## INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY

VOLUME 18 NO. 1 PAGE 60-85 (2025)

DOI: https://doi.org/10.36890/iejg.1497568

RESEARCH ARTICLE



# On Metrics and Linear Connections on Lines

## Jun-ichi Inoguchi

(Communicated by Kazım İlarslan)

## **ABSTRACT**

We discuss linear connections and conformal Riemannian metrics on the real line.

Keywords: Linear connection; Hilbert distance; geodesic; HMC surface; harmonic map; Hessian manifold.

AMS Subject Classification (2020): Primary: 53C50; Secondary: 53B12, 33C45

#### Introduction

This expository article concerns differential geometric study on 1-manifolds. As is well known connected 1-manifolds are diffeomorphic to either the real line  $\mathbb R$  or the circle  $\mathbb S^1$ . Thus intrinsic topological study on 1-manifolds is completed. In differential topology, imbeddings of the circle into some spaces have been studied. A *knot* is an imbedding of  $\mathbb S^1$  into the Cartesian 3-space  $\mathbb R^3$  (or the 3-sphere  $\mathbb S^3$ ). Knot theory has been studied extensively.

On the other hand, from differential geometric viewpoint, we may consider Riemannian 1-manifolds or more generally affine 1-manifolds. However, the notion of curvature does not make sense for Riemannian 1-manifolds. In this sense, no local invariant exists on Riemannian 1-manifolds.

It should be remarked that the curvature functions of planar or spatial curve are *not* intrinsic quantity. Indeed, let  $\gamma: M \to \mathbb{E}^n$  be an immersion of a 1-manifold M into the Euclidean n-space (or arbitrary Riemannian n-manifold). Then the curvature function  $\kappa$  is introduced via the *acceleration vector field* 

$$\nabla^{\circ}_{\dot{\gamma}}\dot{\gamma} = \kappa \boldsymbol{n}$$

under the affine parametrization. Here  $\nabla^{\circ}$  is the Levi-Civita connection of  $\mathbb{E}^n$  and n is the principal normal vector field. This formula implies that  $\kappa$  is the mean curvature function of  $\gamma$ .

Since there is no notion of curvature on Riemannian 1-manifolds, we can not develop 1-dimensional Riemannian geometry. In particular we can not introduce the notion of 1-dimensional space form. However we can encounter the following Riemannian 1-manifolds:

$$(\mathbb{R}, \mathrm{d}x^2), \quad \left(\mathbb{R} \cup \{\infty\}, \frac{\mathrm{d}x^2}{(1+x^2)^2}\right), \quad \left(I, \frac{\mathrm{d}x^2}{(1-x^2)^2}\right),$$

where I = (-1, 1). These Riemannian 1-manifolds are regarded as the real part of the following complex 1-dimensional complex space forms:

$$(\mathbb{C}, |dz|^2), \quad \left(\mathbb{C} \cup \{\infty\}, \frac{|dz|^2}{(1+|z|^2)^2}\right), \quad \left(\mathbb{D}, \frac{|dz|^2}{(1-|z|^2)^2}\right),$$

respectively. Here  $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$  is the unit disc.

It should be remarked that the distance function induced from the Riemannian metric

$$g_H = \frac{4\mathrm{d}x^2}{(1-x^2)^2}$$

is nothing but the *Hilbert distance* (see Example 1.2). Moreover Riemannian metrics  $g_c$  appeared in integrable geometry.

A conformally immersed surface M in the Euclidean 3-space  $\mathbb{E}^3$  is said to be a *surface with harmonic inverse mean curvature* if its reciprocal 1/H of the mean curvature function is a harmonic function. The notion of surface with harmonic inverse mean curvature (HIMC surface, in short) was introduced by Bobenko [2] and extended to surfaces in 3-dimensional space forms by Fujioka [5]. A conformally immersed surface in the unit 3-space  $\mathbb{S}^3$  [resp. hyperbolic 3-space  $\mathbb{H}^3$  of constant curvature -1] is said to be an HIMC surface if its reciprocal 1/H of the mean curvature function is a harmonic map into the 1-dimensional Riemannian manifold  $(\mathbb{R}, g_1)$  [resp.  $((-1,1),g_{-1})$ ].

The Levi-Civita connections  $\nabla^c$  of these metrics  $g_c$  are given by

$$\nabla_X^c X = \Gamma(x)X, \quad X = \frac{\mathrm{d}}{\mathrm{d}x}, \quad \Gamma(x) = -\frac{2cx}{1 + cx^2}.$$

For c=0 and c=1, the Levi-Civita connection  $\nabla^c$  of  $g_c$  are globally defined on  $\mathbb{R}$ . The Levi-Civita connection of  $g_{-1}$  is defined on the interval (-1,1).

The Gauss-Codazzi equations of HIMC-surfaces can be normalized to certain types of Painlevé equations [3] under isothermic assumption. For more information on HIMC surfaces, we refer to [6, 7, 8, 9].

On the other hand, Nomizu and Sasaki [23] classified globally defined linear connections on the real line  $\mathbb{R}$ . In this article we discuss relations between the Levi-Civita connections of  $g_c$  and the classification due to Nomizu and Sasaki.

This work is motivated by a naive question "Can we introduce the notion of 1-dimensional space form?". Obviously the notion of curvature does not make sense for 1-dimensional manifolds. There are several interpretations for 1-dimensional curvatures, see *e.g.*, [5, 19].

As a summary, to develop differential geometry of 1-manifolds, only equipping Riemannian metric (or linear connection) is not sufficient for 1-manifolds. One need to equip additional structures on Riemannian 1-manifolds.

Grigor'yan introduced the notion of weighted manifold [13]. As he exhibited, differential geometry of weighthed manifolds is still valid for dimension 1. A weighted 1-manifold is a Riemannian 1-manifold equipped with a weighted volume element. Crasmareanu [4] pointed out an interesting connection between orthogonal polynomials and weighted 1-manifolds. This fact was observed by Grigor'yan for Hermite polynomials.

On the other hand, Shima introduced the notion of Hessian manifold [25]. A Hessian manifold  $M=(M,g,\nabla)$  is a smooth manifold M equipped with a Riemannian metric g and a flat linear connection  $\nabla$  such that  $\nabla g$  is totally symmetric. On a Hessian manifold M, the curvature R of  $\nabla$  vanishes. Shima introduced the notion of Hessian curvature tensor field H. Fortunately the notion of Hessian curvature tensor field is still valid for Hessian 1-manifolds and does not automatically vanish. This fact motivates us to study Hessian 1-manifolds. The study of Hessian 1-manifolds has another motivation derived from Information geometry. Statistical 1-manifolds derived from exponential families, e.g., the statistical manifold of binomial distributions provides a fundamental example of Hessian 1-manifold (Example 8.2).

In this expository article, we discuss some linear connections and conformal Riemannian metrics on  $\mathbb{R}$ .

This article is organized as follows. In Section 1 we exhibit some typical examples of Riemannian 1-manifolds. In Section 2, we study imbeddings of Riemannian 1-manifolds exhibited in Section 1 into the lightcone of the Minkowski 3-space. We start our discussion on Riemannian 1-manifolds in Section 3. Section 4 is devoted to the study of affine 1-manifolds. We recall the uniformaization theorem of linear connections on  $\mathbb R$  due to Nomizu-Sasaki. We give a metrical interpretation of Nomizu-Sasaki's result. In Section 5, we discuss the affine realizations of affine 1-manifolds into the equiaffine plane developed by Nomizu and Sasaki [23]. In Section 6 we recall the notion of harmonic inverse mean curvature surface due to Bobenko [2] and Fujioka [5]. Weighted 1-manifolds will be discussed in Section 7. In Section 8 we study Hessian 1-manifolds. In the final section we discuss statistically harmonic maps between statistical 1-manifolds.

## 1. Typical examples

We start with exhibiting two typical examples of conformal metrics on open intervals. First of all we recall the notion of Riemannian metric on open intervals.

#### 1.1. Riemannian metrics

Let  $\mathfrak{X}(\mathbb{R}) = \Gamma(T\mathbb{R})$  be the space of all smooth vector fields on the real line  $\mathbb{R}$ . The space  $\mathfrak{X}(\mathbb{R})$  is expressed as

$$\mathfrak{X}(\mathbb{R}) = \{ \lambda X \mid \lambda \in C^{\infty}(\mathbb{R}) \}, \quad X = \frac{\mathrm{d}}{\mathrm{d}r}.$$

At a point  $x_0 \in \mathbb{R}$ , the tangent space  $T_{x_0}\mathbb{R}$  is given by

$$T_{x_0}\mathbb{R} = \{aX_{x_0} \mid a \in \mathbb{R}\}$$

which is identified with  $\mathbb{R}$  via the correspondence:

$$aX_{x_0} \longmapsto a$$
.

A Riemannian metric g on  $\mathbb{R}$  is a mapping

$$g: \mathfrak{X}(\mathbb{R}) \times \mathfrak{X}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$$

satisfying

- $g(\lambda X, \mu X) = \lambda \mu \, g(X, X)$  for any  $\lambda, \mu \in C^\infty(\mathbb{R})$  and
- q(X, X) > 0.

The Riemannian metric  $g_0$  determined by the condition g(X, X) = 1 is expressed as

$$g_0 = \mathrm{d}x^2$$
.

The Riemannian metric  $g_0$  is called the *canonical Euclidean metric*. In general, a Riemannian metric g is expressed as

$$q = q(X, X) dx^2$$
.

For this reason, we may call Riemannian metric g a *conformal metric* on  $\mathbb{R}$ .

We may restrict vector fields and Riemannian metrics on the whole line  $\mathbb{R}$  to some open intervals.

#### 1.2. The Hilbert distance

On the open interval I = (-1, 1) the *Hilbert distance*  $d_H$  is defined by [15, 21]:

$$d_H(a,b) = |\log[a,b,-1,1]|,$$

where

$$[a,b,x,y] = \frac{|x-a|\cdot|y-b|}{|x-b|\cdot|y-a|}.$$

The Hilbert distance is derived from the Riemannian metric

$$g_H = \frac{4\mathrm{d}x^2}{(1-x^2)^2} = 4g_{-1}$$

on I. Indeed,

$$\int_{a}^{b} \frac{2 dx}{1 - x^{2}} = \int_{a}^{b} \frac{1}{1 - x} + \frac{1}{1 + x} dx = \left[ \log \frac{1 + x}{1 - x} \right]_{a}^{b} = -\log[a, b; 1, -1].$$

#### 1.3. Stereographic projection

Let us consider the unit circle

$$\mathbb{S}^1 = \{ (y_1, y_2) \in \mathbb{E}^2 \mid y_1^2 + y_2^2 = 1 \}$$

in the Euclidean plane  $\mathbb{E}^2$ . The stereographic projection  $\pi_+$  of  $U_0 := \mathbb{S}^1 \setminus \{(0,1)\}$  onto  $\mathbb{R}$  with pole (0,1) is given by

$$\pi_+(y_1, y_2) = \frac{y_1}{1 - y_2}$$

with inverse mapping

$$\pi_+^{-1}(x) = \left(\frac{2x}{1+x^2}, \frac{x^2-1}{1+x^2}\right).$$

One can check that the induced metric is given by

$$(dy_1)^2 + (dy_2)^2 = \frac{4dx^2}{(1+x^2)^2} = 4g_1$$

on  $U_0$ .

Analogously, the stereographic projection  $\pi_-$  of  $U_\infty := \mathbb{S}^1 \setminus \{(0,-1)\}$  onto  $\mathbb{R}$  with pole (0,-1) is given by

$$\pi_{-}(y_1, y_2) = \frac{y_1}{1 + y_2}$$

with inverse mapping

$$\pi_{-}^{-1}(x) = \left(\frac{2x}{1+x^2}, \frac{1-x^2}{1+x^2}\right).$$

The induced metric is given by

$$(dy_1)^2 + (dy_2)^2 = \frac{4dx^2}{(1+x^2)^2}$$

on  $U_{\infty}$ .

As usual we add the point at infinity  $\infty$  to  $\mathbb{R}$  and extend  $\pi$  to  $\mathbb{S}^1$  as  $\pi(0,1)=\infty$ . Then the 1-manifold  $\mathbb{S}^1$  is covered by two charts  $\{(U_0,\pi_+),(U_\infty,\pi_-)\}$ .

