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Introduction

This expository article concerns differential geometric study on 1-manifolds. As is well known connected
1-manifolds are diffeomorphic to either the real line R or the circle S1. Thus intrinsic topological study on 1-
manifolds is completed. In differential topology, imbeddings of the circle into some spaces have been studied.
A knot is an imbedding of S1 into the Cartesian 3-space R3 (or the 3-sphere S3). Knot theory has been studied
extensively.

On the other hand, from differential geometric viewpoint, we may consider Riemannian 1-manifolds or
more generally affine 1-manifolds. However, the notion of curvature does not make sense for Riemannian
1-manifolds. In this sense, no local invariant exists on Riemannian 1-manifolds.

It should be remarked that the curvature functions of planar or spatial curve are not intrinsic quantity. Indeed,
let γ :M → En be an immersion of a 1-manifold M into the Euclidean n-space (or arbitrary Riemannian n-
manifold). Then the curvature function κ is introduced via the acceleration vector field

∇◦
γ̇ γ̇ = κn

under the affine parametrization. Here ∇◦ is the Levi-Civita connection of En and n is the principal normal
vector field. This formula implies that κ is the mean curvature function of γ.

Since there is no notion of curvature on Riemannian 1-manifolds, we can not develop 1-dimensional
Riemannian geometry. In particular we can not introduce the notion of 1-dimensional space form. However
we can encounter the following Riemannian 1-manifolds:

(R,dx2),
(
R ∪ {∞}, dx2

(1 + x2)2

)
,

(
I,

dx2

(1− x2)2

)
,

where I = (−1, 1). These Riemannian 1-manifolds are regarded as the real part of the following complex 1-
dimensional complex space forms:

(C, |dz|2),
(
C ∪ {∞}, |dz|2

(1 + |z|2)2

)
,

(
D, |dz|2

(1− |z|2)2

)
,

respectively. Here D = {z ∈ C | |z| < 1} is the unit disc.
It should be remarked that the distance function induced from the Riemannian metric

gH =
4dx2

(1− x2)2

is nothing but the Hilbert distance (see Example 1.2). Moreover Riemannian metrics gc appeared in integrable
geometry.

Received : 07–06–2024, Accepted : 27-10-2024
* Corresponding author

 https://doi.org/10.36890/iejg.1497568\ 


J. Inoguchi

A conformally immersed surface M in the Euclidean 3-space E3 is said to be a surface with harmonic inverse
mean curvature if its reciprocal 1/H of the mean curvature function is a harmonic function. The notion of surface
with harmonic inverse mean curvature (HIMC surface, in short) was introduced by Bobenko [2] and extended
to surfaces in 3-dimensional space forms by Fujioka [5]. A conformally immersed surface in the unit 3-space
S3 [resp. hyperbolic 3-space H3 of constant curvature −1] is said to be an HIMC surface if its reciprocal 1/H
of the mean curvature function is a harmonic map into the 1-dimensional Riemannian manifold (R, g1) [resp.
((−1, 1), g−1)].

The Levi-Civita connections ∇c of these metrics gc are given by

∇c
XX = Γ (x)X, X =

d

dx
, Γ (x) = − 2cx

1 + cx2
.

For c = 0 and c = 1, the Levi-Civita connection ∇c of gc are globally defined on R. The Levi-Civita connection
of g−1 is defined on the interval (−1, 1).

The Gauss-Codazzi equations of HIMC-surfaces can be normalized to certain types of Painlevé equations [3]
under isothermic assumption. For more information on HIMC surfaces, we refer to [6, 7, 8, 9].

On the other hand, Nomizu and Sasaki [23] classified globally defined linear connections on the real line
R. In this article we discuss relations between the Levi-Civita connections of gc and the classification due to
Nomizu and Sasaki.

This work is motivated by a naive question “Can we introduce the notion of 1-dimensional space form ?".
Obviously the notion of curvature does not make sense for 1-dimensional manifolds. There are several
interpretations for 1-dimensional curvatures, see e.g., [5, 19].

As a summary, to develop differential geometry of 1-manifolds, only equipping Riemannian metric (or
linear connection) is not sufficient for 1-manifolds. One need to equip additional structures on Riemannian
1-manifolds.

Grigor’yan introduced the notion of weighted manifold [13]. As he exhibited, differential geometry of
weighthed manifolds is still valid for dimension 1. A weighted 1-manifold is a Riemannian 1-manifold
equipped with a weighted volume element. Crasmareanu [4] pointed out an interesting connection between
orthogonal polynomials and weighted 1-manifolds. This fact was observed by Grigor’yan for Hermite
polynomials.

On the other hand, Shima introduced the notion of Hessian manifold [25]. A Hessian manifoldM = (M, g,∇)
is a smooth manifold M equipped with a Riemannian metric g and a flat linear connection ∇ such that ∇g is
totally symmetric. On a Hessian manifold M , the curvature R of ∇ vanishes. Shima introduced the notion
of Hessian curvature tensor field H . Fortunately the notion of Hessian curvature tensor field is still valid for
Hessian 1-manifolds and does not automatically vanish. This fact motivates us to study Hessian 1-manifolds.
The study of Hessian 1-manifolds has another motivation derived from Information geometry. Statistical 1-
manifolds derived from exponential families, e.g., the statistical manifold of binomial distributions provides a
fundamental example of Hessian 1-manifold (Example 8.2).

In this expository article, we discuss some linear connections and conformal Riemannian metrics on R.
This article is organized as follows. In Section 1 we exhibit some typical examples of Riemannian 1-

manifolds. In Section 2, we study imbeddings of Riemannian 1-manifolds exhibited in Section 1 into the
lightcone of the Minkowski 3-space. We start our discussion on Riemannian 1-manifolds in Section 3. Section
4 is devoted to the study of affine 1-manifolds. We recall the uniformaization theorem of linear connections on
R due to Nomizu-Sasaki. We give a metrical interpretation of Nomizu-Sasaki’s result. In Section 5, we discuss
the affine realizations of affine 1-manifolds into the equiaffine plane developed by Nomizu and Sasaki [23]. In
Section 6 we recall the notion of harmonic inverse mean curvature surface due to Bobenko [2] and Fujioka [5].
Weighted 1-manifolds will be discussed in Section 7. In Section 8 we study Hessian 1-manifolds. In the final
section we discuss statistically harmonic maps between statistical 1-manifolds.

1. Typical examples

We start with exhibiting two typical examples of conformal metrics on open intervals.
First of all we recall the notion of Riemannian metric on open intervals.
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1.1. Riemannian metrics

Let X(R) = Γ (TR) be the space of all smooth vector fields on the real line R. The space X(R) is expressed as

X(R) = {λX | λ ∈ C∞(R)}, X =
d

dx
.

At a point x0 ∈ R, the tangent space Tx0R is given by

Tx0
R = {aXx0

| a ∈ R}

which is identified with R via the correspondence:

aXx0
7−→ a.

A Riemannian metric g on R is a mapping

g : X(R)× X(R)→ C∞(R)

satisfying

• g(λX, µX) = λµ g(X,X) for any λ, µ ∈ C∞(R) and
• g(X,X) > 0.

The Riemannian metric g0 determined by the condition g(X,X) = 1 is expressed as

g0 = dx2.

The Riemannian metric g0 is called the canonical Euclidean metric. In general, a Riemannian metric g is expressed
as

g = g(X,X) dx2.

For this reason, we may call Riemannian metric g a conformal metric on R.
We may restrict vector fields and Riemannian metrics on the whole line R to some open intervals.

1.2. The Hilbert distance

On the open interval I = (−1, 1) the Hilbert distance dH is defined by [15, 21]:

dH(a, b) = |log[a, b,−1, 1]| ,

where

[a, b, x, y] =
|x− a| · |y − b|
|x− b| · |y − a|

.

The Hilbert distance is derived from the Riemannian metric

gH =
4dx2

(1− x2)2
= 4g−1

on I . Indeed, ∫ b

a

2 dx

1− x2
=

∫ b

a

1

1− x
+

1

1 + x
dx =

[
log

1 + x

1− x

]b
a

= − log[a, b; 1,−1].

1.3. Stereographic projection

Let us consider the unit circle
S1 = {(y1, y2) ∈ E2 | y21 + y22 = 1}

in the Euclidean plane E2. The stereographic projection π+ of U0 := S1 ∖ {(0, 1)} onto R with pole (0, 1) is given
by

π+(y1, y2) =
y1

1− y2
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with inverse mapping

π−1
+ (x) =

(
2x

1 + x2
,
x2 − 1

1 + x2

)
.

