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Abstract. Let A be a domain. We relate the perinormality (as defined by

Epstein and Shapiro) of A and A[X] for a narrow class of Noetherian domains.
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1. Introduction

In [1] and [2], Epstein and Shapiro studied the integral domains A with the prop-

erty that every overring B of A which satisfies going down over A is A-flat (called

by them perinormal domains). Krull domains are typical examples of perinormal

domains. [1, Question 3] asks to relate the perinormality of A and A[X]. Using the

pullback approach from [2], we provide an answer for a narrow class of Noetherian

domains. Recall that a field K is Hilbertian if given fi(T1, . . . , Tn, X) irreducible

polynomials in K(T1, . . . , Tn)[X], 1 ≤ i ≤ k, and g ∈ K[T1, . . . , Tn] − {0}, there

exist a1, . . . , an ∈ K such that each fi(a1, . . . , an, X) is defined and irreducible in

K[X] and g(a1, . . . , an) 6= 0, cf. [3, Chapter 11]. For an ideal I of a ring A, denote

by VA(I) the Zariski closed set defined by I. We use standard terminology like in

[4]. Our result is:

Theorem 1.1. Let A be a Noetherian domain with the integral closure A′. Assume

that the conductor (A : A′) has height at least two as an ideal of A′ and A/(A : A′) is

zero-dimensional and not local. Then the first three assertions below are equivalent

and imply the fourth one.

(a) A[X1, . . . , Xn] is perinormal for every n ≥ 0.

(b) A[X1, . . . , Xn] is perinormal for some n ≥ 1.

(c) A(X1, . . . , Xn) is perinormal for some n ≥ 1.

(d) A is perinormal.

Moreover, if A/M is a Hilbertian field for every M ∈ VA(A : A′), then all four

assertions are equivalent.
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2. Lemmata and proof of Theorem 1.1

The proof is based on two lemmas. In [2, Definition 3.2], an integral extension of

rings A ⊆ B is called apparently fragile if for every ring C with A ⊂ C ⊆ B, there

exists a minimal prime P of A which is not unibranched in B. The extension is

called fragile if AP ⊆ BA−P is apparently fragile for every prime ideal P of A. Due

to Cohen-Seidenberg theorems, it can be seen that, when A is an integrally closed

Noetherian domain and B is a finite reduced ring extension of A, then A ⊆ B is

apparently fragile if and only if there is no domain C, A ⊂ C ⊆ B.

Lemma 2.1. Let A ⊆ C and B ⊆ D be integral ring extensions. Then A × B ⊆
C ×D is fragile if and only if A ⊆ C and B ⊆ D are fragile.

Proof. The assertion follows combining the following simple facts. The extension

A × B ⊆ C × D is integral, Spec(A × B) is the disjoint union of Spec(A) and

Spec(B), and, if P ∈ Spec(A), then the extension (A×B)P×B ⊆ (C ×D)(A−P )×B

is isomorphic to AP ⊆ CA−P . �

In the sequel, if A is a ring and B1, . . . , Bk are ring extensions of A, we embed

diagonally A in
∏k

i=1Bi and simply write A ⊆
∏k

i=1Bi.

Lemma 2.2. Let K be a field and L1, . . . , Lk finite field extensions of K. Then

the first three assertions below are equivalent and imply the fourth one.

(a) K[X1, . . . , Xn] ⊆
∏k

i=1 Li[X1, . . . , Xn] is fragile for every n ≥ 1.

(b) K(X1, . . . , Xn) ⊆
∏k

i=1 Li(X1, . . . , Xn) is fragile for every n ≥ 1.

(c) K(X1, . . . , Xn) ⊆
∏k

i=1 Li(X1, . . . , Xn) is fragile for some n ≥ 1.

(d) K ⊆
∏k

i=1 Li is fragile.

Moreover, if K is a Hilbertian field, then all four assertions are equivalent.

Proof. Note that due to [2, Proposition 3.8], we may change everywhere fragile

by apparently fragile. The case k = 1 is obvious, so we may suppose that k ≥ 2.