#### 1.4. Projective line

Let us consider the real projective line  $\mathbb{P}_1$ . The projective line is regarded as the 1-manifold of all lines of  $\mathbb{R}^2$  through the origin. Hence  $\mathbb{P}_1$  is regarded as the quotient space

$$\mathbb{P}_1 = (\mathbb{R}^2 \setminus \{(0,0)\})/\mathbb{R}^\times = \{[x_1 : x_2] \mid (x_1, x_2) \in \mathbb{R}^2 \setminus \{(0,0)\}\},\$$

where

$$[x_1:x_2] = \{(\lambda x_1, \lambda x_2) \mid \lambda \in \mathbb{R}^{\times}\}, \quad \mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}.$$

We denote by  $\operatorname{pr}: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{P}_1$  the projection. Take

$$\widetilde{U}_{+} = \{(x_1, x_2) \mid x_1 \neq 0\}, \quad \widetilde{U}_{-} = \{(x_1, x_2) \mid x_2 \neq 0\}$$

and set

$$U_+ = \operatorname{pr}(\widetilde{U}_+), \quad U_- = \operatorname{pr}(\widetilde{U}_-).$$

Then  $\mathbb{P}_1 = U_+ \cup U_-$ . Define smooth maps  $\psi_{\pm} : U_{\pm} \to \mathbb{R}$  by

$$\psi_+([x_1:x_2]) = \frac{x_2}{x_1} =: t, \quad \psi_-([x_1:x_2]) = \frac{x_1}{x_2} =: s.$$

Then, on  $U_+ \cap U_-$ , we have

$$(\psi_- \circ \psi_+^{-1})(t) = \frac{1}{t}, \quad (\psi_+ \circ \psi_-^{-1})(s) = \frac{1}{s}.$$

Here we recall the fact that  $\mathbb{P}_1$  is identified with  $\mathbb{R} \cup \{\infty\}$ . We identify the line  $[x_1 : x_2] \in U_+$  with  $t = \psi_+([x_1 : x_2]) \in \mathbb{R}$ . Next we identify the line  $[0 : 1] \in U_-$  with the point at infinity  $\infty$ . Thus we obtain the identification  $\mathbb{P}_1 = \mathbb{R} \cup \{\infty\}$ . As a result we get the identification  $\mathbb{P}_1 = \mathbb{S}^1$ .

On the other hand, on the unit circle  $\mathbb{S}^1 \subset \mathbb{E}^2$ , we introduce an equivalence relation

$$(x_1, x_2) \sim (y_1, y_2) \iff (x_1, y_1) = (x_2, y_2) \text{ or } (x_1, y_1) = (-x_2, -y_2).$$

Then the quotient space is nothing but  $\mathbb{P}_1$ . Moreover the mapping  $f: \mathbb{S}^1/\!\!\sim \to \mathbb{S}^1$  defined by

$$f((\cos \theta, \sin \theta)) = (\cos(2\theta), \sin(2\theta))$$

is a diffeomorphism. Thus we get again  $\mathbb{P}_1 = \mathbb{S}^1$ .

#### 1.5. Hyperbola

Let us consider the hyperbola

$$\mathbb{H}^1 = \{(y_1, y_2) \in \mathbb{E}^2 \mid y_1^2 - y_2^2 = -1, \ y_2 > 0\}$$

in the Minkowski plane  $\mathbb{E}_1^2$ . The stereographic projection  $\pi$  of  $\mathbb{H}^1$  onto the interval (-1,1) with pole (0,-1) is given by

$$\pi(y_1, y_2) = \frac{y_1}{1 + y_2}$$

with inverse mapping

$$\pi^{-1}(x) = \left(\frac{2u}{1-x^2}, \frac{1+x^2}{1-x^2}\right).$$

The induced metric of  $\mathbb{H}^1$  is computed as

$$(dy_1)^2 - (dy_2)^2 = \frac{4du^2}{(1-x^2)^2} = g_H.$$

#### 2. Conics

Let us consider Minkowski 3-space  $\mathbb{E}^3_1$  with Minkowski scalar product  $\langle \cdot, \cdot \rangle = \mathrm{d}y_1^2 + \mathrm{d}y_2^2 - \mathrm{d}y_3^2$ . The *lightcone L* is given by

$$L = \{(y_1, y_2, y_3) \in \mathbb{E}_1^3 \setminus \{(0, 0, 0)\} \mid y_1^2 + y_2^2 - y_3^2 = 0\}$$

The lightcone is diffeomorphic to  $\mathbb{S}^1 \times \mathbb{R}^{\times}$ . Indeed,

$$\mathbb{S}^1 \times \mathbb{R}^{\times} \ni (\boldsymbol{x}, t) \longmapsto (|t|\boldsymbol{x}, t) \in \mathbb{E}^3_1$$

gives a diffeomorphism from  $\mathbb{S}^1 \times \mathbb{R}^{\times}$  onto L.

For any  $t \in \mathbb{R}^{\times}$ , we define a map  $\Phi^t : \mathbb{E}^2 \to \mathbb{E}^3_1$  by

$$\Phi^t(\boldsymbol{x}) = (\boldsymbol{x}, t).$$

Then the image of the circle  $\mathbb{S}^1(|t|) \subset \mathbb{E}^2$  of radius |t| under  $\Phi^t$  is the conic section

$$\Pi_{y_3=t} \cap L = \{(y_1, y_2, t) \in L\}.$$

Note that the plane  $y_3 = t$  is a spacelike plane.

The conic sections  $L \cap \Pi_t^L$  are parabolas. Here

$$\Pi_t^{\mathsf{L}} = \{ (y_1, y_2, y_2 + t) \in \mathbb{E}_1^3 \}$$

is a lightlike plane. The conic section  $L \cap \Pi_t^L$  is parametrized as

$$L \cap \Pi_t^{\mathsf{L}} = \left\{ \left( y_1, -\frac{t}{2} - \frac{y_1^2}{2t}, \frac{t}{2} - \frac{y_1^2}{2t} \right) \right\}.$$

Let us consider the immersion  $F_t$  of  $\mathbb{R}$  into L by

$$F_t(x) = \left(x, -\frac{t}{2} - \frac{x^2}{2t}, \frac{t}{2} - \frac{x^2}{2t}\right).$$

One can check that  $\langle dF_t, dF_t \rangle = dx^2$ . Thus Euclidean line is isometrically embedded in L as a parabola. We define a map  $\Psi : \mathbb{E}_1^2 \to \mathbb{E}_1^3$  by

$$\Psi(\boldsymbol{y}) = (1, \boldsymbol{y}).$$

Then the image of  $\mathbb{H}^1 \subset \mathbb{E}^2_1$  is the conic section  $\Pi_{y_1=1}^\mathsf{T} \cap L$ . Here  $\Pi_{y_1=1}^\mathsf{T}$  is a timelike plane defined by  $y_1=1$ . By composing  $\Psi$  and  $\pi^{-1}: (-1,1) \to \mathbb{H}^1$ , we obtain an isometric imbedding

$$u \longmapsto \left(1, \frac{2u}{1-u^2}, \frac{1+u^2}{1-u^2}\right)$$

of  $((-1,1), g_H)$  into the lightcone.

The *conformal circle*, that is, the conformal compactification  $\mathcal{M}$  of the Euclidean line  $\mathbb{E}^1$  is the projective light cone

$$\{[y_1:y_2:y_3]\in\mathbb{P}_2\mid y_1^2+y_2^2-y_3^2=0\}\subset\mathbb{P}_2.$$

The conformal transformation group is  $O_1(3)/\mathbb{Z}_2$ .

The Euclidean line is conformally imbedded in the conformal circle by

$$x \longmapsto [2x: -1 + x^2: 1 + x^2] = \left[\frac{2x}{1+x^2}: \frac{-1+x^2}{1+x^2}: 1\right]$$

Let us identify the Minkowski space  $\mathbb{E}_1^3$  with  $\mathfrak{sl}_2\mathbb{R}$  via the correspondence

$$y_1 \boldsymbol{e}_1 + y_2 \boldsymbol{e}_2 + y_3 \boldsymbol{e}_3 \longleftrightarrow y_1 \boldsymbol{i} + y_2 \boldsymbol{j}' + y_3 \boldsymbol{k}' = \begin{pmatrix} -y_3 & -y_1 + y_2 \\ y_1 + y_2 & y_3 \end{pmatrix}$$

The metric corresponds to the left invariant Lorentz metric on the special linear group  $\mathrm{SL}_2\mathbb{R}$  derived from the scalar product

$$\langle X, Y \rangle = \frac{1}{2} \operatorname{tr}(XY).$$

The special linear group  $SL_2\mathbb{R}$  acts isometrically on  $\mathbb{E}^3_1$  via the Ad-action:

$$\mathrm{SL}_2\mathbb{R}\times\mathbb{E}^3_1\to\mathbb{E}^3_1;\quad (A,Y)\longmapsto \mathrm{Ad}(A)Y=AYA^{-1}.$$

Hence the map  $Ad: SL_2\mathbb{R} \to O_1(3)$  is a Lie group homomorphism. One can see that  $SL_2\mathbb{R}/\mathbb{Z}_2 \cong SO_1^+(3)$ . Thus  $SL_2\mathbb{R}$  is the double covering of  $SO_1^+(3)$ .

$$\operatorname{Ad}\begin{pmatrix} a & b \\ c & d \end{pmatrix} \boldsymbol{i} = \frac{1}{2}(a^2 + b^2 + c^2 + d^2)\boldsymbol{i} + \frac{1}{2}(-a^2 - b^2 + c^2 + d^2)\boldsymbol{j}' - (ac + bd)\boldsymbol{k}',$$

$$\operatorname{Ad}\begin{pmatrix} a & b \\ c & d \end{pmatrix} \boldsymbol{j}' = \frac{1}{2}(-a^2 + b^2 - c^2 + d^2)\boldsymbol{i} + \frac{1}{2}(a^2 - b^2 - c^2 + d^2)\boldsymbol{j}' + (ac - bd)\boldsymbol{k}'$$

$$\operatorname{Ad}\begin{pmatrix} a & b \\ c & d \end{pmatrix} \boldsymbol{k}' = -(ab + cd)\boldsymbol{i} + (ab - cd)\boldsymbol{j}' + (ad + bc)\boldsymbol{k}'.$$

The lightcone is identified with

$$\{Y \in \mathfrak{sl}_2 \mathbb{R} \mid \operatorname{tr}(Y^2) = 0\}$$

Hence the isometric action of  $SL_2\mathbb{R}$  induces an action on the projective lightcone as

$$SL_2\mathbb{R} \times \mathcal{M} \to \mathcal{M}; \quad (A, [Y]) \longmapsto [AY].$$

The group of all projective transformations preserving the conformal circle is isomorphic to  $PSL_2\mathbb{R}$ . Thus the projective transformations coincide with conformal transformations on the conformal circle. In other words, conformal circle is nothing but the projective line.

The conic section  $\Pi_{y_3=1} \cap L$  is identified with

$$\left\{ \left( \begin{array}{cc} -1 & -\cos\theta + \sin\theta \\ \cos\theta + \sin\theta & 1 \end{array} \right) \right\}.$$

#### 3. Conformal metrics on the line

#### 3.1. Linear connection

A linear connection  $\nabla$  on  $\mathbb R$  is determined by the *connection coefficient*  $\Gamma \in C^{\infty}(\mathbb R)$ . Indeed  $\nabla$  is a mapping  $\mathfrak X(\mathbb R) \times \mathfrak X(\mathbb R) \to \mathfrak X(\mathbb R)$  which is determined by the formula

$$\nabla_X X = \Gamma X$$

and the Leipniz rule

$$\nabla_{\lambda X}(\mu X) = \lambda \left( \frac{\mathrm{d}\mu}{\mathrm{d}x} X + \mu \nabla_X X \right), \quad \lambda, \mu \in C^{\infty}(\mathbb{R})$$

Throughout this article we denote by  $\nabla^{\circ}$  the *canonical flat connection* of  $\mathbb{R}$ , that is

$$\nabla_X^{\circ} X = 0.$$

Moreover we may restrict linear connections as well as conformal metrics on  $\mathbb{R}$  to open submanifolds of  $\mathbb{R}$ .

#### 3.2. The Levi-Civita connection

Let us take a smooth function  $\gamma(x)$  on the real line and consider the Riemannian metric

$$a = e^{2\gamma(x)} dx^2$$
.