One can check that the induced metric is given by

(dy1)
2 + (dy2)

2 =
4dx2

(1 + x2)2
= 4g1

on U0.
Analogously, the stereographic projection π− of U∞ := S1 ∖ {(0,−1)} onto R with pole (0,−1) is given by

π−(y1, y2) =
y1

1 + y2

with inverse mapping

π−1
− (x) =

(
2x

1 + x2
,
1− x2

1 + x2

)
.

The induced metric is given by

(dy1)
2 + (dy2)

2 =
4dx2

(1 + x2)2

on U∞.
As usual we add the point at infinity ∞ to R and extend π to S1 as π(0, 1) =∞. Then the 1-manifold S1 is

covered by two charts {(U0, π+), (U∞, π−)}.

1.4. Projective line

Let us consider the real projective line P1. The projective line is regarded as the 1-manifold of all lines of R2

through the origin. Hence P1 is regarded as the quotient space

P1 = (R2 ∖ {(0, 0)})/R× =
{
[x1 : x2] | (x1, x2) ∈ R2 ∖ {(0, 0)}

}
,

where
[x1 : x2] = {(λx1, λx2) | λ ∈ R×}, R× = R∖ {0}.

We denote by pr : R2 ∖ {(0, 0)} → P1 the projection. Take

Ũ+ = {(x1, x2) | x1 ̸= 0}, Ũ− = {(x1, x2) | x2 ̸= 0}

and set
U+ = pr(Ũ+), U− = pr(Ũ−).

Then P1 = U+ ∪ U−. Define smooth maps ψ± : U± → R by

ψ+([x1 : x2]) =
x2
x1

=: t, ψ−([x1 : x2]) =
x1
x2

=: s.

Then, on U+ ∩ U−, we have

(ψ− ◦ ψ−1
+ )(t) =

1

t
, (ψ+ ◦ ψ−1

− )(s) =
1

s
.

Here we recall the fact that P1 is identified with R ∪ {∞}. We identify the line [x1 : x2] ∈ U+ with t = ψ+([x1 :
x2]) ∈ R. Next we identify the line [0 : 1] ∈ U− with the point at infinity ∞. Thus we obtain the identification
P1 = R ∪ {∞}. As a result we get the identification P1 = S1.

On the other hand, on the unit circle S1 ⊂ E2, we introduce an equivalence relation

(x1, x2) ∼ (y1, y2)⇐⇒ (x1, y1) = (x2, y2) or (x1, y1) = (−x2,−y2).

Then the quotient space is nothing but P1. Moreover the mapping f : S1/∼→ S1 defined by

f((cos θ, sin θ)) = (cos(2θ), sin(2θ))

is a diffeomorphism. Thus we get again P1 = S1.
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1.5. Hyperbola

Let us consider the hyperbola

H1 = {(y1, y2) ∈ E2
1 | y21 − y22 = −1, y2 > 0}

in the Minkowski plane E2
1. The stereographic projection π of H1 onto the interval (−1, 1) with pole (0,−1) is

given by
π(y1, y2) =

y1
1 + y2

with inverse mapping

π−1(x) =

(
2u

1− x2
,
1 + x2

1− x2

)
.

The induced metric of H1 is computed as

(dy1)
2 − (dy2)

2 =
4du2

(1− x2)2
= gH .

2. Conics

Let us consider Minkowski 3-space E3
1 with Minkowski scalar product ⟨·, ·⟩ = dy21 + dy22 − dy23 .

The lightcone L is given by

L = {(y1, y2, y3) ∈ E3
1 ∖ {(0, 0, 0)} | y21 + y22 − y23 = 0}

The lightcone is diffeomorphic to S1 ×R×. Indeed,

S1 ×R× ∋ (x, t) 7−→ (|t|x, t) ∈ E3
1

gives a diffeomorphism from S1 ×R× onto L.
For any t ∈ R×, we define a map Φt : E2 → E3

1 by

Φt(x) = (x, t).

Then the image of the circle S1(|t|) ⊂ E2 of radius |t| under Φt is the conic section

Πy3=t ∩ L = {(y1, y2, t) ∈ L}.

Note that the plane y3 = t is a spacelike plane.
The conic sections L ∩ΠL

t are parabolas. Here

ΠL
t = {(y1, y2, y2 + t) ∈ E3

1}

is a lightlike plane. The conic section L ∩ΠL
t is parametrized as

L ∩ΠL
t =

{(
y1,−

t

2
− y21

2t
,
t

2
− y21

2t

)}
.

Let us consider the immersion Ft of R into L by

Ft(x) =

(
x,− t

2
− x2

2t
,
t

2
− x2

2t

)
.

One can check that ⟨dFt,dFt⟩ = dx2. Thus Euclidean line is isometrically embedded in L as a parabola.
We define a map Ψ : E2

1 → E3
1 by

Ψ(y) = (1,y).

Then the image of H1 ⊂ E2
1 is the conic section ΠT

y1=1 ∩ L. Here ΠT
y1=1 is a timelike plane defined by y1 = 1. By

composing Ψ and π−1 : (−1, 1)→ H1, we obtain an isometric imbedding

u 7−→
(
1,

2u

1− u2
,
1 + u2

1− u2

)
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of ((−1, 1), gH) into the lightcone.
The conformal circle, that is, the conformal compactificationM of the Euclidean line E1 is the projective light

cone
{[y1 : y2 : y3] ∈ P2 | y21 + y22 − y23 = 0} ⊂ P2.

The conformal transformation group is O1(3)/Z2.
The Euclidean line is conformally imbedded in the conformal circle by

x 7−→ [2x : −1 + x2 : 1 + x2] =

[
2x

1 + x2
:
−1 + x2

1 + x2
: 1

]
Let us identify the Minkowski space E3

1 with sl2R via the correspondence

y1e1 + y2e2 + y3e3 ←→ y1i+ y2j
′ + y3k

′ =

(
−y3 −y1 + y2

y1 + y2 y3

)
The metric corresponds to the left invariant Lorentz metric on the special linear group SL2R derived from the
scalar product

⟨X,Y ⟩ = 1

2
tr(XY ).

The special linear group SL2R acts isometrically on E3
1 via the Ad-action:

SL2R× E3
1 → E3

1; (A, Y ) 7−→ Ad(A)Y = AY A−1.

Hence the map Ad : SL2R→ O1(3) is a Lie group homomorphism. One can see that SL2R/Z2
∼= SO+

1 (3). Thus
SL2R is the double covering of SO+

1 (3).

Ad

(
a b
c d

)
i =

1

2
(a2 + b2 + c2 + d2)i+

1

2
(−a2 − b2 + c2 + d2)j′ − (ac+ bd)k′,

Ad

(
a b
c d

)
j′ =

1

2
(−a2 + b2 − c2 + d2)i+

1

2
(a2 − b2 − c2 + d2)j′ + (ac− bd)k′

Ad

(
a b
c d

)
k′ = −(ab+ cd)i+ (ab− cd)j′ + (ad+ bc)k′.

The lightcone is identified with
{Y ∈ sl2R | tr(Y 2) = 0}

Hence the isometric action of SL2R induces an action on the projective lightcone as

SL2R×M→M; (A, [Y ]) 7−→ [AY ].

The group of all projective transformations preserving the conformal circle is isomorphic to PSL2R. Thus the
projective transformations coincide with conformal transformations on the conformal circle. In other words,
conformal circle is nothing but the projective line.

The conic section Πy3=1 ∩ L is identified with{(
−1 − cos θ + sin θ

cos θ + sin θ 1

)}
.

3. Conformal metrics on the line

3.1. Linear connection

A linear connection ∇ on R is determined by the connection coefficient Γ ∈ C∞(R). Indeed ∇ is a mapping
X(R)×X(R)→ X(R) which is determined by the formula

∇XX = Γ X
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and the Leipniz rule

∇λX(µX) = λ

(
dµ

dx
X + µ∇XX

)
, λ, µ ∈ C∞(R)

Throughout this article we denote by ∇◦ the canonical flat connection of R, that is

∇◦
XX = 0.

Moreover we may restrict linear connections as well as conformal metrics on R to open submanifolds of R.