Set A = K[X1, . . . , Xn], S = A − {0}, B =
∏k

i=1 Li[X1, . . . , Xn], C =
∏k

i=1 Li

and observe that we have B = C[X1, . . . , Xn], AS = K(X1, . . . , Xn) and BS =∏k
i=1 Li(X1, . . . , Xn), because A ⊆ B is finite. (a) ⇒ (b) Deny; so there exists

a field E situated strictly between AS and BS . By (a), we get E ∩ B = A. We

obtain E = (E ∩ B)S = AS , a contradiction. (b) ⇒ (c) is trivial. (c) ⇒ (d) Deny;

hence there exists a field M situated strictly between K and C, so M(X1, . . . , Xn)

is situated strictly between AS and BS , a contradiction.

Now we prove (d) ⇒ (b) for K being a Hilbertian field. Suppose that (b) fails.

Then there exists a field E situated strictly between AS and BS . We may assume
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E = AS(α) for some α = (α1, . . . , αn) ∈ BS − AS . Here αi = αi(X1, . . . , Xn) ∈
Li(X1, . . . , Xn) and let p ∈ S such that pαi ∈ B for each i. It follows that the

minimal polynomial f(X1, . . . , Xn, Y ) ∈ AS [Y ] of α over AS equals the minimal

polynomial of αi over AS for each i between 1 and k. As K is Hilbertian, there

exist a1, . . . , an ∈ K such that p(a1, . . . , an) 6= 0 and g = f(a1, . . . , an, Y ) is defined

and irreducible in K[Y ]. Let βi = αi(a1, . . . , an) and β = (β1, . . . , βn) ∈ C. As g is

irreducible and g(β) = 0, it follows that g is the minimal polynomial of β over K,

hence K(β) is a field situated strictly between K and C. The implication (c)⇒ (b)

follows from the fact that, for n ≥ 1, K(X1, . . . , Xn) is Hilbertian [3, Theorem

12.10] and from implications (c) ⇒ (d) and (d) ⇒ (b) (for K Hilbertian) proved

above. (b) ⇒ (a) Let D be a domain situated between A and B. By (b), we get

AS = DS , hence D ⊆ AS ∩B = A, thus D = A. �

Proof. Proof of Theorem 1.1. (a) ⇒ (b) and (a) ⇒ (d) are trivial and (b) ⇒
(c) follows from the fact that perinormality is a local property [1, Proposition

2.5]. (c) ⇒ (a) Set B = A(X1, . . . , Xn), B′ = A′(X1, . . . , Xn) and I = (A :

A′). As A ⊆ A′ is finite, we have that B′ = B ⊗A A′ is the integral closure

of B. Note that IB is also an ideal of B′. Since A/I is zero-dimensional, it

follows that B/IB = (A/I)(X1, . . . , Xn) ⊆ B′/IB = (A′/I)(X1, . . . , Xn) are

zero-dimensional rings. Since B is perinormal, it follows that B/IB ⊆ B′/IB

is fragile [2, Theorem 3.13] and I is a radical ideal of A, cf. [2, Lemma 3.6].

Thus A/I ⊆ A′/I is isomorphic to a direct product of finite extensions Ki ⊆∏ki

j=1 Lij , 1 ≤ i ≤ l, where VA(I) = {M1, . . . ,Ml}, Ki = A/Mi, i = 1, . . . , l

and {Li1, . . . , Liki}={A′/N | N ∈ VA′(I), N ∩A = Mi}. Then the fragile extension

B/IB ⊆ B′/IB is isomorphic to the direct product of extensions Ki(X1, . . . , Xn) ⊆∏ki

j=1 Lij(X1, . . . , Xn), so all these extensions are fragile, cf. Lemma 2.1. Let m ≥ 0

and set C = A[X1, . . . , Xm], C ′ = A′[X1, . . . , Xm]. By Lemma 2.2, all extensions

Ki[X1, . . . , Xm] ⊆
∏ki

j=1 Lij [X1, . . . , Xm] are fragile, hence so is their product which

is isomorphic to C/IC ⊆ C ′/IC. By [2, Theorem 3.5], C is perinormal. For the

“moreover” part, if (d) holds and A/M is Hilbertian for all M ∈ VA(A : A′), we

can repeat the preceding proof to get that (a) holds. �
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