Obviously g is a global conformal change of the Euclidean metric  $g_0 = dx^2$ . The *Levi-Civita connection*  $\nabla^g$  is a linear connection determined by the connection coefficient

$$\Gamma(x) = \frac{\mathrm{d}\gamma}{\mathrm{d}x}(x).$$

We may restrict  $\gamma$  (and also  $\Gamma$ ) on an open submanifold M of  $\mathbb{R}$ .

Note that under the scaling change  $g \mapsto cg$  for some positive constant c, the Levi-Civita connection is preserved.

**Example 3.1** (Hilbert distance). The Levi-Civita connection of M = (-1,1) equipped with the Hilbert metric  $g_H$  is given by

$$\Gamma(x) = \frac{2x}{1 - x^2}.$$

Note that the Levi-Civita connection of the metric  $g_{-1} = dx^2/(1-x^2)^2$  coincides with that of  $g_H$ .

**Example 3.2** (Stereographic projection). The Levi-Civita connection of  $\mathbb{R}$  equipped with the metric

$$g_S = \frac{4\mathrm{d}x^2}{(1+x^2)^2}$$

is given by

$$\Gamma(x) = -\frac{2x}{1+x^2}.$$

The Levi-Civita connection of the metric  $g_1 = dx^2/(1+x^2)^2$  coincides with that of  $g_S$ .

#### 4. Linear connections on the real line

Here we recall Nomizu-Sasaki's work [23] on linear connections on the real line. Let  $\nabla$  be a linear connection on the real line with connection coefficient  $\Gamma(x)$ . Take a smooth map  $x:I\to(\mathbb{R},\nabla)$  defined on an interval I with coordinate t. We consider the pull-backed tangent bundle

$$x^*T\mathbb{R} = \bigcup_{t \in I} T_{x(t)}\mathbb{R}.$$

We denote by  $\nabla^x$  the linear connection on  $x^*T\mathbb{R}$  induced from  $\nabla$ .

The *velocity* of x(t) is the function

$$\dot{x}(t) = \frac{\mathrm{d}x}{\mathrm{d}t}(t).$$

The velocity vector field is

$$x_*T = \dot{x}(t)\frac{\mathrm{d}}{\mathrm{d}x}, \quad T = \frac{\mathrm{d}}{\mathrm{d}t}.$$

The *acceleration* of x(t) is the function

$$\ddot{x}(t) = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t).$$

The acceleration vector field  $\nabla_{\dot{x}}\dot{x}$  of x(t) is defined by

$$\nabla_{\dot{x}}\dot{x} := \nabla_T^x x_* T = \left( \ddot{x}(t) + \Gamma(x(t))\dot{x}(t)^2 \right) X.$$

A smooth map x is said to be a *regular curve* if its velocity vector field does not vanish.

A regular curve x(t) in  $(\mathbb{R}, \nabla)$  is said to be a *geodesic* if it satisfies  $\nabla_{\dot{x}}\dot{x} = 0$ . The ordinary differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \Gamma(x(t)) \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 = 0 \tag{4.1}$$

is referred as to the *equation of geodesic* in  $(\mathbb{R}, \nabla)$ .

Let us perform a parameter change from t to another parameter u. We assume that the orientation preserving property:

$$\frac{\mathrm{d}t}{\mathrm{d}u} > 0.$$

Then one can see that

$$\nabla_{\dot{x}(t)}\dot{x}(t) = \frac{\mathrm{d}u^2}{\mathrm{d}t^2}\frac{\mathrm{d}x}{\mathrm{d}u}X + \left(\frac{\mathrm{d}u}{\mathrm{d}t}\right)^2\nabla_{\dot{x}(u)}\dot{x}(u).$$

This formula shows that the reparametrized curve x(u) := x(t(u)) satisfies the equation of geodesic if and only if u = at + b for some constants a > 0 and  $b \in \mathbb{R}$ . Thus, up to orientation preserving affine transformation on  $\mathbb{R}$ , the parameter t with respect to which the equation of geodesic takes the form (4.1) is unique. Such a parameter is called the *affine parameter* of a geodesic x = x(t).

More generally for a regular curve x=x(u) in  $(\mathbb{R},\nabla)$ , if there exists a reparametrization u=u(t) so that the remarametrized curve x(t):=x(u(t)) satisfies (4.1), then x(u) is said to be a *pre-geodesic*. One can see that x(u) is a pre-geodesic if and only if

$$\nabla_{\dot{x}(u)}\dot{x}(u) = \Psi(u)\dot{x}(u)X$$

for some function  $\Psi(u)$ . One can see that

$$t := \int_0^u \left( \exp \int_0^u \Psi(u) \, \mathrm{d}u \right) \, \mathrm{d}u$$

is an affine parameter for x(u).

A geodesic x(s) in  $(\mathbb{R}, \nabla)$  parametrized by an affine parameter s is said to be *complete* if it is defined on the whole line  $\mathbb{R}$ . A linear connection  $\nabla$  is said to be *geodesically complete* if all the geodesics are complete.

Now let x = x(s) be a geodesic parametrized by an affine parameter s. We demand the initial condition

$$x(0) = 0, \quad \dot{x}(0) = 1.$$
 (4.2)

According to [23], we introduce a function Q(x) by

$$Q(x) = \exp\left(\int_0^x \Gamma(u) du\right).$$

Then the equation of geodesic is rewritten as

$$\frac{\mathrm{d}}{\mathrm{d}s} \left( Q(x(s)) \frac{\mathrm{d}x}{\mathrm{d}s}(s) \right) = 0.$$

Hence

$$a := Q(x(s)) \frac{\mathrm{d}x}{\mathrm{d}s}(s)$$

is a conserved quantity of the geodesic. From the initial condition we have a=1. Thus the affine parameter s is determined by

$$s = \int_0^x Q(u) \, \mathrm{d}u.$$

From this result, Nomizu and Sasaki deduced the following theorem:

**Theorem 4.1** ([23]). On a 1-dimensional manifold  $(\mathbb{R}, \nabla)$ , a flat local coordinate s around the origin 0 is given by

$$s = \int_0^x Q(u) \, \mathrm{d}u.$$

The inverse function x = x(s) is a geodesic in  $(\mathbb{R}, \nabla)$  with affine parameter s.

Let us consider the Levi-Civita connection of the Riemannian metric  $g=e^{2\lambda(x)}\mathrm{d}x^2$ . In this case

$$Q(x) = \exp \int_0^x \Gamma(u) du = \exp(\gamma(x) - \gamma(0)) = \frac{e^{\gamma(x)}}{e^{\gamma(0)}}.$$

Then the flat coordinate s is given by

$$s = \frac{1}{e^{\gamma(0)}} \int_0^x e^{\gamma(u)} du.$$

Nomizu and Sasaki introduced the notion of affine parametrization of  $(\mathbb{R}, \nabla)$ . An *affine parametrization* of  $(\mathbb{R}, \nabla)$  is a triplet  $(I, \nabla^{\circ}, x)$  consisting of an open interval I, natural flat linear connection  $\nabla^{\circ}$  and a connection preserving diffeomorphism  $x:(I, \nabla^{\circ}) \to (\mathbb{R}, \nabla)$ . Compare the notion of affine parametrization with that of *developing map* of affine 1-manifolds ([14, 28]).

**Example 4.1** (The canonical flat connection). The canonical flat connection  $\nabla^{\circ}$  is determined by  $\Gamma = 0$ . The flat coordinate s around 0 is globally defined and given by s = x. Thus the geodesic satisfying the initial condition (4.2) is x(s) = s. It should be remarked that  $\nabla^{\circ}$  is the Levi-Civita connection of the metric  $g_0 = dx^2$ .

**Example 4.2.** The linear connection  $\nabla$  with connection coefficient  $\Gamma = 1$  satisfies  $Q(x) = e^x$ . The flat coordinate s around 0 is given by

$$s = \int_0^x e^u \, \mathrm{d}u = e^x - 1 \in (-1, \infty).$$

Thus the geodesic satisfying the initial condition (4.2) is  $x(s) = \log(s+1)$  and defined on the interval  $(-1, \infty)$ . Thus  $\nabla$  is not geodesically complete. The geodesic  $x: (-1, \infty) \to \mathbb{R}$  is an affine parametrization of  $(\mathbb{R}, \nabla)$ .

The connection  $\nabla$  is the Levi-Civita connection of the Riemannian metric  $g = e^{2x} dx^2$ . The path from  $x_0$  to  $x_1$  is given by

$$x(t) = \log((e^{x_1} - e^{x_0})t + e^{x_0}).$$

The geodesics starting at p with initial velocity v is

$$x(t) = p + \log(1 + vs).$$

The Riemannian distance d induced from g is given by

$$d(x_0, x_1) = |e^{x_1} - e^{x_0}|.$$

**Example 4.3** (Hilbert metric). Let us study the Levi-Civita connection of the Hilbert metric  $g_H$  on the interval (-1,1) with coordinate u. The Levi-Civita connection  $\nabla^H$  is given by  $\Gamma = 2u/(1-u^2)$ . Hence  $Q(u) = 1/(1-u^2) > 0$ . The flat coordinate around 0 is given by

$$s = \int_0^u \frac{du}{1 - u^2} = \tanh^{-1} u \in (-\infty, \infty).$$

The geodesic satisfying the initial condition (4.2) is  $u(s) = \tanh s$ . Hence  $u : \mathbb{R} \to (-1,1)$  is an affine parametrization of  $((-1,1), \nabla)$ .

Next let us consider the diffeomorphism  $x:(-1,1)\to\mathbb{R}$  given by

$$x(u) = \log(2\tanh^{-1}u + 1), \quad u \in (-1, 1)$$

Via this diffeomorphism, the Hilbert metric is transformed as the metric g in Example 4.2. Thus  $((-1,1), g_H)$  is isometric to  $(\mathbb{R}, e^{2x} dx^2)$  exhibited in Example 4.2.

**Example 4.4.** In [23, Example 3], the linear connection  $\nabla$  with connection coefficient

$$\Gamma(x) = -\frac{2x}{1+x^2}$$

is discussed. As we saw in Example 3.2, this connection is nothing but the Levi-Civita connection of the metric  $g_S = 4g_1$ . One can see that

$$Q(x) = \frac{1}{1+x^2}, \quad s(x) = \int_0^x \frac{\mathrm{d}x}{1+x^2} = \tan^{-1}x.$$

Thus we obtain

$$x = \tan s, \quad s \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

The geodesic  $x:(-\pi/2,\pi/2)\to\mathbb{R}$  is an affine parametrization of  $(\mathbb{R},\nabla)$ .

**Example 4.5.** Let us consider the metric  $q = dx^2/(1+x^2)$ . Then

$$\Gamma(x) = -\frac{x}{1+x^2}, \quad Q(x) = \frac{1}{\sqrt{1+x^2}}.$$

Hence

$$s = \int_0^x \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \sinh^{-1}x \in (-\infty, \infty).$$

Thus the geodesic  $x : \mathbb{R} \to \mathbb{R}$  is an affine parametrization of  $(\mathbb{R}, \nabla)$ .

Nomizu and Sasaki proved the following result (cf. [28]).

**Theorem 4.2.** Let  $\nabla$  be a linear connection on  $\mathbb{R}$ . Then  $(\mathbb{R}, \nabla)$  is obtained from Example 4.1, 4.2 or 4.4 via affine parametrization.

This classification is rephrased as

**Corollary 4.1.** For any linear connection  $\nabla$  on  $\mathbb{R}$ , there exists a global coordinate y so that  $\nabla$  is expressed as

$$\nabla_Y Y = 0$$
,  $\nabla_Y Y = Y$ , or  $\nabla_Y Y = -\frac{2y}{1+y^2} Y$ 

for Y = d/dy.

Nomizu-Sasaki's classification is reinterpreted as follows:

**Corollary 4.2.** Let  $\nabla$  be a linear connection on  $\mathbb{R}$ . Then  $(\mathbb{R}, \nabla)$  is obtained from one of the following spaces via affine parametrizations:

- 1.  $(\mathbb{R}, \nabla^{\circ})$ . The canonical flat connection is the Levi-Civita connection of the Euclidean metric  $g_0 = dx^2$ .
- 2.  $(\mathbb{R}, \nabla^S)$ , where  $\nabla^S$  is the Levi-Civita connection of the metric  $g_S = 4\mathrm{d}x^2/(1+x^2)^2$ .
- 3.  $((-1,1), \nabla^H)$ , where  $\nabla^H$  is the Levi-Civita connection of the Hilbert metric  $g_H = 4dx^2/(1-x^2)^2$ .

