107* 1.48996 x1072 7.8937858x10°°
0.7.0.7) | 8.0092%x1072 9.6832x10°° 9.1922x107* 4.10203x1072 1.1095407 x107°
(08,08) | 13508x107" 3.5290%x10°° 2.9084x107° 8.04521x1072 1.2841522x107°
0909 | 14272x107" 9.0059x107° 3.8732x10°° 9.42919x1072 1.0287723x10°°

Table 7. A comparison between absolute errors at different points for example 2

a=16

X \“;'c')\fngr?i‘,“ggég)‘ (Aminetal, 2020)  SCCM (Nagy, 2017)  (Sahu & Jena, 2024)  Present

(01,01) | 10402x10°  1.4963x10° 2.3809%x10°° 2.20655x107%° 1.8140413x1077
(0202) | 14424x10*  15765x10° 5.2644x107° 1.41787x1077 1.4830111x10°°
(0303) | 67115x10°  2.1699x10”" 6.0187x10°° 5.88593 %107 45728868107
(0404) | 30493x10°  1.1769x107° 6.4440x10°° 7.77198x107° 9.2450831x107°
(0505 | 16350x102  1.2375x10° 4.0011x10°° 5.35285x107* 1.4509743x107°
(0.606) | 49509x102  2.1232x10°° 1.5837x107* 2.37362x107° 1.9403104x107°
(0707 | 10675x10"  1.8721x10° 9.1922x107* 7.42466x107° 2.2265420%x107°
(0808) | 16942x107"  1.0951x107° 2.9084x107° 1.64614x1072 2.1522751x107°
(0909 | 17521x10"  2.2989x107° 3.8732x10°° 2.2289x1072 1.4986281x10°°

Table 8. A comparison between absolute errors at different nodal points for example 2

a=15

X (Yaseen et al., 2021) (Vivas-Cortez et al., 2024) Present

01 22437107 3.7667%107 1.57086543x10°°
0.2 4.4180x107* 7.0999x107° 2.96470163x10°°
03 6.3346x107* 9.6627x107° 4.04129089x107°
0.4 7.6861x107* 1.1255x107* 4.71376174x107°
05 8.1773x107* 1.1793x107* 4.94152920x107°
0.6 7.6861x107* 1.1255x107* 4.71376175x107°
0.7 6.3346x10~* 9.6627x10°° 4.04129089x107°
08 4.4180x107* 7.0999x107° 2.96470163x10°°
0.9 2.2437x107* 3.7667x107° 1.57086543x10°°

Table 9. A comparison between absolute errors at different nodal points for example 2

a=17

(Yaseen et al., 2021)

(Vivas-Cortez et al.,

2024)

Present

0.1
0.2
0.3
0.4
0.5
0.6

28566 %10~
55578 x10~*
7.8594x107*
9.4376x107*
1.0003x1073
9.4376x107*

1205210
2.2820x107°
3.1232x10°
3.6548x107°
3.8361x107°
3.6548x107°

3.21326128x10°°
6.06511717 x107°
8.26870994x10°°
9.64562265x107°
1.01120790x10~*
9.64562265x107°
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Table 9. A comparison between absolute errors at different nodal points for example 2 (Continued)

X (Yaseen et al., 2021) (Vivas-Cortez et al., 2024) Present

0.7 7.8594x107 3.1232x10°° 7.68842122x107°
08 5.5578x107* 2.2820x10°° 6.06511717x10°°
0.9 2.8566x107* 1.2052x107° 3.21326128x10°°

The simulations of the numerical solutions are depicted in Figures 4-6. The first of figures includes
the behaviour of solutions for different fractional order while second figure shows behaviour at different
time levels. At the end figure involves 3 dimensional aspect of the numerical solutions.

12

Numerical
Solutions

Figure 4. The numerical behaviour of time fractional Klein Gordon equation for different values of , for example 2
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04—
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Figure 5. The numerical behaviour of time fractional Klein Gordon equation at different time levels for
example 2

Numerical
‘solutions

Figure 6: The 3 dimensional graph of time fractional Klein Gordon equation for example 2
It is essential to emphasize that the fractional Klein-Gordon equation is used to model various
physical phenomena. Therefore, solutions of this equation have significant physical importance in
various fields. For instance, it describes anomalous diffusion and wave propagation in quantum fields,
extends the application of standard quantum theories to real-world phenomena, and describes the
behavior of particles and quasiparticles in complex disordered systems. Solving the equation provides
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valuable insights into these systems, enabling predictions and a deeper understanding for field
researchers in the daily applications of their experiments.

CONCLUSION

As a conclusion, in this paper, a Crank-Nicolson finite difference method is applied to obtain
numerical solutions of the fractional order Klein Gordon equation. The L2 algorithm and the Crank-
Nicolson approach are used for the discretization of the considered equation with respect to temporal
variable, while central finite difference approaches are used for the discretization with respect to spatial
variable. The fractional order equation is transformed into a system of algebraic equations and thus

numerical solutions are obtained. The absolute error norms at the points and the error norms L, and L,

for different time, space steps and fractional orders are presented for the two problems related to the
equation. If one considers the obtained results , it is observed that the Crank-Nicolson finite difference
method is an effective and powerful method. The method can be considered as one of the best and
applicable alternative ways to solve the nonlinear differential equations. Additionally, in future studies
different techniques based on finite difference approach can be combined with variety of linearization
technique and algorithm for discretization of fractional derivative can be applied such nonlinear
problems arise in mathematics and physics.
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