3.2. The Levi-Civita connection

Let us take a smooth function γ(x) on the real line and consider the Riemannian metric

g = e2γ(x) dx2.

Obviously g is a global conformal change of the Euclidean metric g0 = dx2. The Levi-Civita connection ∇g is a
linear connection determined by the connection coefficient

Γ (x) =
dγ

dx
(x).

We may restrict γ (and also Γ ) on an open submanifold M of R.
Note that under the scaling change g 7−→ cg for some positive constant c, the Levi-Civita connection is

preserved.

Example 3.1 (Hilbert distance). The Levi-Civita connection of M = (−1, 1) equipped with the Hilbert metric
gH is given by

Γ (x) =
2x

1− x2
.

Note that the Levi-Civita connection of the metric g−1 = dx2/(1− x2)2 coincides with that of gH .

Example 3.2 (Stereographic projection). The Levi-Civita connection of R equipped with the metric

gS =
4dx2

(1 + x2)2

is given by

Γ (x) = − 2x

1 + x2
.

The Levi-Civita connection of the metric g1 = dx2/(1 + x2)2 coincides with that of gS .

4. Linear connections on the real line

Here we recall Nomizu-Sasaki’s work [23] on linear connections on the real line. Let∇ be a linear connection
on the real line with connection coefficient Γ (x). Take a smooth map x : I → (R,∇) defined on an interval I
with coordinate t. We consider the pull-backed tangent bundle

x∗TR =
⋃
t∈I

Tx(t)R.

We denote by ∇x the linear connection on x∗TR induced from ∇.
The velocity of x(t) is the function

ẋ(t) =
dx

dt
(t).

The velocity vector field is

x∗T = ẋ(t)
d

dx
, T =

d

dt
.
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The acceleration of x(t) is the function

ẍ(t) =
d2x

dt2
(t).

The acceleration vector field ∇ẋẋ of x(t) is defined by

∇ẋẋ := ∇x
Tx∗T =

(
ẍ(t) + Γ (x(t))ẋ(t)2

)
X.

A smooth map x is said to be a regular curve if its velocity vector field does not vanish.
A regular curve x(t) in (R,∇) is said to be a geodesic if it satisfies ∇ẋẋ = 0. The ordinary differential equation

d2x

dt2
+ Γ (x(t))

(
dx

dt

)2

= 0 (4.1)

is referred as to the equation of geodesic in (R,∇).
Let us perform a parameter change from t to another parameter u. We assume that the orientation preserving

property:
dt

du
> 0.

Then one can see that

∇ẋ(t)ẋ(t) =
du2

dt2
dx

du
X +

(
du

dt

)2

∇ẋ(u)ẋ(u).

This formula shows that the reparametrized curve x(u) := x(t(u)) satisfies the equation of geodesic if and only
if u = at+ b for some constants a > 0 and b ∈ R. Thus, up to orientation preserving affine transformation on R,
the parameter t with respect to which the equation of geodesic takes the form (4.1) is unique. Such a parameter
is called the affine parameter of a geodesic x = x(t).

More generally for a regular curve x = x(u) in (R,∇), if there exists a reparametrization u = u(t) so that the
remarametrized curve x(t) := x(u(t)) satisfies (4.1), then x(u) is said to be a pre-geodesic. One can see that x(u)
is a pre-geodesic if and only if

∇ẋ(u)ẋ(u) = Ψ(u)ẋ(u)X

for some function Ψ(u). One can see that

t :=

∫ u

0

(
exp

∫ u

0

Ψ(u) du

)
du

is an affine parameter for x(u).
A geodesic x(s) in (R,∇) parametrized by an affine parameter s is said to be complete if it is defined on the

whole line R. A linear connection ∇ is said to be geodesically complete if all the geodesics are complete.
Now let x = x(s) be a geodesic parametrized by an affine parameter s. We demand the initial condition

x(0) = 0, ẋ(0) = 1. (4.2)

According to [23], we introduce a function Q(x) by

Q(x) = exp

(∫ x

0

Γ (u) du

)
.

Then the equation of geodesic is rewritten as

d

ds

(
Q(x(s))

dx

ds
(s)

)
= 0.

Hence
a := Q(x(s))

dx

ds
(s)

is a conserved quantity of the geodesic. From the initial condition we have a = 1. Thus the affine parameter s
is determined by

s =

∫ x

0

Q(u) du.

From this result, Nomizu and Sasaki deduced the following theorem:
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Theorem 4.1 ([23]). On a 1-dimensional manifold (R,∇), a flat local coordinate s around the origin 0 is given by

s =

∫ x

0

Q(u) du.

The inverse function x = x(s) is a geodesic in (R,∇) with affine parameter s.

Let us consider the Levi-Civita connection of the Riemannian metric g = e2λ(x)dx2. In this case

Q(x) = exp

∫ x

0

Γ (u) du = exp(γ(x)− γ(0)) = eγ(x)

eγ(0)
.

Then the flat coordinate s is given by

s =
1

eγ(0)

∫ x

0

eγ(u) du.

Nomizu and Sasaki introduced the notion of affine parametrization of (R,∇). An affine parametrization of
(R,∇) is a triplet (I,∇◦, x) consisting of an open interval I , natural flat linear connection ∇◦ and a connection
preserving diffeomorphism x : (I,∇◦)→ (R,∇). Compare the notion of affine parametrization with that of
developing map of affine 1-manifolds ([14, 28]).

Example 4.1 (The canonical flat connection). The canonical flat connection∇◦ is determined by Γ = 0. The flat
coordinate s around 0 is globally defined and given by s = x. Thus the geodesic satisfying the initial condition
(4.2) is x(s) = s. It should be remarked that ∇◦ is the Levi-Civita connection of the metric g0 = dx2.

Example 4.2. The linear connection∇with connection coefficient Γ = 1 satisfies Q(x) = ex. The flat coordinate
s around 0 is given by

s =

∫ x

0

eu du = ex − 1 ∈ (−1,∞).

Thus the geodesic satisfying the initial condition (4.2) is x(s) = log(s+ 1) and defined on the interval (−1,∞).
Thus ∇ is not geodesically complete. The geodesic x : (−1,∞)→ R is an affine parametrization of (R,∇).

The connection∇ is the Levi-Civita connection of the Riemannian metric g = e2x dx2. The path from x0 to x1
is given by

x(t) = log((ex1 − ex0)t+ ex0).

The geodesics starting at p with initial velocity v is

x(t) = p+ log(1 + vs).

The Riemannian distance d induced from g is given by

d(x0, x1) = |ex1 − ex0 |.

Example 4.3 (Hilbert metric). Let us study the Levi-Civita connection of the Hilbert metric gH on the interval
(−1, 1) with coordinate u. The Levi-Civita connection ∇H is given by Γ = 2u/(1− u2). Hence Q(u) = 1/(1−
u2) > 0. The flat coordinate around 0 is given by

s =

∫ u

0

du

1− u2
= tanh−1 u ∈ (−∞,∞).

The geodesic satisfying the initial condition (4.2) is u(s) = tanh s. Hence u : R→ (−1, 1) is an affine
parametrization of ((−1, 1),∇).

Next let us consider the diffeomorphism x : (−1, 1)→ R given by

x(u) = log(2 tanh−1 u+ 1), u ∈ (−1, 1)

Via this diffeomorphism, the Hilbert metric is transformed as the metric g in Example 4.2. Thus ((−1, 1), gH) is
isometric to (R, e2x dx2) exhibited in Example 4.2.
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Example 4.4. In [23, Example 3], the linear connection ∇with connection coefficient

Γ (x) = − 2x

1 + x2

is discussed. As we saw in Example 3.2, this connection is nothing but the Levi-Civita connection of the metric
gS = 4g1. One can see that

Q(x) =
1

1 + x2
, s(x) =

∫ x

0

dx

1 + x2
= tan−1 x.

Thus we obtain
x = tan s, s ∈

(
−π
2
,
π

2

)
.

The geodesic x : (−π/2, π/2)→ R is an affine parametrization of (R,∇).

Example 4.5. Let us consider the metric g = dx2/(1 + x2). Then

Γ (x) = − x

1 + x2
, Q(x) =

1√
1 + x2

.

Hence

s =

∫ x

0

dx√
1 + x2

= sinh−1 x ∈ (−∞,∞).

Thus the geodesic x : R→ R is an affine parametrization of (R,∇).