Thus globally defined linear connections are exhausted by Levi-Civita connections of the metrics  $g_0$  and  $g_{\pm 1}$ . In other words, those linear connections are conformally realizable as in  $\mathbb{E}^1$ ,  $\mathbb{S}^1 \setminus \{\infty\}$  or a one-sheet of  $\mathbb{H}^1$ .

Concerning on linear connections on the circle  $\mathbb{S}^1$ , Nomizu and Sasaki proved the following result (compare with Kuiper's theorem [30]. See also [14, 27, 28]).

**Theorem 4.3.** For any linear connection  $\nabla$  on  $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ , there exists a diffeomorphim  $\phi: \mathbb{S}^1 \to \mathbb{R}/\mathbb{Z}$  or  $\mathbb{R}/\mathbb{Z}$  or  $\mathbb{Z}$  
Nomizu and Sasaki pointed out that the connection  $\nabla = \phi^* \nabla^\circ$  on  $\mathbb{S}^1$  induced from  $\mathbb{R}^+/G_a$  is non-metrical. Because the connection  $\nabla = \phi^* \nabla^\circ$  is not complete on  $\mathbb{S}^1$ .

**Question.** We know that  $((-1,\infty),\nabla)$  in Example 4.2 is derived from the Levi-Civita connection of  $(\mathbb{S}^1\setminus$  $\{\infty\}, 2du^2/(1+u^2)^2$ ). How to understand/interpret the non-metrizability of  $\nabla = \phi^* \nabla^\circ$ ?

Remark 4.1 (Schwarzian). Let x = x(t) be a regular curve in a Riemannian n-manifold (M, g). The Schwarzian *derivative* of x(t) in the sense of Kobayashi-Wada [19] is defined by

$$s^{2}x := (\nabla_{\dot{x}}\nabla_{\dot{x}}\dot{\gamma})\dot{x}^{-1} - \frac{3}{2}((\nabla_{\dot{x}}\dot{x})\dot{x}^{-1})^{2} - \frac{s}{2n(n-1)}\dot{x}^{2},$$

where s is the scalar curvature of M. Here we used the Clifford multiplication. In case n = 1, the term s/n(n-1)is indefinite. Kobayashi and Wada gave the following interpretation:

- $M = \mathbb{E}^1$ : s/n(n-1) = 0.  $M = \mathbb{S}^1(r) \subset \mathbb{E}^2$ :  $s/n(n-1) = r^{-2}$ .

## 5. Equiaffine realizations

Let  $(\mathbb{R}^2, D, dy_1 \wedge dy_2)$  be the equiaffine plane, that is, the Cartesian plane equipped with canonical flat connection D and the area element  $dy_1 \wedge dy_2$  parallel with respect to D.

Let I be an interval equipped with a linear connection  $\nabla$ . An immersion  $f: I \to (\mathbb{R}^2, D, dy_1 \wedge dy_2)$  into the equiaffine plane is said to be an *equiaffine immersion* if there exists a vector field  $\xi$  along f transversal to f. Then the Gauss formula holds:

$$D_X^f f_* X = f_* (\nabla_X X) + h(X, X) \xi,$$

where X = d/dx as before. Moreover  $D^f$  is the connection on the pull-backed bundle  $f^*T\mathbb{R}^2$  induced from D. Assume that f is non-degenerate, i.e.,  $\det(f(x), f(t)) \neq 0$ . Then the equiaffine parameter s is defined by

$$s(x) := \int_0^x \det(\dot{f}(x), \ddot{f}(t))^{1/3} dx.$$

The equiffine frame  $\mathcal{F}(s) = (e_1(s), e_2(s))$  is an  $SL_2\mathbb{R}$ -valued function defined by

$$e_1(\mathsf{s}) := f_* \frac{\mathrm{d}}{\mathrm{d}\mathsf{s}}, \quad e_2(\mathsf{s}) := \frac{\mathrm{d}}{\mathrm{d}\mathsf{s}} e_1(\mathsf{s}).$$

The equiaffine Frenet formula is

$$\frac{\mathrm{d}}{\mathrm{d} \mathsf{s}} \mathcal{F}(\mathsf{s}) = \mathcal{F}(\mathsf{s}) \left( \begin{array}{cc} 0 & -k(\mathsf{s}) \\ 1 & 0 \end{array} \right).$$

The function k(s) is called the *equiaffine curvature*. The Gauss formula becomes

$$D_X^f e_1 = e_2, \quad h(X, X) = 1.$$

**Definition 5.1.** Let I be an open interval equipped with a linear connection  $\nabla$ . If there exists an affine immersion  $f: I \to (\mathbb{R}^2, D)$  with transversal vector field  $\xi$  so that the induced connection coincides with  $\nabla$ , then  $(I, \nabla)$  is said to be *realizable* in  $(\mathbb{R}^2, D)$ .

**Example 5.1.** The immersion  $f(x) = (x, x^2/2)$  of  $(\mathbb{R}, \nabla^\circ)$  into  $(\mathbb{R}^2, D)$  is realizable with transversal vector field  $\xi = (0, 1).$ 

**Example 5.2.** The immersion  $f(x) = (-2/x^3, 3x^2/5)$  of  $\mathbb{R}^+$  into  $(\mathbb{R}^2, D)$  is an equiaffine curve with equiaffine parameter x. One can see that

$$e_1(x) = \left(\frac{1}{x^2}, \frac{1}{4x^3}\right), \quad e_2(x) = \left(-\frac{2}{x^3}, \frac{3x^2}{5}\right),$$

and  $k(x) = -6/x^2$ . The induced connection is flat.

**Example 5.3.** Consider the immersion  $f(x) = (x^{-p}, (1-x)^{-p})$  of (0,1) into  $(\mathbb{R}^2, D)$ . Then we have

$$\dot{f}(x) = \left(-px^{-p-1}, p(1-x)^{-p-1}\right), \quad \ddot{f}(x) = \left(p(p+1)x^{-p-2}, p(p+1)(1-x)^{-p-2}\right).$$

Thus we obtain

$$\det(\dot{f}(x), \ddot{f}(x)) = -p^2(p+1)\{x(1-x)\}^{-p-2}.$$

This shows that f is non-degenerate when  $p \neq 0, -1$ .

$$\frac{\mathrm{ds}}{\mathrm{d}x} = -(p^2(p+1))^{1/3} \{x(1-x)\}^{-(p+2)/3}.$$

In case 0 , s varies on a bounded open interval.

## 6. HIMC surfaces in space forms

#### 6.1. Harmonic maps

A smooth map  $\varphi:(N,\bar{g},\mathrm{d}v_{\bar{g}})\to (M,g)$  of an oriented Riemannian manifold  $(N,\bar{g},\mathrm{d}v_{\bar{g}})$  to a Riemannian manifold (M,g) is said to be a *harmonic map* if it is a critical point of the Dirichlet energy functional:

$$E(\varphi) = \int_{N} \frac{1}{2} g(\mathrm{d}\varphi, \mathrm{d}\varphi) \, \mathrm{d}v_{\bar{g}}.$$

The Euler-Lagrange equation of this variational problem is

$$\tau(\varphi) = \operatorname{tr}_{\bar{g}}(\nabla d\varphi) = 0.$$

Here  $\nabla d\varphi$  is the *second fundamental form* of  $\varphi$  defined by

$$(\nabla d\varphi)(W;V) = \nabla_V^{\varphi} \varphi_* W - d\varphi(\nabla_V^{\bar{g}} W), \quad V, W \in \Gamma(TN),$$

where  $\nabla^{\bar{g}}$  is the Levi-Civita connection of  $\bar{g}$  and  $\nabla^{\varphi}$  is the linear connection on the pull-backed bundle  $\varphi^*TM$  induced from the Levi-Civita connection  $\nabla^g$  of g. The operator  $\operatorname{tr}_{\bar{q}}$  is the metrical trace with respect to  $\bar{g}$ 

In case,  $\dim N = 2$ , the Dirichlet energy is conformal invariant. Thus the harmonicity makes sense for maps from Riemann surfaces into Riemannian manifolds.

Let M be an open interval equipped with a Riemannian metric  $e^{2\gamma(x)} dx^2$ . Then for a smooth map  $x: \Sigma \to M$  from a Riemann surface  $\Sigma$  into M, its tension field  $\tau(x)$  is computed as

$$\tau(x) = \frac{4}{E} \left( \frac{\partial^2 x}{\partial z \partial \overline{z}} + \frac{\mathrm{d}\gamma}{\mathrm{d}x}(x) \left| \frac{\partial x}{\partial z} \right|^2 \right) \frac{\partial}{\partial x}.$$

Here z is a local complex coordinate and we use a Riemannian metric  $E(z, \bar{z}) dz d\bar{z}$  in the conformal class of  $\Sigma$ . Hence we obtain

**Proposition 6.1.** A smooth map  $x: (\Sigma, E(z, \overline{z}) dz d\overline{z}) \to (M, e^{2\gamma(x)} dx^2)$  is a harmonic map if and only if it satisfies

$$\frac{\partial^2 x}{\partial z \partial \overline{z}} + \frac{\mathrm{d}\gamma}{\mathrm{d}x} \left| \frac{\partial x}{\partial z} \right|^2 = 0.$$

From this characterization one may generalize the notion of harmonic maps in the following manner.

**Definition 6.1.** Let  $\Sigma$  be a Riemann surface and D be a linear connection on an interval  $M \subset \mathbb{R}$  with connection coefficient  $\Gamma$ . Then  $x : \Sigma \to (M, D)$  is said to be *affine harmonic* with respect to D if it satisfies

$$\frac{\partial^2 x}{\partial z \partial \overline{z}} + \Gamma(x) \left| \frac{\partial x}{\partial z} \right|^2 = 0.$$

## 6.2. HIMC surfaces

According to Fujioka [5], let us define a 1-dimensional Riemannian manifold  $\mathcal{M}^1(c)$  with c=0 or  $c=\pm 1$  in the following manner (see Introduction).

- c = 0:  $\mathcal{M}^1(0) = \mathbb{R}$  and  $g_0 = \mathrm{d}x^2$ .
- $c=1:\mathcal{M}^1(1)=\mathbb{R}\cup\{\infty\}$  and

$$g_1 = \frac{\mathrm{d}x^2}{(1+x^2)^2}.$$

• c = -1:  $\mathcal{M}^1(-1) = (-1, 1)$  and

$$g_{-1} = \frac{\mathrm{d}x^2}{(1 - x^2)^2}.$$

Let us consider harmonic maps from Riemann surfaces into  $\mathcal{M}^1(c)$ . The harmonic map equation for  $\varphi: \Sigma \to \mathcal{M}^1(c)$  is given by

$$\frac{\partial^2 x}{\partial z \partial \overline{z}} - \frac{2cx}{1 + cx^2} \left| \frac{\partial x}{\partial z} \right|^2 = 0.$$

The harmonic map equation can be solved explicitly.

**Proposition 6.2.** Let  $\varphi: \Sigma \to \mathcal{M}^1(c)$  be a harmonic map. Then there exists a holomorphic function f(z) on  $\Sigma$  such that

$$x(z,\overline{z}) = \begin{cases} f + \overline{f} & \text{if } c = 0 \\ \frac{f + \overline{f}}{1 - c|f|^2} & \text{or } \frac{1 - c|f|^2}{f + \overline{f}}. \end{cases}$$

**Definition 6.2** ([2, 5]). A conformally immersed surface  $\Sigma$  of a Riemannian space form  $\mathcal{M}^3(c)$  of constant curvature  $c = 0, \pm 1$  is said to be a *surface of harmonic inverse mean curvature* if its mean curvature function H does not vanish and 1/H is a harmonic map into  $\mathcal{M}^1(c)$ .

## 7. Orthogonal polynomials

## 7.1. Weighted Laplacian

Let  $(M, g, dv_a)$  be an oriented Riemannian m-manifold with volume element

$$dv_g = \sqrt{\det(g_{ij})} dx^1 \wedge dx^2 \wedge \cdots \wedge dx^m.$$

Take a positive smooth function  $\Upsilon$  and set  $d\mu = \Upsilon dv_g$ . According to Grigor'yan [13], a Riemannian manifold (M,g) equipped with a volume element  $d\mu$  is called a *weighted manifold*. The positive smooth function  $\Upsilon$  is called the *density function* of  $d\mu$ . The *weighted divergence operator*  $div_{\mu}$  is defined by

$$\operatorname{div}_{\mu} V = \frac{1}{\Upsilon} \operatorname{div}(\Upsilon V), \quad V \in \Gamma(TM).$$

The weighted Laplacian  $\Delta$  of a weighted manifold  $(M, g, d\mu)$  is introduced as

$$\Delta_{\mu} = -\operatorname{div}_{\mu} \circ \operatorname{grad}_{a},$$

where  $\operatorname{grad}_{a}$  is the gradient operator with respect to g.

The following variant of Green's formula holds for the weighted divergence operator and the weighted Laplacian:

$$\int_{M} (\operatorname{div}_{\mu} V) u \, d\mu = -\int_{M} g(V, \operatorname{grad} u) \, d\mu = -\int_{M} V(\boldsymbol{\Delta}_{\mu} u) \, d\mu$$

for any smooth function u on M with compact support and any vector field V on M with compact support. In local coordinate fashion,  $\Delta_{\mu}$  is expressed as

$$\Delta_{\mu} = -\sum_{i,j=1}^{n} g^{ij} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}} - \sum_{i,j=1}^{n} \left( \frac{1}{\rho} \frac{\partial \rho}{\partial x^{i}} g^{ij} + \frac{\partial g^{ij}}{\partial x^{i}} \right) \frac{\partial}{\partial x^{j}}.$$

Let us return our attention to the real line  $\mathbb{R}$  equipped with a conformal metric  $g = e^{2\gamma(x)} dx^2$ . Take a density function  $\Upsilon(x)$  and set  $d\mu = \Upsilon dx$ . Then the weighted Laplacian is given by

$$-\Delta_{\mu} = e^{-2\gamma(x)} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left( e^{-2\gamma(x)} \frac{\dot{\Upsilon}(x)}{\Upsilon(x)} - \Gamma(x) \right) \frac{\mathrm{d}}{\mathrm{d}x}. \tag{7.1}$$

In particular, for the flat metric  $g_0 = dx^2$ , we have

$$-\boldsymbol{\Delta}_{\mu} = \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left(\frac{\dot{\Upsilon}(x)}{\Upsilon(x)}\right) \frac{\mathrm{d}}{\mathrm{d}x}.$$

## 7.2. The Rodrigues formula

Let *I* be an interval and consider the function

$$\Xi(x) = \begin{cases} (x-a)(b-x), & I = [a,b], & a,b \in \mathbb{R} \\ x-a, & I = [a,+\infty), & a \in \mathbb{R}, \\ b-x, & I = [-\infty,b], & b \in \mathbb{R} \\ 1, & I = (-\infty,+\infty). \end{cases}$$

Take a positive continuous function w(x) satisfying

$$\left| \int_{a}^{b} w(x) \, \mathrm{d}x \right| < \infty.$$

Such a function w(x) is called a *weight*. Let us introduce a sequence  $\{p_n\}_{n=0}^{\infty}$  of polynomials by the so-called Rodrigues formula:

$$p_n(x) = \frac{C_n}{w(x)} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (w(x)\Xi(x)^n), \quad n = 0, 1, 2, \dots$$

Here  $C_n$  are normalizing constants.

**Lemma 7.1.** *If we choose* w(x) *as* 

- $\begin{array}{ll} \bullet & w(x)=(x-a)^{\alpha}(b-x)^{\beta} \ \text{with} \ \alpha,\beta>-1 \ \text{if} \ I=[a,b], \ a,b\in\mathbb{R}, \\ \bullet & w(x)=(x-a)^{\nu}e^{-x} \ \text{with} \ \nu>-1 \ \text{if} \ I=[a,+\infty] \ \text{with} \ a\in\mathbb{R}, \text{ or} \\ \bullet & w(x)=e^{-x^2} \ \text{if} \ I=(-\infty,+\infty). \end{array}$

Then the polynomials

$$f_n(x) = \frac{1}{w(x)} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (w(x)\Xi(x)^n), \quad n = 0, 1, 2, \dots$$

are orthogonal with respect to the inner product

$$\langle F|G\rangle = \int_a^b F(x)G(x)w(x) dx.$$

Moreover every  $f_n$  is a solution to the ordinary differential equation:

$$\Xi(x)\frac{\mathrm{d}^2}{\mathrm{d}x^2}u(x) + f_1(x)\frac{\mathrm{d}}{\mathrm{d}x}u(x) = \Lambda_n u(x), \tag{7.2}$$

where

$$f_1(x) = \alpha_1 x + c_0$$
,  $\Xi(x) = \frac{X_0}{2} x^2 + c_1 x + c_2$ ,  $\lambda_n = n\alpha_1 + \frac{n(n-1)}{2} X_0$ .

**Example 7.1** (Legendre polynomials). On the interval [-1,1], we choose

$$w(x) = 1, \quad C_n = \frac{(-1)^n}{2^n n!}.$$

Then the resulting polynomials are orthogonal and called the *Legendre polynomials* (and denoted by  $P_n(x)$ ).

**Example 7.2** (Chebyshev polynomials). On the interval [-1,1], we choose

$$w(x) = \frac{1}{\sqrt{1-x^2}}, \quad C_n = \frac{(-1)^n 2^n n!}{(2n)!}.$$

Then the resulting polynomials are orthogonal and called the *Chebyshev polynomials* (and denoted by  $T_n(x)$ ).

**Example 7.3** (Gegenbauer polynomials). On the interval [-1,1], we choose

$$w(x) = (1 - x^2)^{\nu - \frac{1}{2}}, \quad C_n = \frac{(-1)^n (2\nu)_n}{2^n n! (\nu + \frac{1}{2})_n}, \quad \nu > -\frac{1}{2}.$$

Then the resulting polynomials are orthogonal and called the *Gegenbauer polynomials* (and denoted by  $C_n^{\nu}(x)$ ).

**Example 7.4** (Jacobi polynomials). On the interval [-1,1], we choose

$$w(x) = (1-x)^{\alpha} (1+x)^{\beta}, \quad C_n = \frac{(-1)^n}{2^n n!}, \quad \alpha, \beta > -1.$$

Then the resulting polynomials are orthogonal and called the *Jacobi polynomials* (and denoted by  $P_n^{(\alpha,\beta)}(x)$ ).

**Example 7.5** (Laguerre polynomials). On the interval  $[0, +\infty)$ , we choose

$$w(x) = e^{-x}, \quad C_n = 1.$$

Then the resulting polynomials are orthogonal and called the *Laguerre polynomials* (and denoted by  $L_n(x)$ ).

**Example 7.6** (Sonine polynomials). On the interval  $[0, +\infty)$ , we choose

$$w(x) = e^{-x}x^{\mu}, \quad C_n = \frac{1}{n!}, \quad \mu > -1.$$

Then the resulting polynomials are orthogonal and called the *Sonine polynomials* (and denoted by  $S_n^{\mu}(x)$ ).

**Example 7.7** (Hermite polynomials). On the interval  $(-\infty, +\infty)$ , we choose

$$w(x) = e^{-x^2}, \quad C_n = (-1)^n, \quad \mu > -1.$$

Then the resulting polynomials are orthogonal and called the *Hermite polynomials* (and denoted by  $H_n(x)$ ).

Grigor'yan [13] pointed out the following interesting fact.

**Proposition 7.1.** On the weighted manifold  $(\mathbb{R}, dx^2, e^{-x^2}dx)$ , Hermite polynomials are eigenfunctions of the weighted Laplacian. More precisely we have

$$\Delta_{\mu}H_n = 2nH_n, \quad n = 0, 1, 2, \dots.$$

Now let us consider orthogonal polynomials  $\{f_n\}$  determined by Lemma 7.1. Comparing the ODE (7.2) and the eigenvalue problem:

$$\Delta_{\mu} f = \lambda f$$

we notice the following fact pointed out by Crasmareanu.

**Proposition 7.2** ([4]). On the weighted manifold  $(I, dx^2/\Xi, d\mu)$  with density function  $\Upsilon(x) = w(x)\Xi(x)$ , each polynomial  $f_n(x)$  as well as  $p_n(x)$  are eigenfunctions of the weighted Laplacian. More precisely

$$\Delta_{\mu} f_n = \lambda_n f_n, \quad \Delta_{\mu} p_n = \lambda_n p_n.$$

Here eigenvalues  $\lambda_n$  are non-negative integers.

## 7.3. Conformal metrics and orthogonal polynomials

Proposition 7.2 motives us to study conformal metrics  $g = dx^2/\Xi$  derived from orthogonal polynomials. For instance the conformal metric on (-1,1) derived from Legendre, Chebyshev, Gegenbauer or Jacobi polynomials is

$$g = \frac{\mathrm{d}x^2}{1 - x^2}, \quad \Gamma(x) = \frac{x}{1 - x^2}.$$

Then we have

$$Q(x) = \frac{1}{\sqrt{1-x^2}}, \quad s(x) = \sin^{-1} x.$$

Hence the geodesic starting at p with initial velocity v is given by

$$x(s) = \sin\left(\frac{vs}{\cos(\sin^{-1}p)} + \sin^{-1}p\right).$$

For any points x and y, the geodesic segment from x to y is given by

$$\sin((\sin^{-1} y - \sin^{-1} x)s + \sin^{-1} x)$$
.

The Riemannian distance is given by

$$d(x,y) = |\sin^{-1} x - \sin^{-1} y|.$$

The injectivity radius at p is

$$\frac{2\pi - \sin^{-1} p}{\sqrt{1 - (\sin^{-1} p)^2}}.$$

The Riemannian manifold  $([-1,1], dx^2/(1-x^2))$  has the diameter  $\pi$ .

## 7.4. Conformal metric $dx^2/x$ on $\mathbb{R}^+$

Next we study the Riemannian metric

$$g = \frac{\mathrm{d}x^2}{r}$$

on  $I = (0, +\infty)$ . The connection coefficient is

$$\Gamma(x) = -\frac{1}{2x}.$$

For any points x and y, the geodesic segment from x to y is given by

$$(y-x)\sqrt{s}+x$$
.

The Riemannian distance is given by

$$d(x,y) = 2|\sqrt{x} - \sqrt{y}|.$$

## 8. Hessian metrics

#### 8.1. Statistical structures

Let M be a manifold equipped with a pair  $(g, \nabla)$  consisting of a Riemannian metric g and a torsion free linear connection  $\nabla$ . Then  $(M, g, \nabla)$  is said to be a *statistical manifold* if  $C = \nabla g$  is a section of  $T^*M \odot T^*M \odot T^*M$ . The section C is called the *cubic form* of a statistical manifold  $(M, g, \nabla)$ . One can associate a tensor field K to C by

$$C(U, V, W) = g(K(U)V, W), \quad U, V, W \in \Gamma(TM).$$

Then we have

$$\nabla = \nabla^g - \frac{1}{2}K.$$

The *conjugate connection*  $\nabla^*$  of  $\nabla$  with respect to g is defined by

$$\nabla^* = \nabla^g + \frac{1}{2}K.$$

The conjugate connection is characterized the formula:

$$U g(V, W) = g(\nabla_U V, W) + g(V, \nabla_U^* W).$$

Let (M, g, C) be a Riemannian manifold equipped with a section C of  $T^*M \odot T^*M \odot T^*M$ . Then by introducing a linear connection  $\nabla = \nabla^g - K/2$ , then we obtain a statistical manifold  $(M, g, \nabla)$ . Thus we may regard (M, g, C) as a statistical manifold.

A statistical manifold  $(M, g, \nabla)$  is said to be of *trace free* if  $\operatorname{tr}_q K = 0$ .

*Remark* 8.1. Properly convex  $\mathbb{R}P^n$ -structures can be characterized by statistical structures of negative constant curvature. See [29, 31].

**Definition 8.1.** A statistical manifold  $(M, g, \nabla)$  is said to be a *Hessian manifold* if the metric g is locally expressed as the Hessian  $\operatorname{Hess}^{\nabla} \Phi$  of some locally defined smooth function  $\Phi$  with respect to  $\nabla$ . The local function  $\Phi$  is called a *Hesse potential* of g with respect to  $\nabla$ .

A Hessian manifold of dimension greater than 1 is characterized as a statistical manifold with vanishing curvature  $R = R^{\nabla}$  of  $\nabla$ .