Nomizu and Sasaki proved the following result (cf. [28]).

Theorem 4.2. Let ∇ be a linear connection on R. Then (R,∇) is obtained from Example 4.1, 4.2 or 4.4 via affine
parametrization.

This classification is rephrased as

Corollary 4.1. For any linear connection ∇ on R, there exists a global coordinate y so that ∇ is expressed as

∇Y Y = 0, ∇Y Y = Y, or ∇Y Y = − 2y

1 + y2
Y

for Y = d/dy.

Nomizu-Sasaki’s classification is reinterpreted as follows:

Corollary 4.2. Let ∇ be a linear connection on R. Then (R,∇) is obtained from one of the following spaces via affine
parametrizations:

1. (R,∇◦). The canonical flat connection is the Levi-Civita connection of the Euclidean metric g0 = dx2.

2. (R,∇S), where ∇S is the Levi-Civita connection of the metric gS = 4dx2/(1 + x2)2.

3. ((−1, 1),∇H), where ∇H is the Levi-Civita connection of the Hilbert metric gH = 4dx2/(1− x2)2.

Thus globally defined linear connections are exhausted by Levi-Civita connections of the metrics g0 and g±1.
In other words, those linear connections are conformally realizable as in E1, S1 ∖ {∞} or a one-sheet of H1.
Concerning on linear connections on the circle S1, Nomizu and Sasaki proved the following result (compare

with Kuiper’s theorem [30]. See also [14, 27, 28]).

Theorem 4.3. For any linear connection ∇ on S1 = R/Z, there exists a diffeomorphim ϕ : S1 → R/Z or ϕ : S1 →
R+/Ga such that ∇ = ϕ∗∇◦. Here Ga is a group of transformations on R+ defined by x 7−→ ax with a ̸= 1. The linear
connection of the former case is complete but the latter one is not. The quotient R+/Ga is identified with R/Za. The
discrete subgroup Za is the group of translations x 7−→ x+ log a. The induced connection on R coincides with the one in
Example 4.2.

Nomizu and Sasaki pointed out that the connection ∇ = ϕ∗∇◦ on S1 induced from R+/Ga is non-metrical.
Because the connection ∇ = ϕ∗∇◦ is not complete on S1.
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Question. We know that ((−1,∞),∇) in Example 4.2 is derived from the Levi-Civita connection of (S1 ∖
{∞}, 2du2/(1 + u2)2). How to understand/interpret the non-metrizability of ∇ = ϕ∗∇◦ ?

Remark 4.1 (Schwarzian). Let x = x(t) be a regular curve in a Riemannian n-manifold (M, g). The Schwarzian
derivative of x(t) in the sense of Kobayashi-Wada [19] is defined by

s2x := (∇ẋ∇ẋγ̇)ẋ
−1 − 3

2
((∇ẋẋ)ẋ

−1)2 − s

2n(n− 1)
ẋ2,

where s is the scalar curvature ofM . Here we used the Clifford multiplication. In case n = 1, the term s/n(n− 1)
is indefinite. Kobayashi and Wada gave the following interpretation:

• M = E1: s/n(n− 1) = 0.
• M = S1(r) ⊂ E2: s/n(n− 1) = r−2.

5. Equiaffine realizations

Let (R2, D, dy1 ∧ dy2) be the equiaffine plane, that is, the Cartesian plane equipped with canonical flat
connection D and the area element dy1 ∧ dy2 parallel with respect to D.

Let I be an interval equipped with a linear connection ∇. An immersion f : I → (R2, D, dy1 ∧ dy2) into the
equiaffine plane is said to be an equiaffine immersion if there exists a vector field ξ along f transversal to f . Then
the Gauss formula holds:

Df
Xf∗X = f∗(∇XX) + h(X,X)ξ,

where X = d/dx as before. Moreover Df is the connection on the pull-backed bundle f∗TR2 induced from D.
Assume that f is non-degenerate, i.e., det(ḟ(x), f̈(t)) ̸= 0. Then the equiaffine parameter s is defined by

s(x) :=

∫ x

0

det(ḟ(x), f̈(t))1/3 dx.

The equiffine frame F(s) = (e1(s), e2(s)) is an SL2R-valued function defined by

e1(s) := f∗
d

ds
, e2(s) :=

d

ds
e1(s).

The equiaffine Frenet formula is
d

ds
F(s) = F(s)

(
0 −k(s)
1 0

)
.

The function k(s) is called the equiaffine curvature. The Gauss formula becomes

Df
Xe1 = e2, h(X,X) = 1.

Definition 5.1. Let I be an open interval equipped with a linear connection ∇. If there exists an affine
immersion f : I → (R2, D) with transversal vector field ξ so that the induced connection coincides with ∇,
then (I,∇) is said to be realizable in (R2, D).

Example 5.1. The immersion f(x) = (x, x2/2) of (R,∇◦) into (R2, D) is realizable with transversal vector field
ξ = (0, 1).

Example 5.2. The immersion f(x) = (−2/x3, 3x2/5) of R+ into (R2, D) is an equiaffine curve with equiaffine
parameter x. One can see that

e1(x) =

(
1

x2
,

1

4x3

)
, e2(x) =

(
− 2

x3
,
3x2

5

)
,

and k(x) = −6/x2. The induced connection is flat.
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Example 5.3. Consider the immersion f(x) = (x−p, (1− x)−p) of (0, 1) into (R2, D). Then we have

ḟ(x) =
(
−px−p−1, p(1− x)−p−1

)
, f̈(x) =

(
p(p+ 1)x−p−2, p(p+ 1)(1− x)−p−2

)
.

Thus we obtain
det(ḟ(x), f̈(x)) = −p2(p+ 1){x(1− x)}−p−2.

This shows that f is non-degenerate when p ̸= 0, −1.

ds

dx
= −(p2(p+ 1))1/3{x(1− x)}−(p+2)/3.

In case 0 < p < 1, s varies on a bounded open interval.

6. HIMC surfaces in space forms

6.1. Harmonic maps

A smooth map φ : (N, ḡ,dvḡ)→ (M, g) of an oriented Riemannian manifold (N, ḡ,dvḡ) to a Riemannian
manifold (M, g) is said to be a harmonic map if it is a critical point of the Dirichlet energy functional:

E(φ) =

∫
N

1

2
g(dφ,dφ) dvḡ.

The Euler-Lagrange equation of this variational problem is

τ(φ) = trḡ(∇dφ) = 0.

Here ∇dφ is the second fundamental form of φ defined by

(∇dφ)(W ;V ) = ∇φ
V φ∗W − dφ(∇ḡ

VW ), V,W ∈ Γ (TN),

where ∇ḡ is the Levi-Civita connection of ḡ and ∇φ is the linear connection on the pull-backed bundle φ∗TM
induced from the Levi-Civita connection ∇g of g. The operator trḡ is the metrical trace with respect to ḡ

In case, dimN = 2, the Dirichlet energy is conformal invariant. Thus the harmonicity makes sense for maps
from Riemann surfaces into Riemannian manifolds.

Let M be an open interval equipped with a Riemannian metric e2γ(x) dx2. Then for a smooth map x : Σ →M
from a Riemann surface Σ into M , its tension field τ(x) is computed as

τ(x) =
4

E

(
∂2x

∂z∂z
+

dγ

dx
(x)

∣∣∣∣∂x∂z
∣∣∣∣2
)

∂

∂x
.

Here z is a local complex coordinate and we use a Riemannian metric E(z, z̄) dz dz in the conformal class of Σ.
Hence we obtain

Proposition 6.1. A smooth map x : (Σ,E(z, z̄) dz dz)→ (M, e2γ(x)dx2) is a harmonic map if and only if it satisfies

∂2x

∂z∂z
+

dγ

dx

∣∣∣∣∂x∂z
∣∣∣∣2 = 0.

From this characterization one may generalize the notion of harmonic maps in the following manner.

Definition 6.1. LetΣ be a Riemann surface andD be a linear connection on an intervalM ⊂ R with connection
coefficient Γ . Then x : Σ → (M,D) is said to be affine harmonic with respect to D if it satisfies

∂2x

∂z∂z
+ Γ (x)

∣∣∣∣∂x∂z
∣∣∣∣2 = 0.

71 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


On Metrics and Linear Connections on Lines

6.2. HIMC surfaces

According to Fujioka [5], let us define a 1-dimensional Riemannian manifoldM1(c) with c = 0 or c = ±1 in
the following manner (see Introduction).