On a Hessian manifold  $(M, g, \nabla)$ , the Hessian curvature tensor field H is introduced as [11, 25]:

$$H(U,V)W = \frac{1}{2}(\nabla_U K)(V,W), \quad K = -2(\nabla - \nabla^g).$$

Here use the sign convention of [12]. A Hessian manifold is said to be of constant Hessian sectional curvature c if

$$H(U,V)W = -\frac{c}{2}(g(U,V)W + g(W,U)V).$$

Shima [25] proved that a Hessian manifold M is of constant Hessian sectional curvature c if and only if its tangent bundle is of constant holomorphic sectional curvature -c.

#### 8.2. Statistical 1-manifolds

Let I be an open interval equipped with a conformal metric  $g=e^{2\gamma(x)}\,\mathrm{d} x^2$ . Take any linear connection  $\nabla$  with connection coefficient  $\Gamma(x)$ :

$$\nabla_X X = \Gamma(x) X, \quad X = \frac{\mathrm{d}}{\mathrm{d}x}.$$

As we saw before, if  $\nabla$  is the Levi-Civita connection  $\nabla^g$  of g, then

$$\Gamma(x) = \frac{\mathrm{d}\gamma}{\mathrm{d}x}(x).$$

To distinguish the connection coefficient of  $\nabla$  and that of the Levi-Civita connection  $\nabla^g$  of g, hereafter we use the following notation.

 $\Gamma(x) = \text{connection coefficient of } \nabla$ ,

 ${}^g\Gamma(x)=$  connection coefficient of the Levi-Civita connection  $\nabla^g$ .

We have

$$C = \nabla g = 2e^{2\gamma(x)}(\dot{\gamma}(x) - \Gamma(x)) dx^3, \quad dx^3 = dx \odot dx \odot dx.$$

Hence  $(I, g, \nabla)$  is always statistical. The operator K is given by

$$K(X)X = -2(\Gamma(x) - \dot{\gamma}(x))X.$$

Hence  $(I, g, \nabla)$  is of torsion free if and only if  $\nabla = \nabla^g$ . It should be remarked that R = 0 for any statistical 1-manifold  $(I, g, \nabla)$ .

#### 8.3. Hessian 1-manifolds

Let  $(I, g, \nabla)$  be a statistical 1-manifold. For any positive smooth function f on I, its  $Hessian \operatorname{Hess}^{\nabla} f$  with respect to  $\nabla$  is given by

Hess<sup>$$\nabla$$</sup>  $f = \left(\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}(x) - \Gamma(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x)\right) \mathrm{d}x^2.$ 

A 1-manifold  $(I,g,\nabla)$  is said to be a *Hessian* 1-manifold if the metric g is (locally) expressed as  $g=\operatorname{Hess}^{\nabla}\Phi$ . In such a case  $\Phi$  is called a *Hesse potential* of g with respect to  $\nabla$ . For a 1-manifold  $(I,\nabla)$  equipped with a linear connection  $\nabla$ . Then a conformal metric  $g=e^{2\gamma(x)}dx^2$  is a Hessian with respect to  $\nabla$  for some potential  $\Phi$  if and only if there exists a solution  $\Phi$  to the following *Hesse potential equation*:

$$\frac{\mathrm{d}^2 \Phi}{\mathrm{d}x^2}(x) - \Gamma(x) \frac{\mathrm{d}\Phi}{\mathrm{d}x}(x) = \exp(2\gamma(x)). \tag{8.1}$$

For prescribed functions  $\Gamma(x)$  and  $\gamma(x)$ . Let us consider the ODE:

$$\frac{\mathrm{d}}{\mathrm{d}x}\mu(x) - \Gamma(x)\,\mu(x) = \exp(2\gamma(x)). \tag{8.2}$$

Obviously, the derivative  $\mu(x) = \dot{\Phi}(x)$  of the Hesse potential  $\Phi(x)$  is a solution to (8.2). The general solution of (8.2) is given by (see [1]):

$$\mu(x) = C \exp\left(\int_{x_0}^x \Gamma(u) \, \mathrm{d}u\right) + \int_{x_0}^x e^{2\gamma(u)} \exp\left(\int_u^x \Gamma(v) \, \mathrm{d}v\right) \, \mathrm{d}u.$$

On a Hessian 1-manifold  $(I, g, \nabla)$  with metric  $g = e^{2\gamma(x)} dx^2$ , the Hessian curvature tensor field is given by

$$H(X,X)X = (\ddot{\gamma}(x) - 2\Gamma(x)\dot{\gamma}(x) - \dot{\Gamma}(x) + 2\Gamma(x)^2)X.$$

Thus the notion of Hessian sectional curvature is valid on  $(I, g, \nabla)$ . The Hessian sectional curvature on  $(I, g, \nabla)$  is defined as the smooth function

$$\mathcal{H} = e^{-2\gamma(x)} \left( \ddot{\gamma}(x) - 2\Gamma(x)\dot{\gamma}(x) - \dot{\Gamma}(x) + 2\Gamma(x)^2 \right)$$

on  $(I, g, \nabla)$ . Note that when  $\nabla = \nabla^g$ , we have H = 0.

**Example 8.1.** On a statistical 1-manifold  $(\mathbb{R}^+, dx^2/x^2, \nabla^\circ)$ , we can see that

$$g = \frac{\mathrm{d}x^2}{x^2} = \frac{\mathrm{d}^2}{\mathrm{d}x^2}(-\log x)\,\mathrm{d}x^2.$$

Thus  $(\mathbb{R}^+, dx^2/x^2, \nabla^\circ)$  is Hessian. The Hessian sectional curvature is constant 1. The tangent bundle of this statistical manifold is the half plane

$$T\mathbb{R}^+(x) = \mathbb{R}^+(x) \times \mathbb{R}(y) = \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$$

equipped with the Poincaré metric of constant curvature -1.

**Example 8.2** (Binomial distribution). Let us take a sample space  $\Omega = \{0, 1, 2, ..., n\}$ . The probability density function of the binomial distribution B(n, x) is given by

$$p(k;x) = \begin{pmatrix} n \\ k \end{pmatrix} x^k (1-x)^{n-k}, \quad k \in \Omega, \ x \in I = (0,1).$$

The set of all binomial distributions on  $\Omega$  is denoted by  $\mathcal{B}(n)$ . The Fisher metric g of  $\mathcal{B}(n)$  is given by

$$g = \frac{n \, \mathrm{d}x^2}{x(1-x)}.$$

The Levi-Civita connection  $\nabla^g$  is described as

$$\nabla_X^g X = {}^g \Gamma(x) X, \quad {}^g \Gamma(x) = \frac{2x-1}{2x(1-x)}, \quad X = \frac{\mathrm{d}}{\mathrm{d}x}.$$

It is known that  $(\mathbb{R}, g)$  is isometric to

$$\mathbb{S}^1_+(2\sqrt{n}) = \{(y_1, y_2) \in \mathbb{E}^2 \mid y_1^2 + y_2^2 = 4n, \ y_1, y_2 > 0\}$$

equipped with the Riemannian metric induced from  $\mathbb{E}^2$ .

On  $\mathcal{B}(n)$  we equip a linear connection  $\nabla = \nabla^e$  called the e-connection (exponential connection) by

$$\nabla_X X = \Gamma(x)X, \quad \Gamma(x) = \frac{2x-1}{x(1-x)}.$$

Thus we have

$$\nabla_X X = 2\nabla_X^g X.$$

Note that  $\nabla$  is the Levi-Civita connection of the Riemannian metric

$$g^{e} = \frac{n \, \mathrm{d}x^{2}}{x^{2}(1-x)^{2}}.$$

The tensor field  $K = -2(\nabla - \nabla^g)$  is given by

$$K(X)X = -2\nabla_X^g X = -\nabla_X X.$$

The  $\alpha$ -connection  $\nabla^{(\alpha)} = \nabla^g - \alpha K/2$  is given by  $\nabla^{(\alpha)} = (1+\alpha)\nabla^g$ . In particular the mixture connection (m-connection)  $\nabla^m$  is determined by  $\nabla^m_X X = 0$ . Note that  $\nabla^m$  is the conjugate connection of  $\nabla^e$ 

Introducing a new coordinate  $\theta$  by

$$\theta = \log \frac{x}{1 - x},$$

and set

$$\Phi(\theta) = n \log(1 + e^x).$$

Then  $\theta$  is an affine coordinate of  $\nabla$  and  $\Phi$  is a Hesse potential of g with respect to  $\nabla$ . The probability density function is rewritten as

$$p(k; \theta) = \exp(C(k) + F(k)\theta - \Phi(\theta)),$$

where

$$C(k) = \log \binom{n}{k}$$
,  $F(k) = k$ .

Thus  $\mathcal{B}(n)$  is an exponential family (see *c.f.*, [26, Example 6.2]). One can see that  $\mathcal{B}(n)$  is a Hessian 1-manifold of constant Hessian sectional curvature -1/n ([26, Example 2.2,2.8, Proposition 3.9]). Note that  $\mathcal{B}(n)$  is rewritten as

$$(\mathbb{R}(\theta), g, \nabla^{\circ}), \quad g = \frac{n \, \mathrm{d}\theta^2}{(1 + e^{\theta})^2}.$$

Here we prove the following important result.

**Theorem 8.1.** Every statistical 1-manifold is Hessian.

*Proof.* Let  $(I, g, \nabla)$  be a statistical 1-manifold. Take an affine parameter g of  $\nabla$ . Represent g as  $g = e^{2\gamma(s)} ds^2$ . Then

$$\Phi(s) = \int_{s_0}^{s} \left( \int_{s_0}^{v} e^{2\gamma(u)} du \right) dv \tag{8.3}$$

is a Hesse potential.

Molitor studied Hessian 1-manifolds of constant Hessian sectional curvature.

**Proposition 8.1** ([22]). Let  $(M, g, \nabla)$  be a Hessian 1-manifold of constant Hessian sectional curvature c, then there exists an affine parameter x with respect to  $\nabla$  such that g is locally expressed in the following form:

1. If c = 0, then  $g = a e^{bx} dx^2$  for some positive constants a and b.

2. If c > 0, then

$$g = \frac{a^2 dx^2}{c \cos^2(ax+b)}, \quad \frac{a^2 dx^2}{c \sinh^2(ax+b)} \quad or \quad \frac{dx^2}{c (x+b)^2}$$

for some positive constant a and constant b.

3. *If* c < 0, then

$$g = \frac{a^2 dx^2}{(-c)\cosh^2(ax+b)}$$

for some positive constant a and constant b.

To obtain explicit examples of Hessian 1-manifolds, one need to carry out the integration (8.3). Instead of integration procedure, Bercu, Corcodel and Postolache [1] gave some examples of Hessian 1-manifolds by using special functions, especially orthogonal polynomials.

**Example 8.3** (Bessel functions). Let us consider Bessel equation:

$$x^{2}\ddot{y}(x) + x\dot{y}(x) + (x^{2} - \alpha^{2})y(x) = 0,$$

where  $\alpha$  is a constant. The *Bessel function* 

$$J_{\alpha}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(\alpha+n+1)} \left(\frac{x}{2}\right)^{2n+\alpha}$$

is a real analytic function defined on the whole line and satisfies the Bessel equation. Here  $\Gamma(x)$  is the Gamma function. One can confirm that

$$\Gamma(x) = -\frac{1}{x}, \quad g = -\frac{x^2 - \alpha^2}{x^2} J_{\alpha}(x) dx^2$$

on an interval I on which g is positive definite. Then  $(I, g, \nabla)$  is a Hessian 1-manifold with Hesse potential  $f(x) = J_{\alpha}(x)$ .

Example 8.4 (Hermite polynomials). The Hermite polynomials

$$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2}$$

are solutions to Hermite's differential equation:

$$\ddot{y}(x) - 2x\dot{y}(x) + 2ny(x) = 0, \quad n = 0, 1, 2, \dots$$

Then we obtain a Hessian structure

$$\Gamma(x) = 2x$$
,  $q = -2nH_n(x) dx^2$ 

on an open interval on which g is positive definite.

Example 8.5 (Legendre polynomials). The Legendre polynomials

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n$$

are solutions to the ODE

$$(1 - x^2)\ddot{y}(x) - 2xy'(x) + n(n+1)y(x) = 0, \quad n = 0, 1, 2, \dots$$

Then

$$\Gamma(x) = \frac{2x}{1 - x^2}, \quad g = -\frac{n(n+1)}{1 - x^2} P_n(x) dx^2$$

gives a Hessian structure on an open interval on which g is positive definite.