• c = 0:M1(0) = R and g0 = dx2.
• c = 1:M1(1) = R ∪ {∞} and

g1 =
dx2

(1 + x2)2
.

• c = −1:M1(−1) = (−1, 1) and

g−1 =
dx2

(1− x2)2
.

Let us consider harmonic maps from Riemann surfaces into M1(c). The harmonic map equation for φ : Σ →
M1(c) is given by

∂2x

∂z∂z
− 2cx

1 + cx2

∣∣∣∣∂x∂z
∣∣∣∣2 = 0.

The harmonic map equation can be solved explicitly.

Proposition 6.2. Let φ : Σ →M1(c) be a harmonic map. Then there exists a holomorphic function f(z) on Σ such that

x(z, z) =

{
f + f̄ if c = 0

f+f̄
1−c|f |2 or 1−c|f |2

f+f̄
.

Definition 6.2 ([2, 5]). A conformally immersed surface Σ of a Riemannian space form M3(c) of constant
curvature c = 0, ±1 is said to be a surface of harmonic inverse mean curvature if its mean curvature function H
does not vanish and 1/H is a harmonic map intoM1(c).

7. Orthogonal polynomials

7.1. Weighted Laplacian

Let (M, g,dvg) be an oriented Riemannian m-manifold with volume element

dvg =
√

det(gij) dx
1 ∧ dx2 ∧ · · · ∧ dxm.

Take a positive smooth function Υ and set dµ = Υdvg. According to Grigor’yan [13], a Riemannian manifold
(M, g) equipped with a volume element dµ is called a weighted manifold. The positive smooth function Υ is
called the density function of dµ. The weighted divergence operator divµ is defined by

divµ V =
1

Υ
div(ΥV ), V ∈ Γ (TM).

The weighted Laplacian ∆ of a weighted manifold (M, g,dµ) is introduced as

∆µ = −divµ ◦ gradg,

where gradg is the gradient operator with respect to g.
The following variant of Green’s formula holds for the weighted divergence operator and the weighted

Laplacian: ∫
M

(divµ V )udµ = −
∫
M

g(V, gradu) dµ = −
∫
M

V (∆µu) dµ

for any smooth function u on M with compact support and any vector field V on M with compact support.
In local coordinate fashion, ∆µ is expressed as

∆µ = −
n∑

i,j=1

gij
∂2

∂xi∂xj
−

n∑
i,j=1

(
1

ρ

∂ρ

∂xi
gij +

∂gij

∂xi

)
∂

∂xj
.
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Let us return our attention to the real line R equipped with a conformal metric g = e2γ(x)dx2. Take a density
function Υ(x) and set dµ = Υdx. Then the weighted Laplacian is given by

−∆µ = e−2γ(x) d2

dx2
+

(
e−2γ(x) Υ̇(x)

Υ(x)
− Γ (x)

)
d

dx
. (7.1)

In particular, for the flat metric g0 = dx2, we have

−∆µ =
d2

dx2
+

(
Υ̇(x)

Υ(x)

)
d

dx
.

7.2. The Rodrigues formula

Let I be an interval and consider the function

Ξ(x) =


(x− a)(b− x), I = [a, b], , a, b ∈ R
x− a, I = [a,+∞), a ∈ R,
b− x, I = [−∞, b], b ∈ R
1, I = (−∞,+∞).

Take a positive continuous function w(x) satisfying∣∣∣∣∣
∫ b

a

w(x) dx

∣∣∣∣∣ <∞.
Such a function w(x) is called a weight. Let us introduce a sequence {pn}∞n=0 of polynomials by the so-called
Rodrigues formula:

pn(x) =
Cn

w(x)

dn

dxn
(w(x)Ξ(x)n) , n = 0, 1, 2, . . . .

Here Cn are normalizing constants.

Lemma 7.1. If we choose w(x) as

• w(x) = (x− a)α(b− x)β with α, β > −1 if I = [a, b], a, b ∈ R,
• w(x) = (x− a)νe−x with ν > −1 if I = [a,+∞] with a ∈ R, or
• w(x) = e−x2

if I = (−∞,+∞).

Then the polynomials

fn(x) =
1

w(x)

dn

dxn
(w(x)Ξ(x)n) , n = 0, 1, 2, . . .

are orthogonal with respect to the inner product

⟨F |G⟩ =
∫ b

a

F (x)G(x)w(x) dx.

Moreover every fn is a solution to the ordinary differential equation:

Ξ(x)
d2

dx2
u(x) + f1(x)

d

dx
u(x) = Λn u(x), (7.2)

where
f1(x) = α1x+ c0, Ξ(x) =

X0

2
x2 + c1x+ c2, λn = nα1 +

n(n− 1)

2
X0.

Example 7.1 (Legendre polynomials). On the interval [−1, 1], we choose

w(x) = 1, Cn =
(−1)n

2nn!
.

Then the resulting polynomials are orthogonal and called the Legendre polynomials (and denoted by Pn(x)).
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Example 7.2 (Chebyshev polynomials). On the interval [−1, 1], we choose

w(x) =
1√

1− x2
, Cn =

(−1)n2nn!
(2n)!

.

Then the resulting polynomials are orthogonal and called the Chebyshev polynomials (and denoted by Tn(x)).

Example 7.3 (Gegenbauer polynomials). On the interval [−1, 1], we choose

w(x) = (1− x2)ν−
1
2 , Cn =

(−1)n(2ν)n
2n n!(ν + 1

2 )n
, ν > −1

2
.

Then the resulting polynomials are orthogonal and called the Gegenbauer polynomials (and denoted by Cν
n(x)).

Example 7.4 (Jacobi polynomials). On the interval [−1, 1], we choose

w(x) = (1− x)α(1 + x)β , Cn =
(−1)n

2n n!
, α, β > −1.

Then the resulting polynomials are orthogonal and called the Jacobi polynomials (and denoted by P (α,β)
n (x)).

Example 7.5 (Laguerre polynomials). On the interval [0,+∞), we choose

w(x) = e−x, Cn = 1.

Then the resulting polynomials are orthogonal and called the Laguerre polynomials (and denoted by Ln(x)).

Example 7.6 (Sonine polynomials). On the interval [0,+∞), we choose

w(x) = e−xxµ, Cn =
1

n!
, µ > −1.

Then the resulting polynomials are orthogonal and called the Sonine polynomials (and denoted by Sµ
n(x)).

Example 7.7 (Hermite polynomials). On the interval (−∞,+∞), we choose

w(x) = e−x2

, Cn = (−1)n, µ > −1.

Then the resulting polynomials are orthogonal and called the Hermite polynomials (and denoted by Hn(x)).

Grigor’yan [13] pointed out the following interesting fact.

Proposition 7.1. On the weighted manifold (R,dx2, e−x2

dx), Hermite polynomials are eigenfunctions of the weighted
Laplacian. More precisely we have

∆µHn = 2nHn, n = 0, 1, 2, . . . .

Now let us consider orthogonal polynomials {fn} determined by Lemma 7.1. Comparing the ODE (7.2) and
the eigenvalue problem:

∆µf = λf,

we notice the following fact pointed out by Crasmareanu.

Proposition 7.2 ([4]). On the weighted manifold (I, dx2/Ξ,dµ) with density function Υ(x) = w(x)Ξ(x), each
polynomial fn(x) as well as pn(x) are eigenfunctions of the weighted Laplacian. More precisely

∆µfn = λnfn, ∆µpn = λnpn.

Here eigenvalues λn are non-negative integers.
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7.3. Conformal metrics and orthogonal polynomials

Proposition 7.2 motives us to study conformal metrics g = dx2/Ξ derived from orthogonal polynomials.
For instance the conformal metric on (−1, 1) derived from Legendre, Chebyshev, Gegenbauer or Jacobi

polynomials is

g =
dx2

1− x2
, Γ (x) =

x

1− x2
.

Then we have
Q(x) =

1√
1− x2

, s(x) = sin−1 x.

Hence the geodesic starting at p with initial velocity v is given by

x(s) = sin

(
vs

cos(sin−1 p)
+ sin−1 p

)
.

For any points x and y, the geodesic segment from x to y is given by

sin
(
(sin−1 y − sin−1 x)s+ sin−1 x

)
.

The Riemannian distance is given by

d(x, y) = | sin−1 x− sin−1 y|.

The injectivity radius at p is
2π − sin−1 p√
1− (sin−1 p)2

.

The Riemannian manifold ([−1, 1],dx2/(1− x2)) has the diameter π.

7.4. Conformal metric dx2/x on R+

Next we study the Riemannian metric

g =
dx2

x

on I = (0,+∞). The connection coefficient is

Γ (x) = − 1

2x
.

For any points x and y, the geodesic segment from x to y is given by

(y − x)
√
s+ x.

The Riemannian distance is given by
d(x, y) = 2|

√
x−√y|.

8. Hessian metrics

8.1. Statistical structures

LetM be a manifold equipped with a pair (g,∇) consisting of a Riemannian metric g and a torsion free linear
connection∇. Then (M, g,∇) is said to be a statistical manifold if C = ∇g is a section of T ∗M ⊙ T ∗M ⊙ T ∗M . The
section C is called the cubic form of a statistical manifold (M, g,∇). One can associate a tensor field K to C by

C(U, V,W ) = g(K(U)V,W ), U, V,W ∈ Γ (TM).

Then we have
∇ = ∇g − 1

2
K.
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The conjugate connection ∇∗ of ∇with respect to g is defined by

∇∗ = ∇g +
1

2
K.

The conjugate connection is characterized the formula:

U g(V,W ) = g(∇UV,W ) + g(V,∇∗
UW ).

Let (M, g,C) be a Riemannian manifold equipped with a sectionC of T ∗M ⊙ T ∗M ⊙ T ∗M . Then by introducing
a linear connection ∇ = ∇g −K/2, then we obtain a statistical manifold (M, g,∇). Thus we may regard
(M, g,C) as a statistical manifold.

A statistical manifold (M, g,∇) is said to be of trace free if trgK = 0.

Remark 8.1. Properly convex RPn-structures can be characterized by statistical structures of negative constant
curvature. See [29, 31].

Definition 8.1. A statistical manifold (M, g,∇) is said to be a Hessian manifold if the metric g is locally expressed
as the Hessian Hess∇Φ of some locally defined smooth function Φ with respect to ∇. The local function Φ is
called a Hesse potential of g with respect to ∇.

A Hessian manifold of dimension greater than 1 is characterized as a statistical manifold with vanishing
curvature R = R∇ of ∇.

On a Hessian manifold(M, g,∇), the Hessian curvature tensor field H is introduced as [11, 25]:

H(U, V )W =
1

2
(∇UK)(V,W ), K = −2(∇−∇g).

Here use the sign convention of [12]. A Hessian manifold is said to be of constant Hessian sectional curvature c if

H(U, V )W = − c
2
(g(U, V )W + g(W,U)V ).

Shima [25] proved that a Hessian manifold M is of constant Hessian sectional curvature c if and only if its
tangent bundle is of constant holomorphic sectional curvature −c.

8.2. Statistical 1-manifolds

Let I be an open interval equipped with a conformal metric g = e2γ(x) dx2. Take any linear connection∇with
connection coefficient Γ (x):

∇XX = Γ (x)X, X =
d

dx
.

As we saw before, if ∇ is the Levi-Civita connection ∇g of g, then

Γ (x) =
dγ

dx
(x).

To distinguish the connection coefficient of ∇ and that of the Levi-Civita connection ∇g of g, hereafter we use
the following notation.

Γ (x) = connection coefficient of∇,
gΓ (x) = connection coefficient of the Levi-Civita connection∇g.

We have
C = ∇g = 2e2γ(x)(γ̇(x)− Γ (x)) dx3, dx3 = dx⊙ dx⊙ dx.

Hence (I, g,∇) is always statistical. The operator K is given by

K(X)X = −2(Γ (x)− γ̇(x))X.

Hence (I, g,∇) is of torsion free if and only if ∇ = ∇g. It should be remarked that R = 0 for any statistical
1-manifold (I, g,∇).
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8.3. Hessian 1-manifolds

Let (I, g,∇) be a statistical 1-manifold. For any positive smooth function f on I , its Hessian Hess∇ f with
respect to ∇ is given by

Hess∇ f =

(
d2f

dx2
(x)− Γ (x) df

dx
(x)

)
dx2.

A 1-manifold (I, g,∇) is said to be a Hessian 1-manifold if the metric g is (locally) expressed as g = Hess∇ Φ. In
such a case Φ is called a Hesse potential of g with respect to ∇. For a 1-manifold (I,∇) equipped with a linear
connection ∇. Then a conformal metric g = e2γ(x)dx2 is a Hessian with respect to ∇ for some potential Φ if and
only if there exists a solution Φ to the following Hesse potential equation:

d2Φ

dx2
(x)− Γ (x) dΦ

dx
(x) = exp(2γ(x)). (8.1)

For prescribed functions Γ (x) and γ(x). Let us consider the ODE:

d

dx
µ(x)− Γ (x)µ(x) = exp(2γ(x)). (8.2)

Obviously, the derivative µ(x) = Φ̇(x) of the Hesse potential Φ(x) is a solution to (8.2). The general solution of
(8.2) is given by (see [1]):

µ(x) = C exp

(∫ x

x0

Γ (u) du

)
+

∫ x

x0

e2γ(u) exp

(∫ x

u

Γ (v) dv

)
du.

On a Hessian 1-manifold (I, g,∇) with metric g = e2γ(x)dx2, the Hessian curvature tensor field is given by

H(X,X)X =
(
γ̈(x)− 2Γ (x)γ̇(x)− Γ̇ (x) + 2Γ (x)2

)
X.

Thus the notion of Hessian sectional curvature is valid on (I, g,∇). The Hessian sectional curvature on (I, g,∇) is
defined as the smooth function

H = e−2γ(x)
(
γ̈(x)− 2Γ (x)γ̇(x)− Γ̇ (x) + 2Γ (x)2

)
on (I, g,∇). Note that when ∇ = ∇g, we have H = 0.

Example 8.1. On a statistical 1-manifold (R+,dx2/x2,∇◦), we can see that

g =
dx2

x2
=

d2

dx2
(− log x) dx2.

Thus (R+,dx2/x2,∇◦) is Hessian. The Hessian sectional curvature is constant 1. The tangent bundle of this
statistical manifold is the half plane

TR+(x) = R+(x)×R(y) = {(x, y) ∈ R2 | x > 0}

equipped with the Poincaré metric of constant curvature −1.

Example 8.2 (Binomial distribution). Let us take a sample space Ω = {0, 1, 2, . . . , n}. The probability density
function of the binomial distribution B(n, x) is given by

p(k;x) =

(
n
k

)
xk(1− x)n−k, k ∈ Ω, x ∈ I = (0, 1).

The set of all binomial distributions on Ω is denoted by B(n). The Fisher metric g of B(n) is given by

g =
ndx2

x(1− x)
.

The Levi-Civita connection ∇g is described as

∇g
XX = gΓ (x)X, gΓ (x) =

2x− 1

2x(1− x)
, X =

d

dx
.
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It is known that (R, g) is isometric to

S1
+(2
√
n) = {(y1, y2) ∈ E2 | y21 + y22 = 4n, y1, y2 > 0}

equipped with the Riemannian metric induced from E2.
On B(n) we equip a linear connection ∇ = ∇e called the e-connection (exponential connection) by

∇XX = Γ (x)X, Γ (x) =
2x− 1

x(1− x)
.

Thus we have
∇XX = 2∇g

XX.

Note that ∇ is the Levi-Civita connection of the Riemannian metric

ge =
ndx2

x2(1− x)2
.

The tensor field K = −2(∇−∇g) is given by

K(X)X = −2∇g
XX = −∇XX.

The α-connection ∇(α) = ∇g − αK/2 is given by ∇(α) = (1 + α)∇g. In particular the mixture connection (m-
connection) ∇m is determined by ∇m

XX = 0. Note that ∇m is the conjugate connection of ∇e

Introducing a new coordinate θ by

θ = log
x

1− x
,

and set
Φ(θ) = n log(1 + ex).

Then θ is an affine coordinate of ∇ and Φ is a Hesse potential of g with respect to ∇. The probability density
function is rewritten as

p(k; θ) = exp(C(k) + F (k)θ − Φ(θ)),

where

C(k) = log

(
n
k

)
, F (k) = k.