**Example 8.6** (Laguerre polynomials). Let us consider the Laguerre equation

$$x^2\ddot{y}(x) + (1-x)y'(x) + ny(x) = 0, \quad n = 0, 1, 2, \dots$$

The Laguerre polynomials

$$L_n(x) = e^x \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x} x^n)$$

are solutions to the Laguerre equation. One can confirm that

$$\Gamma(x) = -\frac{1-x}{x}, \quad g = -\frac{n}{x}L_n(x) dx^2$$

gives a Hessian structure on an open interval on which g is positive definite.

Example 8.7 (The sinc function). The sinc function

$$\operatorname{sinc} x = \frac{\sin x}{x}$$

is a solution to

$$x\ddot{y}(x) + 2\dot{y}(x) + xy(x) = 0.$$

More generally  $y(x) = \lambda \operatorname{sinc}(\lambda x)$  is a solution to

$$x\ddot{y}(x) + 2\dot{y}(x) + \lambda^2 x y(x) = 0.$$

Here  $\lambda$  is a positive constant. The function  $\operatorname{sinc}(\pi x)$  is often called the *normalized sinc function* and used in digital processing and information theory. By using sinc function we may construct a Hessian structure

$$\Gamma(x) = -\frac{2}{x}, \quad g = -\operatorname{sinc} x \, \mathrm{d}x^2.$$

**Example 8.8** (Chebyshev polynomials). The Chebyshev polynomials  $T_n(x)$  are solutions to

$$(1-x^2)\ddot{y}(x) - xy'(x) + n^2y(x) = 0, \quad n = 0, 1, 2, \dots$$

One can confirm that

$$\Gamma(x) = \frac{x}{1 - x^2}, \quad g = -\frac{n^2}{1 - x^2} T_n(x) dx^2$$

gives a Hessian structure on an open interval on which g is positive definite.

**Problem 1.** Compute the Hessian sectional curvatures of Hessian 1-manifolds derived from orthogonal polynomials.

#### 8.4. Product manifolds

Bercu, Corcodel and Postolache [1] studied product manifolds of the form

$$(\mathbb{R}(x), e^{2\gamma(x)} dx^2) \times (\mathbb{R}(y), dy^2).$$

The product manifold is interpreted as the Cartesian plane  $\mathbb{R}^2(x,y)$  equipped with the Riemannian metric

$$g = e^{2\gamma(x)} dx^2 + dy^2.$$

Take a smooth function f(x, y) of the form

$$f(x,y) = \phi(x) + \psi(y).$$

Let us consider the Hessian  $\operatorname{Hess}^g f$  with respect to the Levi-Civita connection of the product metric g. Bercu, Corcodel and Postolache studied the problem when the Hessian metric  $\operatorname{Hess}^g f$  induces the Levi-Civita connection of g. Concerning on this problem, they obtained the following result.

**Theorem 8.2** ([1]). *Let us set* 

$$\phi(x) = \int_{x_0}^x \left( k + \int_{x_0}^t e^{\gamma(t)} dt \right) e^{\gamma(t)} dt,$$

where  $k = C e^{-\gamma(x_0)}$  and C is an arbitrary constant. Then

$$f(x,y) = \phi(x) + \frac{y^2}{2} + ay + b, \quad a, b \in \mathbb{R}$$

produces a Hessian metric  $\operatorname{Hess}^g f$  whose Levi-Civita connection coincides with that of g.

## 9. Statistically harmonic maps and statistically biharmonic maps

## 9.1. Statistically harmonic maps

Here we recall the following notion from our work [17]:

**Definition 9.1** ([17]). Let  $(M, g, \nabla)$  be a statistical manifold and  $\varphi : M \to M$  a smooth map. Then f is said to be *statistically harmonic* if its *statistical tension field* 

$$\tau_g^{\nabla}(\varphi) = \operatorname{tr}_g(\nabla^{\mathsf{S}} \mathrm{d}\varphi)$$

vanishes. Here the *statistical second fundamental form*  $\nabla^{\mathsf{S}} d\varphi$  of  $\varphi$  is defined by

$$(\nabla^{\mathsf{S}} \mathrm{d}\varphi)(W; V) = \nabla_V^{*\varphi} \varphi_* W - \varphi_* (\nabla_V W),$$

where  $\nabla^{*\varphi}$  is the connection on  $\varphi^*TM$  induced from the conjugate connection  $\nabla^*$  of  $\nabla$ .

In case  $\nabla = \nabla^g$ , the statistical-harmonicity is equivalent to the usual harmonicity.

**Problem 2.** Classify statistically harmonic automorphisms on statistical Lie groups, *e.g.*, on the statistical Lie group of normal distributions. For harmonic inner automorphisms of compact semi-simple Lie groups, see [24].

Now let us deduce the statistically harmonic map equation for a smooth map

$$y: (I, e^{2\gamma(x)} dx^2, \nabla) \to (I, e^{2\gamma(y)} dy^2, \nabla^*).$$

We can take a unit vector field

$$E = e^{-\gamma(x)}X, \quad X = \frac{\mathrm{d}}{\mathrm{d}x}$$

on the domain of y = y(x). Since  $\nabla_X X = \Gamma X$ , one can see that

$$\nabla_E E = e^{-2\gamma(x)} (\Gamma(x) - \dot{\gamma}(x)) X = -\frac{1}{2} \operatorname{tr}_g K.$$

Next, we get

$$y_*X = \dot{y}(x) Y, \quad Y = \frac{\mathrm{d}}{\mathrm{d}y}.$$

From this formula, we get

$$y_*(\nabla_X X) = \Gamma(y(x))\dot{y}(x) Y.$$

On the other hand, we have

$$\nabla_X^{*y} y_* X = (\ddot{y}(x) + \Gamma^*(y(x))\dot{y}(x)^2) Y,$$

where  $\Gamma^*$  is the connection coefficient of the conjugate connection  $\nabla^*$ . Hence

$$\nabla_E^{*y} y_* E = e^{-2\gamma(x)} (\ddot{y}(x) + \Gamma^*(y(x))\dot{y}(x)^2) Y.$$

Thus we obtain the formula:

$$\tau_g^\nabla(y) = e^{-2\gamma(x)} \left( \ddot{y}(x) + \{2\dot{\gamma}(x) - \Gamma(y(x))\}\dot{y}(x)^2 - \Gamma(y(x))\dot{y}(x) \right) \, Y.$$

Here we used the formula  $\Gamma^* = 2\dot{\gamma} - \Gamma$ .

**Proposition 9.1.** A smooth map  $y:(I,g,\nabla)\to (I,g,\nabla^*)$  is statistically harmonic if and only if y=y(x) satisfies

$$\ddot{y}(x) + \{2\dot{\gamma}(x) - \Gamma(y(x))\}\dot{y}(x)^2 - \Gamma(y(x))\dot{y}(x) = 0.$$
(9.1)

It should be remarked that even if  $\nabla = \nabla^g$ , the ordinary differential equation can *not* be the geodesic equation unless  $\dot{\gamma} = \Gamma = 0$ . The geodesic equation

$$\ddot{y}(x) + \{2\dot{\gamma}(x) - \Gamma(y(x))\}\dot{y}(x)^2 = 0 \tag{9.2}$$

of  $D^*$  is derived from the setting

$$y: (I, \mathrm{d}x^2, \nabla^g) \to (I, \nabla^*)$$

Analogously, the geodesic equation

$$\ddot{y}(x) + \Gamma(y(x))\,\dot{y}(x)^2 = 0\tag{9.3}$$

of  $\nabla$  is derived from the setting

$$y: (I, \mathrm{d}x^2, \nabla^g) \to (I, \nabla).$$

The geodesic equation (9.3) does not depend on the Riemannian metrics on the target 1-manifold.

**Problem 3.** Construct explicit examples of statistical harmonic maps on 1-dimensional statistical manifolds by using orthogonal polynomials.

*Remark* 9.1. One may consider the following conditions for smooth maps of a statistical manifold *M* into itself:

•  $\tau_q^{+,0}(\varphi) = \operatorname{tr}_q(\nabla^{+,0} d\varphi) = 0$ , where

$$(\nabla^{+,0} d\varphi)(W;V) = \nabla_V^{\varphi} \varphi_* W - \varphi_* (\nabla_V^g W),$$

and  $\nabla^{\varphi}$  is the connection on  $\varphi^*TM$  induced from  $\nabla$ .

•  $\tau_g^{0,+}(\varphi) = \operatorname{tr}_g(\nabla^{0,+} \mathrm{d} \varphi) = 0$ , where

$$(\nabla^{0,+} d\varphi)(W; V) = \nabla_V^{g,\varphi} \varphi_* W - \varphi_* (\nabla_V W),$$

and  $\nabla^{g,\varphi}$  is the connection on  $\varphi^*TM$  induced from the Levi-Civita connection  $\nabla^g$  of g.

Obviously for the identity map id,

$$\tau_g^{+,0}(\mathrm{id}) = 0 \Longleftrightarrow \tau_g^{0,+}(\mathrm{id}) = 0 \Longleftrightarrow \tau_g^{\nabla}(\mathrm{id}) = 0 \Longleftrightarrow \mathrm{tr}_g K = 0.$$

## 9.2. Statistically biharmonic maps

Let us return once to general situation. Let  $(M,g,\nabla)$  be a statistical manifold and  $\varphi:M\to M$  a smooth map. When we choose  $\varphi=\operatorname{id}$  the identity map. In case  $\nabla=\nabla^g$ ,  $\operatorname{id}$  is automatically harmonic. The stability of identity maps was studied extensively in 1970's and 1980's. On the other hand, we know the following fact.

**Proposition 9.2** ([17]). On a statistical manifold  $(M, g, \nabla)$ , the identity map is statistically harmonic when and only when  $(M, g, \nabla)$  is of trace free.

As a result, the identity map of a 1-dimensional statistical manifold  $(I, g, \nabla)$  can not be statistically harmonic if  $\nabla \neq \nabla^g$ . Indeed, if y = x, then (9.1) becomes

$$\tau_q^{\nabla}(x) = 2e^{-2\gamma(x)}(\dot{\gamma}(x) - \Gamma(x))X = 0.$$

This formula means that  $\tau(x)$  measures how  $\nabla$  is far from  $\nabla^g$ . In other words, the trace free condition is characterized by the statistical-harmonicity of the identity map.

For a smooth map  $\varphi: M \to M$  from an oriented statistical manifold  $(M, g, \nabla, dv_g)$  into itself, one can consider the functional (called the *bienergy*):

$$E_2(\varphi) = \int_M \frac{1}{2} g(\tau_g^{\nabla}(\varphi), \tau_g^{\nabla}(\varphi)) \, \mathrm{d}v_g.$$

A smooth map  $\varphi$  is said to be *statistically biharmonic* if it is a critical point of the bienergy.

As we mentioned above, the trace free condition of  $(M, g, \nabla)$  is equivalent to the statistical harmonicity of the identity map. Here we propose the following problem:

**Problem 4.** When is the identity map of a statistical manifold statistically biharmonic?

Remark 9.2. The notion of statistical biharmonicity in this article is more restrictive than that of [12].

Let  $(M_1, g_1, \nabla^1)$  and  $(M_2, g_2, \nabla^2)$  be statistical manifolds. Assume that  $M_1$  is oriented by an volume element  $dv_{g_1}$ . For a smooth map  $\varphi: M_1 \to M_2$ , set

$$\tau_1(\varphi) = \operatorname{tr}_{g_1}(\nabla^{2,1,\varphi} d\varphi),$$

where

$$(\nabla^{2,1,\varphi} d\varphi)(Y;X) = \nabla_X^{2,\varphi} \varphi_* Y - \varphi_* (\nabla_X^1 Y),$$

where  $\nabla^{2,\varphi}$  is the connection on  $\varphi^*TM_2$  induced from  $\nabla^2$ . One can see that  $\tau_1(\varphi)$  depends on the statistical structures  $(g_1, \nabla^1)$  on  $M_1$  and the connection  $\nabla^2$ . It does *not* depend on the metric  $g_2$ . The bienergy functional proposed in [12] is

$$E_2(\varphi) = \int_{M_1} \frac{1}{2} g_2(\tau_1(\varphi), \tau_1(\varphi)) \, \mathrm{d}v_{g_1}.$$

By computing the Euler-Lagrange equations of  $E_2$  with respect to compactly supported variations, they deduced the Euler-Lagrange equation  $\tau_2(\varphi) = 0$ , where

$$\tau_2(\varphi) = \mathbf{\Delta}^{\varphi} \tau_1(\varphi) - \frac{1}{2} \operatorname{div}_{g_1}(\operatorname{tr}_{g_1} K_1) \tau_1(\varphi) - \operatorname{tr}_{g_1} L_2(\operatorname{d}\varphi, \tau_1(\varphi)) \operatorname{d}\varphi + \frac{1}{2} K_2(\tau_1(\varphi)) \tau_1(\varphi).$$

Here

$$\nabla^1 - \nabla^{g_1} = -\frac{1}{2}K_1, \quad \nabla^2 - \nabla^{g_2} = -\frac{1}{2}K_2,$$

$$g_2(L_2(Z, W)X, Y) = g_2(R^{\nabla^2}(X, Y)Z, W).$$

The operator  $\Delta^{\varphi}$  is the Laplace-Beltrami operator of the vector bundle  $(\varphi^*TM_2, \nabla^{2,\varphi}, \varphi^*g_2)$ .