Thus B(n) is an exponential family (see c.f., [26, Example 6.2]). One can see that B(n) is a Hessian 1-manifold of
constant Hessian sectional curvature −1/n ([26, Example 2.2,2.8, Proposition 3.9]). Note that B(n) is rewritten
as

(R(θ), g,∇◦), g =
n dθ2

(1 + eθ)2
.

Here we prove the following important result.

Theorem 8.1. Every statistical 1-manifold is Hessian.

Proof. Let (I, g,∇) be a statistical 1-manifold. Take an affine parameter s of∇. Represent g as g = e2γ(s)ds2. Then

Φ(s) =

∫ s

s0

(∫ v

s0

e2γ(u)du

)
dv (8.3)

is a Hesse potential.

Molitor studied Hessian 1-manifolds of constant Hessian sectional curvature.

Proposition 8.1 ([22]). Let (M, g,∇) be a Hessian 1-manifold of constant Hessian sectional curvature c, then there
exists an affine parameter x with respect to ∇ such that g is locally expressed in the following form:

1. If c = 0, then g = a ebx dx2 for some positive constants a and b.
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2. If c > 0, then

g =
a2dx2

c cos2(ax+ b)
,

a2dx2

c sinh2(ax+ b)
or

dx2

c (x+ b)2

for some positive constant a and constant b.

3. If c < 0, then

g =
a2dx2

(−c) cosh2(ax+ b)

for some positive constant a and constant b.

To obtain explicit examples of Hessian 1-manifolds, one need to carry out the integration (8.3). Instead of
integration procedure, Bercu, Corcodel and Postolache [1] gave some examples of Hessian 1-manifolds by
using special functions, especially orthogonal polynomials.

Example 8.3 (Bessel functions). Let us consider Bessel equation:

x2ÿ(x) + xẏ(x) + (x2 − α2)y(x) = 0,

where α is a constant. The Bessel function

Jα(x) =

∞∑
n=0

(−1)n

n!Γ(α+ n+ 1)

(x
2

)2n+α

is a real analytic function defined on the whole line and satisfies the Bessel equation. Here Γ(x) is the Gamma
function. One can confirm that

Γ (x) = − 1

x
, g = −x

2 − α2

x2
Jα(x) dx

2

on an interval I on which g is positive definite. Then (I, g,∇) is a Hessian 1-manifold with Hesse potential
f(x) = Jα(x).

Example 8.4 (Hermite polynomials). The Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn
e−x2

are solutions to Hermite’s differential equation:

ÿ(x)− 2xẏ(x) + 2ny(x) = 0, n = 0, 1, 2, . . . .

Then we obtain a Hessian structure

Γ (x) = 2x, g = −2nHn(x) dx
2

on an open interval on which g is positive definite.

Example 8.5 (Legendre polynomials). The Legendre polynomials

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

are solutions to the ODE

(1− x2)ÿ(x)− 2xy′(x) + n(n+ 1)y(x) = 0, n = 0, 1, 2, . . . .

Then

Γ (x) =
2x

1− x2
, g = −n(n+ 1)

1− x2
Pn(x) dx

2

gives a Hessian structure on an open interval on which g is positive definite.
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Example 8.6 (Laguerre polynomials). Let us consider the Laguerre equation

x2ÿ(x) + (1− x)y′(x) + ny(x) = 0, n = 0, 1, 2, . . . .

The Laguerre polynomials

Ln(x) = ex
dn

dxn
(e−xxn)

are solutions to the Laguerre equation. One can confirm that

Γ (x) = −1− x
x

, g = −n
x
Ln(x) dx

2

gives a Hessian structure on an open interval on which g is positive definite.

Example 8.7 (The sinc function). The sinc function

sinc x =
sinx

x

is a solution to
xÿ(x) + 2ẏ(x) + xy(x) = 0.

More generally y(x) = λsinc (λx) is a solution to

xÿ(x) + 2ẏ(x) + λ2xy(x) = 0.

Here λ is a positive constant. The function sinc(πx) is often called the normalized sinc function and used in digital
processing and information theory. By using sinc function we may construct a Hessian structure

Γ (x) = − 2

x
, g = −sinc x dx2.

Example 8.8 (Chebyshev polynomials). The Chebyshev polynomials Tn(x) are solutions to

(1− x2)ÿ(x)− xy′(x) + n2y(x) = 0, n = 0, 1, 2, . . . .

One can confirm that

Γ (x) =
x

1− x2
, g = − n2

1− x2
Tn(x) dx

2

gives a Hessian structure on an open interval on which g is positive definite.

Problem 1. Compute the Hessian sectional curvatures of Hessian 1-manifolds derived from orthogonal
polynomials.

8.4. Product manifolds

Bercu, Corcodel and Postolache [1] studied product manifolds of the form

(R(x), e2γ(x) dx2)× (R(y),dy2).

The product manifold is interpreted as the Cartesian plane R2(x, y) equipped with the Riemannian metric

g = e2γ(x)dx2 + dy2.

Take a smooth function f(x, y) of the form

f(x, y) = ϕ(x) + ψ(y).

Let us consider the Hessian Hessg f with respect to the Levi-Civita connection of the product metric g.
Bercu, Corcodel and Postolache studied the problem when the Hessian metric Hessg f induces the Levi-Civita
connection of g. Concerning on this problem, they obtained the following result.

Theorem 8.2 ([1]). Let us set

ϕ(x) =

∫ x

x0

(
k +

∫ t

x0

eγ(t) dt

)
eγ(t) dt,

where k = C e−γ(x0) and C is an arbitrary constant. Then

f(x, y) = ϕ(x) +
y2

2
+ ay + b, a, b ∈ R

produces a Hessian metric Hessg f whose Levi-Civita connection coincides with that of g.

dergipark.org.tr/en/pub/iejg 80

https://dergipark.org.tr/en/pub/iejg


J. Inoguchi

9. Statistically harmonic maps and statistically biharmonic maps

9.1. Statistically harmonic maps

Here we recall the following notion from our work [17]:

Definition 9.1 ([17]). Let (M, g,∇) be a statistical manifold and φ :M →M a smooth map. Then f is said to be
statistically harmonic if its statistical tension field

τ∇g (φ) = trg(∇Sdφ)

vanishes. Here the statistical second fundamental form ∇Sdφ of φ is defined by

(∇Sdφ)(W ;V ) = ∇∗φ
V φ∗W − φ∗(∇VW ),

where ∇∗φ is the connection on φ∗TM induced from the conjugate connection ∇∗ of ∇.

In case ∇ = ∇g, the statistical-harmonicity is equivalent to the usual harmonicity.

Problem 2. Classify statistically harmonic automorphisms on statistical Lie groups, e.g., on the statistical Lie
group of normal distributions. For harmonic inner automorphisms of compact semi-simple Lie groups, see
[24].

Now let us deduce the statistically harmonic map equation for a smooth map

y : (I, e2γ(x)dx2,∇)→ (I, e2γ(y)dy2,∇∗).

We can take a unit vector field
E = e−γ(x)X, X =

d

dx

on the domain of y = y(x). Since ∇XX = ΓX , one can see that

∇EE = e−2γ(x)(Γ (x)− γ̇(x))X = −1

2
trgK.

Next, we get

y∗X = ẏ(x)Y, Y =
d

dy
.

From this formula, we get
y∗(∇XX) = Γ (y(x))ẏ(x)Y.

On the other hand, we have
∇∗y

X y∗X = (ÿ(x) + Γ ∗(y(x))ẏ(x)2)Y,

where Γ ∗ is the connection coefficient of the conjugate connection ∇∗. Hence

∇∗y
E y∗E = e−2γ(x)(ÿ(x) + Γ ∗(y(x))ẏ(x)2)Y.

Thus we obtain the formula:

τ∇g (y) = e−2γ(x)
(
ÿ(x) + {2γ̇(x)− Γ (y(x))}ẏ(x)2 − Γ (y(x))ẏ(x)

)
Y.

Here we used the formula Γ ∗ = 2γ̇ − Γ .

Proposition 9.1. A smooth map y : (I, g,∇)→ (I, g,∇∗) is statistically harmonic if and only if y = y(x) satisfies

ÿ(x) + {2γ̇(x)− Γ (y(x))}ẏ(x)2 − Γ (y(x))ẏ(x) = 0. (9.1)

It should be remarked that even if∇ = ∇g, the ordinary differential equation can not be the geodesic equation
unless γ̇ = Γ = 0. The geodesic equation

ÿ(x) + {2γ̇(x)− Γ (y(x))}ẏ(x)2 = 0 (9.2)
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of D∗ is derived from the setting
y : (I, dx2,∇g)→ (I,∇∗).

Analogously, the geodesic equation
ÿ(x) + Γ (y(x)) ẏ(x)2 = 0 (9.3)

of ∇ is derived from the setting
y : (I, dx2,∇g)→ (I,∇).

The geodesic equation (9.3) does not depend on the Riemannian metrics on the target 1-manifold.

Problem 3. Construct explicit examples of statistical harmonic maps on 1-dimensional statistical manifolds by
using orthogonal polynomials.

Remark 9.1. One may consider the following conditions for smooth maps of a statistical manifold M into itself:

• τ+,0
g (φ) = trg(∇+,0dφ) = 0, where

(∇+,0dφ)(W ;V ) = ∇φ
V φ∗W − φ∗(∇g

VW ),

and ∇φ is the connection on φ∗TM induced from ∇.
• τ0,+g (φ) = trg(∇0,+dφ) = 0, where

(∇0,+dφ)(W ;V ) = ∇g,φ
V φ∗W − φ∗(∇VW ),

and ∇g,φ is the connection on φ∗TM induced from the Levi-Civita connection ∇g of g.

Obviously for the identity map id,

τ+,0
g (id) = 0⇐⇒ τ0,+g (id) = 0⇐⇒ τ∇g (id) = 0⇐⇒ trgK = 0.

9.2. Statistically biharmonic maps

Let us return once to general situation. Let (M, g,∇) be a statistical manifold and φ :M →M a smooth map.
When we choose φ = id the identity map. In case∇ = ∇g, id is automatically harmonic. The stability of identity
maps was studied extensively in 1970’s and 1980’s. On the other hand, we know the following fact.

Proposition 9.2 ([17]). On a statistical manifold (M, g,∇), the identity map is statistically harmonic when and only
when (M, g,∇) is of trace free.

As a result, the identity map of a 1-dimensional statistical manifold (I, g,∇) can not be statistically harmonic
if ∇ ≠ ∇g. Indeed, if y = x, then (9.1) becomes

τ∇g (x) = 2e−2γ(x)(γ̇(x)− Γ (x))X = 0.

This formula means that τ(x) measures how ∇ is far from ∇g. In other words, the trace free condition is
characterized by the statistical-harmonicity of the identity map.

For a smooth map φ :M →M from an oriented statistical manifold (M, g,∇,dvg) into itself, one can consider
the functional (called the bienergy):

E2(φ) =

∫
M

1

2
g(τ∇g (φ), τ∇g (φ)) dvg.

A smooth map φ is said to be statistically biharmonic if it is a critical point of the bienergy.
As we mentioned above, the trace free condition of (M, g,∇) is equivalent to the statistical harmonicity of

the identity map. Here we propose the following problem:

Problem 4. When is the identity map of a statistical manifold statistically biharmonic ?

Remark 9.2. The notion of statistical biharmonicity in this article is more restrictive than that of [12].
Let (M1, g1,∇1) and (M2, g2,∇2) be statistical manifolds. Assume that M1 is oriented by an volume element

dvg1 . For a smooth map φ :M1 →M2, set

τ1(φ) = trg1(∇2,1,φdφ),
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where
(∇2,1,φdφ)(Y ;X) = ∇2,φ

X φ∗Y − φ∗(∇1
XY ),

where ∇2,φ is the connection on φ∗TM2 induced from ∇2. One can see that τ1(φ) depends on the statistical
structures (g1,∇1) on M1 and the connection ∇2. It does not depend on the metric g2. The bienergy functional
proposed in [12] is

E2(φ) =

∫
M1

1

2
g2(τ1(φ), τ1(φ)) dvg1 .

By computing the Euler-Lagrange equations of E2 with respect to compactly supported variations, they
deduced the Euler-Lagrange equation τ2(φ) = 0, where

τ2(φ) =∆φτ1(φ)−
1

2
divg1(trg1K1) τ1(φ)− trg1L2(dφ, τ1(φ))dφ+

1

2
K2(τ1(φ))τ1(φ).

Here
∇1 −∇g1 = −1

2
K1, ∇2 −∇g2 = −1

2
K2,

g2(L2(Z,W )X,Y ) = g2(R
∇2

(X,Y )Z,W ).

The operator ∆φ is the Laplace-Beltrami operator of the vector bundle (φ∗TM2,∇2,φ, φ∗g2).
A statistically biharmonic map in the sense of Furuhata-Ueno [12] is a smooth map satisfying τ2(φ) = 0.
If we choose

M1 =M2 =M, g1 = g2 = g, ∇1 = ∇, ∇2 = ∇∗,

then the statistically biharmonicicity of φ in the sense of [12] coincides with ours.

Problem 5. Complexify all the stories in this article.

A. The moduli problem

As we saw before, the statistical manifold B(n) of the binomial distributions is one of the typical example of
Hessian 1-manifold. On the other hand the statistical manifold N of the normal distributions is the most well
known example of Hessian 2-manifold.

Kito [18] studied the moduli problems of Hessian structures on the Euclidean n-space En and the hyperbolic
n-space Hn of constant curvature −1 with n > 1. More precisely he studied the set

H(M, g) = {C ∈ Γ (T ∗M ⊙ T ∗M ⊙ T ∗M) | (M, g,C) is Hessian }

for M = En and M = Hn. Here we interpret a Hessian structure on a manifold M as a pair (g, C) consisting of
a Riemannian metric g and a symmetric covariant tensor field C of degree 3. Kito [18] proved the following
results.

Theorem A.1. The set H(En) has at least the freedom of n functions on R. In particular, the set H(Tn) of Hessian
structure of the flat torus has at least the freedom of n periodic functions. Tn.

Theorem A.2. The set H(Hn) has at least the freedom of (n− 1) functions on R.

In a local situation Kito obtained the following result.

Theorem A.3. The set H(E2,0) of Hessian structures of a neighborhood of the origin has the freedom of three local
functions.

On the other hand, in our previous work [10] we studied left invariant statistical structures on the statistical
manifold N of normal distributions. The set

N = {N(x, y2) | x, y ∈ R, y > 0}

of all normal distributions N(x, y2) (of mean x and variance y) is identified with the upper half plane

{(x, y) ∈ R2 | y > 0}.
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The Fisher metric

g =
dx2 + 2dy2

y2

and e-connection (exponential connection)

∇e
∂x∂x = 0, ∇e

∂x∂y = ∇e
∂y∂x = −2

y
∂x, ∇e

∂y∂y = −3

y
∂y

gives a Hessian structure (g,∇E). Moreover the m-connection (mixture connection)

∇m
∂x∂x =

1

y
∂y, ∇m

∂x∂y = ∇m
∂y∂x = 0, ∇m

∂y∂y =
1

y
∂y

also defines a Hessian structure (g,∇m). The triplet (g,∇e,∇m) is referred as to a dually flat structure. More
generally we know the one-parameter family of statistical structures {(g,∇(α))}α∈R on N . The connection∇(α)

defined by

∇(α)
∂x ∂x =

1− α
2y

∂y, ∇(α)
∂x ∂y = ∇(α)

∂y ∂x = −1 + α

y
∂x, ∇(α)

∂y ∂y = −1 + 2α

y
∂y

is called the Amari-Chentsov α-connection. Note that

∇(1) = ∇e, ∇(−1) = ∇m, ∇(0) = ∇g (Levi-Civita connection of g).

The statistical manifold (N , g,∇(α)) is identified with the Lie group{(
y x
0 1

) ∣∣∣∣ x, y ∈ R, y > 0

}
.

The statistical structures are left invariant. By suitable modification, Kito’s result is rephrased forN as follows:

Corollary A.1. The set H(N , g) has at least the freedom of one functions on R.

On the other hand the α-connections are characterized in our work [10] as follows:

Theorem A.4 ([10]). The only left invariant connections on the Lie group of normal distributions compatible to the
Fisher metric which are conjugate symmetric are Amari-Chentsov α-connections. In particular the only left invariant
connections on the Lie group of normal distributions which together with Fischer metric define Hessian structures are
e-connection and m-connection.

Motivated by Kito’s work [18] and our previous work, here we propose the following problem:

Problem 6. Classify all the left invariant linear connections on the Lie group of normal distributions which is
compatible to the Fisher metric g.
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