A statistically biharmonic map in the sense of Furuhata-Ueno [12] is a smooth map satisfying  $\tau_2(\varphi) = 0$ . If we choose

$$M_1 = M_2 = M$$
,  $g_1 = g_2 = g$ ,  $\nabla^1 = \nabla$ ,  $\nabla^2 = \nabla^*$ ,

then the statistically biharmonicicity of  $\varphi$  in the sense of [12] coincides with ours.

Problem 5. Complexify all the stories in this article.

## A. The moduli problem

As we saw before, the statistical manifold  $\mathcal{B}(n)$  of the binomial distributions is one of the typical example of Hessian 1-manifold. On the other hand the statistical manifold  $\mathcal N$  of the normal distributions is the most well known example of Hessian 2-manifold.

Kito [18] studied the moduli problems of Hessian structures on the Euclidean n-space  $\mathbb{E}^n$  and the hyperbolic n-space  $\mathbb{H}^n$  of constant curvature -1 with n > 1. More precisely he studied the set

$$\mathcal{H}(M,g) = \{ C \in \Gamma(T^*M \odot T^*M \odot T^*M) \mid (M,g,C) \text{ is Hessian } \}$$

for  $M = \mathbb{E}^n$  and  $M = \mathbb{H}^n$ . Here we interpret a Hessian structure on a manifold M as a pair (g, C) consisting of a Riemannian metric g and a symmetric covariant tensor field C of degree 3. Kito [18] proved the following results.

**Theorem A.1.** The set  $\mathcal{H}(\mathbb{E}^n)$  has at least the freedom of n functions on  $\mathbb{R}$ . In particular, the set  $\mathcal{H}(\mathbb{T}^n)$  of Hessian structure of the flat torus has at least the freedom of n periodic functions.  $\mathbb{T}^n$ .

**Theorem A.2.** The set  $\mathcal{H}(\mathbb{H}^n)$  has at least the freedom of (n-1) functions on  $\mathbb{R}$ .

In a local situation Kito obtained the following result.

**Theorem A.3.** The set  $\mathcal{H}(\mathbb{E}^2, \mathbf{0})$  of Hessian structures of a neighborhood of the origin has the freedom of three local functions.

On the other hand, in our previous work [10] we studied left invariant statistical structures on the statistical manifold  $\mathcal N$  of normal distributions. The set

$$\mathcal{N} = \{ N(x, y^2) \mid x, y \in \mathbb{R}, \ y > 0 \}$$

of all normal distributions  $N(x, y^2)$  (of mean x and variance y) is identified with the upper half plane

$$\{(x,y) \in \mathbb{R}^2 \mid y > 0\}.$$

The Fisher metric

$$g = \frac{dx^2 + 2dy^2}{y^2}$$

and e-connection (exponential connection)

$$\nabla^{\mathrm{e}}_{\partial x}\partial_{x}=0,\quad \nabla^{\mathrm{e}}_{\partial x}\partial_{y}=\nabla^{\mathrm{e}}_{\partial y}\partial_{x}=-\frac{2}{y}\,\partial_{x},\quad \nabla^{\mathrm{e}}_{\partial y}\partial_{y}=-\frac{3}{y}\partial_{y}$$

gives a Hessian structure  $(g, \nabla^{\mathsf{E}})$ . Moreover the m-connection (mixture connection)

$$\nabla^{\mathsf{m}}_{\partial x}\partial_x = \frac{1}{y}\,\partial_y, \quad \nabla^{\mathsf{m}}_{\partial x}\partial_y = \nabla^{\mathsf{m}}_{\partial y}\partial_x = 0, \quad \nabla^{\mathsf{m}}_{\partial y}\partial_y = \frac{1}{y}\partial_y$$

also defines a Hessian structure  $(g, \nabla^m)$ . The triplet  $(g, \nabla^e, \nabla^m)$  is referred as to a dually flat structure. More generally we know the one-parameter family of statistical structures  $\{(g, \nabla^{(\alpha)})\}_{\alpha \in \mathbb{R}}$  on  $\mathcal{N}$ . The connection  $\nabla^{(\alpha)}$  defined by

$$\nabla_{\partial x}^{(\alpha)}\partial_x = \frac{1-\alpha}{2y}\,\partial_y, \quad \nabla_{\partial x}^{(\alpha)}\partial_y = \nabla_{\partial y}^{(\alpha)}\partial_x = -\frac{1+\alpha}{y}\partial_x, \quad \nabla_{\partial y}^{(\alpha)}\partial_y = -\frac{1+2\alpha}{y}\partial_y$$

is called the *Amari-Chentsov*  $\alpha$ -connection. Note that

$$\nabla^{(1)} = \nabla^{\mathsf{e}}, \quad \nabla^{(-1)} = \nabla^{\mathsf{m}}, \quad \nabla^{(0)} = \nabla^g \text{ (Levi-Civita connection of } g).$$

The statistical manifold  $(\mathcal{N}, g, \nabla^{(\alpha)})$  is identified with the Lie group

$$\left\{ \left( \begin{array}{cc} y & x \\ 0 & 1 \end{array} \right) \mid x, y \in \mathbb{R}, y > 0 \right\}.$$

The statistical structures are left invariant. By suitable modification, Kito's result is rephrased for N as follows:

**Corollary A.1.** The set  $\mathcal{H}(\mathcal{N}, g)$  has at least the freedom of one functions on  $\mathbb{R}$ .

On the other hand the  $\alpha$ -connections are characterized in our work [10] as follows:

**Theorem A.4** ([10]). The only left invariant connections on the Lie group of normal distributions compatible to the Fisher metric which are conjugate symmetric are Amari-Chentsov  $\alpha$ -connections. In particular the only left invariant connections on the Lie group of normal distributions which together with Fischer metric define Hessian structures are e-connection and m-connection.

Motivated by Kito's work [18] and our previous work, here we propose the following problem:

**Problem 6.** Classify all the left invariant linear connections on the Lie group of normal distributions which is compatible to the Fisher metric g.

## **Funding**

This research is partially supported by JSPS KAKENHI Grant Number 23K03081

#### Availability of data and materials

Not applicable.

## **Competing interests**

The authors declare that they have no competing interests.

#### References

- [1] Bercu, G., Corcodel, C., Postolache, M.: Iterative geometric structures, Int. J. Geom. Methods Mod. Phys. 7 (7), 1103-1114 (2010).
- [2] Bobenko, A. I.: Surfaces in terms of 2 by 2 matrices. Old and new integrable cases, Harmonic Maps and Integrable Systems, Aspects of Math. 83, Vieweg, 83-127 (1994).
- [3] Bobenko, A., Eitner, U., Kitaev, A.: Surfaces with harmonic inverse mean curvature and Painlevé equations, Geom. Dedicata 68 (2), 187-227 (1997).

- [4] Crasmareanu, M.: Weighted Riemannian 1-manifolds for classical orthogonal polynomials and their heat kernel, Anal. Math. Phys. 5 (4), 373–389 (2015).
- [5] Fujioka, A.: Surfaces with harmonic inverse mean curvature in space forms, Proc. Amer. Math. Soc. 127 (10), 3021-3025 (1999).
- [6] Fujioka, A., Inoguchi, J.: On some generalisations of constant mean curvature surfaces, Lobachevskii J. Math. 3, 73-95 (1999).
- [7] Fujioka, A., Inoguchi, J.: Spacelike surfaces with harmonic inverse mean curvature, J. Math. Sci. Univ. Tokyo 7 (4), 657-698 (2000).
- [8] Fujioka, A., Inoguchi, J.: Timelike Bonnet surfaces in Lorentzian space forms, Differential Geom. Appl. 18 (1), 103-111 (2003).
- [9] Fujioka, A., Inoguchi, J.: *Timelike surfaces with harmonic inverse mean curvature*, Surveys on Geometry and Integrable Systems, Advanced Studies in Pure Mathematics **51**, 113-141 (2018).
- [10] Furuhata, H., Inoguchi, J., Kobayashi, S.-P.: A characterization of the alpha-connections on the statistical manifold of normal distributions, Inf. Geom. 4 (1), 177-188 (2021).
- [11] Furuhata, H., Kurose, T.: Hessian manifolds of nonpositive constant Hessian sectional curvature, Tôhoku Math. J. (2) 65 (1), 31-42 (2013). 31-42.
- [12] H. Furuhata, H., Ueno, R.: A variation problem for mappings between statistical manifolds, Results in Mathematics, 80 (57), (2025).
- [13] Grigor'yan, A.: Heat Kernel and Analysis on Manifolds, AMS/IP Stud. Adv. Math. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009.
- [14] Goldman, W. M.: Flat affine, projective and conformal structures on manifolds: A historical perspective, Geometry in History, Springer, 515-552, (2019).
- [15] Hilbert, D.: Ueber die gerade Linie als kürzeste Verbindung zweier Punkte, Math. Ann. 46, 91-96 (1895).
- [16] Inoguchi, J.: On the statistical Lie groups of normal distributions, Information Geometry, 7 (2), 441-447 (2024).
- [17] Inoguchi, J., Ohno, Y.: Homogeneous statistical manifolds, arXiv:2408.01647v1 [math.DG]
- [18] Kito, H.: On Hessian structures on the Euclidean space and the hyperbolic space, Osaka J. Math. 36 (1), 51-62 (1999).
- [19] Kobayashi, O., Wada, M.: Circular geometry and the Schwarzian, Far East J. Math. Sci, Special Volume Part III, 335-363 (2000).
- [20] Kobayashi, S.: Projective structures and invariant distances, (Japanese), Sūgaku 34 (3), 211-221 (1982).
- [21] Kobayashi, S.: Projectively invariant distances for affine and projective structures, Differential Geometry, Warsaw 1979, Banach Cent. Publ. 12, 127-152 (1984).
- [22] Molitor, M.: One-dimensional exponential families with constant Hessian sectional curvature, Inf. Geo. 5, 511-530 (2022).
- [23] Nomizu, K., Sasaki, T.: Globally defined linear connections on the real line and the circle, Tôhoku Math. J. (2) 51 (2), 205-212 (1999).
- [24] Park, J.-S.: Harmonic inner automorphisms of compact connected semisimple Lie groups, Tôhoku Math. J. (2) 42 (1), 83-91 (1990).
- [25] Shima, H.: Hessian manifolds of constant Hessian sectional curvature, J. Math. Soc. Japan 47, 735-753 (1995).
- [26] Shima, H.: The geometry of Hessian structures, World Scientific, Hackensack, NJ, 2007.
- [27] Goldman, W. M.: Projective geometry on manifolds, Lecture Notes for Mathematics 748B, Spring 1988, University of Maryland.
- [28] Kobayashi, O.: On a theorem of N. H. Kuiper, (Japanese), Geometry and Analysis 2023, Fukuoka University, 20 pages.
- [29] Kobayashi, S.-P., Ohno, Y.: On a constant curvature statistical manifold, Inf. Geom. 5 (1), 31-46 (2022).
- [30] Kuiper, N. H.: Locally projective spaces of dimension one, Michigan Math. J. 2 (2), 95-97 (1953/1954)
- [31] Osipov, P.: Locally conformally Hessian and statistical manifolds, J. Geom. Phys. 193, Paper No. 104989 (2023)

#### **Affiliations**

#### J. INOGUCHI

ADDRESS: Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

E-MAIL: inoguchi@math.sci.hokudai.ac.jp

ORCID ID:0000-0002-6584-5739